
Object Oriented Notation for Modelling Quantitative Aspects
Huszerl G., Dept. of Measurement and Information Systems, Budapest Univ. of Technology and Econ., Hungary

K. Kosmidis, Dept. of Computer Science 3, Friedrich-Alexander University Erlangen-Nuremberg, Germany

Abstract

Nowadays formal methods and analysis techniques in design and modelling of modern computer controlled sys-
tems become more and more important. To provide easy-to-use tools for ensuring the overview of complex sys-
tems, multi-aspect modelling languages are specified (e.g. the Unified Modeling Language - UML). While fo-
cusing on best capturing the complex functionality, these languages neglect non-functional aspects such as qual-
ity of service - performance and dependability. However, during the modelling and design process, the
specification of functional requirements is often insufficient. To deal with performance and dependability of sys-
tems the modelling languages should have an integral part of the notation for describing the quantitative proper-
ties of model elements. In the case of UML there are some ongoing research activities to extend it for dealing
with such kind of data for real-time and high-assurance systems, but the current published standard proposals
have their tight limitations. We have specified a language extending the UML to support stochastic modelling,
performance and dependability analysis and modelling of hardware and software systems.

1 Introduction

As the importance of formal methods and analysis
techniques in design and modelling of modern com-
puter controlled systems increased during the last
years, a wide variety of formalisms, languages and
analysis techniques are offered to the designer. From
the view of “design re-use” and tool support, stan-
dardised design languages are preferred. The Unified
Modeling Language (UML) [1] provides a graphical
notation (standardised by the Object Management
Group [2]) for visualising, specifying, constructing
and documenting the artefacts of complex distributed
systems ranging from embedded systems to business
applications. UML is supported by a wide variety of
well-established tools and environments, offering ser-
vices for specification, design refinement and auto-
matic code generation. In the recent years, several
methods were elaborated to enable also the formal
analysis of UML based designs. Among others, prob-
lems of system-level dependability modelling, formal
verification and performance analysis of UML (sub-
set) models were solved [3].
Our work is focused on the quantitative dependability
analysis of the UML behavioural models of embedded
systems. The dynamic behaviour of the system is
given in UML – among other diagrams – by statechart
diagrams [2], an object-oriented mutation of classical
Harel statecharts [4]. They describe the internal be-
haviour of components (objects, hardware nodes etc.)
as well as their reactions to external events. The de-
tailed description of the behaviour by statecharts en-
ables dependability analysis, if the model is extended

with explicit categorisation of failure states/events
and probabilistic information.
While focusing on best capturing the complex func-
tionality, the UML standard neglects non-functional
aspects such as quality of service – performance and
dependability. However, to deal with performance and
dependability of systems the modelling languages
should have an integral part of the notation for the
description of quantitative properties of model ele-
ments.
To tailor the UML to particular application domains
or to particular platforms the concept of profiles is
provided. Currently there are profiles such as for
Software Development Processes and Business Mod-
elling, while other profiles are in progress.1
The next subsection describes the background, which
has triggered this work. The second section intro-
duces two specifications prepared independently in
recent years, while the third section outlines some ba-
sic questions of the modelling for performance and
dependability analysis. A notation for performance-
related QoS characteristics is described in the fourth
section, which will be completed by a notation for as-
sociating these characteristics with UML model ele-
ments in the next one. The last section concludes the
work.

1 In order to guard against confusion of terminology
the name “profile” will be avoided in this context.
Wherever in the next sections the word “profile” is
mentioned, it is used in the QML context, and means
a QML-profile, which is introduced in section 2.2.

1.1 Our analysis approach

Some of the ideas in this article are implicated by pre-
ceding research [3][5], which triggered the specifica-
tion of this notation. While constructing our general
framework for providing formal analysis techniques
for complex safety critical systems, we proceed as
follows (Fig. 1.):

1. The semi-formal system specification is described

in UML.
2. The UML model is transformed to different for-

malisms such as to a special extension of fi-
nite automata (for qualitative analysis), to a
special extension of Petri nets (for quantita-
tive analysis) etc.

3. The generated mathematical models are analysed
by existing analysis tools.

4. The results of the analysis are back-annotated in
the UML model automatically.

5. The system modeller may edit his model and re-
run the transformation–analysis–back-
annotation cycle as many times as necessary
before implementation, without deeper
knowledge about the used formal methods
and its tools.

Specially in quantitative analysis the modeller has to
enrich the semi-formal model by quantitative data.
These data can be derived from the non-functional
requirements of the system, and then been specified
and validated against the system model before the
system is deployed. For this purpose the formal speci-
fication of the non-functional requirements is neces-
sary.
If the requirements must be specified by a mathemati-
cal notation, even a modeller with strong mathemati-
cal background can have problems to specify them
properly. Thus a requirement language that provides
the required formalism to specify non-functional re-
quirements and is intuitively enough to be applied is
defined. As a user-front-end for the specification of
non-

functional requirements the language SQIRL (Sto-
chastic Quantitative Requirement Language) was de-
veloped, that consists of English sentence fragments
[6]. The fragments can be combined to build up sen-
tences that describe requirements. They are character-
ised by a good readability. This is important since
even people without mathematical background can
understand SQIRL-Requirements. On the other hand
they can be used for documentation purpose.
After describing the non-functional requirements by
using SQIRL, the modeller has to specify them in
context of the system model (Fig. 2). Since UML is
not providing any appropriate notation we have speci-
fied a language extending UML, based on the follow-
ing general requirements:
• The language has to be extensible to describe a

wide range of quantitative (performance and de-
pendability) data in modelling.

Non-functional
Requirements

SQIRL

Requirement
Model

Reward
Functions

System Model

Stochastic
Reward Net

Fig. 2 Analysis of non-functional requirements
on a model

Analysis

Fig. 1 Automated model analysis

Design

Build
Back-annotation

Automatic model transformation

Implementation Analysis

Mathematical
Model

Semiformal
Specification

System Model
(enriched)

Mathematical Model

• The language has to suit the UML, extending its
descriptive power. It has to support the associa-
tions and hierarchy within the UML models.

• The language has to support fast input and easy
linking of large amounts of data with a common
value to individual model elements.

• The language has to support fast re-
parameterisation of models.

• The language has to be able to represent queries
for the analysis, this way aggregating the input
and output data of it.

2 Referenced works

In this section two proposals are introduced which
will be referred to in this paper. The first one is a pro-
posal in progress at the Object Management Group
(Status: The Technology Adoption vote has completed
on November 9, 2001), which includes an approach
and the UML extensions required to perform basic
performance analysis of UML models. The second
one is a general Quality-of-Service (QoS) specifica-
tion language, which can be used to capture QoS
properties as part of object-oriented designs.

2.1 The OMG proposal

The proposal “UML Profile for Schedulability, Per-
formance, and Time, revised submission (OMG
ad/2001-06-14)” [7] defines standard paradigms of
use for modelling of time-, schedulability- and
performance-related aspects of real-time systems that
will:
• enable the construction of models that could be

used to make quantitative predictions regarding
these characteristics

• facilitate communication of design intent between
developers in a standardised way

• enable inter-operability between various analysis
and design tools.

The proposal contains among other things a specifica-
tion of the general resource modelling, a generic
model for representing time and time-related mecha-
nisms, a general model of concurrency, and an ap-
proach to perform basic schedulability analysis. The
8th chapter of the proposal describes the approach and
UML extensions required to perform basic perform-
ance analysis of UML models. In this paper we will
show our approach on this concept.
However the authors of the proposal take cognisance
of the importance of the ability to model resources
and their performance related characteristics, they fo-
cus more on binding them to the model elements than
on describing these characteristics. The proposed

tagged-value-based annotation increases visual clut-
ter, and it can be inconvenient for describing complex
data structures (often necessary for presenting quanti-
tative properties) and for working with a large num-
ber of identical data. One possible reason of this defi-
ciency can be that the original “Request for Propos-
als” of the OMG has asked for proposals that are not
changing the UML metamodel.
This proposal is referred to in our work as “the OMG
proposal”, notwithstanding that it is a joint submis-
sion by ARTISAN Software Tools, Inc, I-Logix Inc.,
Rational Software Corp., Telelogic AB, TimeSys –
Corporation, Tri-Pacific Software Inc., and it is only
submitted to the OMG for evaluation.

2.2 The Qos Modeling Language (QML)

Frølund and Koistinen [8] have proposed a general
Quality-of-Service (QoS) specification language,
which they call QML and which can be used to cap-
ture QoS properties as part of object-oriented designs.
QML is designed to integrate object-oriented features,
such as interfaces, classes, and inheritance. In particu-
lar, it allows specification of QoS properties through
refinement of existing QoS specifications. Although
we exemplify the use of QML to specify QoS proper-
ties within the categories of performance, QML can
be used for specification within any QoS category -
QoS categories are user-defined types in QML.
QML has three main abstraction mechanisms for the
QoS specification: contract type, contract, and profile.
QML allows us to define contract types that represent
specific QoS aspects, such as performance or reliabil-
ity. A contract type defines the dimensions that can be
used to characterize a particular QoS aspect. A dimen-
sion has a domain of values that may be ordered.
There are three kinds of domains: set domains, enu-
merated domains, and numeric domains. A contract is
an instance of a contract type and represents a particu-
lar QoS specification.
Finally, QML profiles associate contracts with inter-
faces, operations, operation arguments, and operation
results. For more details on QML we refer to the
original papers with further informal [8][9] and for-
mal [10] descriptions of the language. However, the
language is human readable to such an extent, that the
example code segments in this paper can be under-
stood on the whole without further knowledge.

3 Quantitative analysis

While the qualitative analysis deals with the func-
tional aspects of a system, other aspects such as
performance, dependability, schedulability, timeliness

and others are the subjects of the quantitative analy-
sis. (This work mainly focuses on performance and
dependability, without losing sight of the other quan-
titative aspects.) The ability to predict these numeric
characteristics based on the analysis of object-
oriented models – notably including models that are
constructed prior to implementation – is a fundamen-
tal objective of current research. Accurate and trust-
worthy predictions, while relying on mathematically
derived results stemming from accurate models, in-
variably involve formal quantitative analyses. Rather
than inventing new analysis techniques, the intention
is to be able to annotate a UML model in such a way
that various existing analysis tools will be able to take
advantage of the provided features.
Our goal is to automatically derive mathematical
models from the UML model of the target design un-
der evaluation, and to hide the details of model analy-
sis (including the specifics of its internal algorithms
and data representation) from the modeller. It allows
him to utilise the capabilities of the existing model
analysis tools without being overwhelmed by the de-
tails of the mathematics and the tool.
To protect the modeller from the specifics of individ-
ual tools, all information entered and viewed by the
modeller is included part of the model. To support the
inclusion of quantitative aspects of the system under
evaluation it is necessary to extend the UML.
The modelling of resources is fundamental to the
quantitative analysis. The nature of the necessary ex-
tension of the modelling language highly depends on
the modelling style, which is applied to model the re-
sources. The OMG proposal distinguishes between
two ways of looking at the resource model. In the
first, the so-called peer interpretation, a client and its
used resource coexist at the same computational level.
The layered interpretation is structurally very similar,
but appears in a different context where a client (such
as an application) is related to the resources that are
used to implement it (such as the software and hard-
ware environments used). Thus the client and the re-
source are not really co-existing, but rather two com-
plementary perspectives of the same modeling con-
structs.
In realization layering (opposed to refinement layer-
ing) each level defines a distinct part of the system.
The information in each layer is unique and the full
system is only defined by the aggregate of all the lay-
ers. The lower layer defines a set of resources and re-
source services with offered QoS values (e.g., proces-
sor throughput, memory capacity, and communication
bandwidth), which can be compared to the required
QoS values of the elements in the upper layer. In the
peer interpretation the offered and required QoS val-
ues can be compared using associations between the
different components of the model, while in the lay-

ered one they can be compared along the dependen-
cies. In both cases there are model elements
representing activities (executions, transitions, steps),
which have performance parameters, and other ones
representing resources (active resources, interpreters,
engineering model elements), which have dependabil-
ity parameters.
As it was outlined in this section, the main question of
automated model analysis is how to include supple-
mentary annotations – required by the different analy-
sis tools – in the UML model. Any approaches in-
tended to be general to some extent have to be open
for:
• different aspects of quantitative analysis,
• different analysis techniques with different

underlying mathematical formalisms,
• different kinds of resource modelling.

4 Notation of QoS characteristics

The notation of QoS characteristics described in this
work is based on the works of Svend Frølund and Jari
Koistinen at the HP Labs, who proposed a general
Quality-of-Service specification language (the QML)
to capture QoS properties as part of the design of dis-
tributed object systems. Because of its generality and
being object-oriented, QML can be applied in the ex-
tension of UML for quantitative analysis well. An
adapted version of it could replace the “Tag Value
Language” (TVL) of the OMG proposal, which was
defined for specifying the value fields of tagged val-
ues for the representation of QoS characteristics.
In the first subsection we recall the main concepts of
the QML terminology with respect to the quantitative
modelling in UML as described in the OMG proposal.
In the following subsections the application of these
concepts in quantitative modelling is shown on some
examples.

4.1 The QML terminology

In QML terminology, the lists of QoS constraints re-
quired or offered by a given object are called a con-
tract. Contract types define the structure of its in-
stances by containing a dimension type for each of its
dimensions (e.g. throughput, reliability, failure mask-
ing, operation semantics etc.). In addition to simple
constraints QML supports more complex (statistical)
characterisations that are called aspects (like mean,
variance, frequency and percentile).
The QML concept of profiles describes the QoS prop-
erties of services, which export a given set of opera-
tions and attributes. It is applicable in modelling for
quantitative analysis only when there are special ser-

vices of objects included. In layered interpretation re-
sources can offer resource services to their clients.
The different ways in which QoS profiles can be
bound to specific services (binding) will be discussed
in the next section.
QML defines a conformance relation on profiles, con-
tracts and constraints of the same type. This relation
can be utilised to compare the offered and required
quality of services. This is one of the advantages of
adopting QML for quantitative modelling, because the
OMG proposal does not specify the comparison of
QoS values described in the TVL.

4.2 Contract types for performance mo-
delling

The 8th chapter of the OMG proposal describes the
approach and UML extensions required to perform
basic performance analysis of UML models. Our
work shows the QML-based approach on the QoS as-
pects, which were specified in this chapter of the pro-
posal, but it can be applied on the other aspects as
well. The description of the domain concepts of the
performance analysis model in the OMG proposal
(e.g. scenario, step, host, workload etc.) is only meant
to be used as a basis for deriving similar UML stereo-
types and tagged values. Therefore the QML contract
types below can only serve as references as well. To
minimise the possibility of confusion and conflict
with other UML profiles, the OMG proposal prefixes
all extension element names pertaining to this portion
of the proposal with the “PA” prefix. In this work,
this prefix is kept to name extension elements, which
originate in the OMG proposal. In the proposal, the
structures of the domain concepts are defined in an
informal way, which can be formalised by defining a
dimension type for each of them.
Our first examples will be contract types for the con-
cepts of scenarios and steps:

type Scenario = contract{
 PAhostdemand: decreasing
 numeric ms;
 PArespTime: decreasing
 numeric ms;
}

The QML contract type “Scenario” describes the
structure of the QoS characteristics of the concrete
concept (used directly by the designer) of Scenario in
the OMG proposal. As defined in the proposal, Sce-
narios have only two attributes: hostExecutionDe-
mand and responseTime. Both characteristics (meas-
ures) have a numeric domain with the unit “ms” (mil-
liseconds), and in both cases smaller values are better

(both domains are decreasing). As it highly depends
on the context, we leave the definition of the domains
(especially the ordering and the unit) open, and state
that the above definition is only for demonstration
purposes. QML currently does not support different
numeric domains, but it can be easily amended to
distinguish between integer and real domains.
The OMG proposal defines both characteristics (host-
ExecutionDemand and responseTime) with a more
complex domain type to allow the description of the
type of value meaning, whether it is an average value,
a variance, a kth moment, a percentile range, a prob-
ability distribution or else. For this purpose QML has
the concept of aspects, which will be introduced in
the next subsection where QML contracts will be de-
scribed.
The OMG proposal allows defining each performance
measure in different versions in the same model. The
possible versions of a measure may define a required,
an assumed, a predicted (estimated) and a measured
value. We propose not to include this information in
the contract types, to support comparison of different
versions (e.g. assumed and measured ones) of the
same measures.
QML defines a conformance relation to provide rules
for comparison of contracts of the same contract type.
There are two possible ways to include the versions in
the contract types:
• Definition of separate dimensions for each version

(dimensions may be left unconstrained in the con-
tracts), which would lead to a comparison of con-
tracts without comparison of the different versions
of the dimensions.

• Definition of a new enumeration-based dimension
for indication of the version of the given contract.
In this case either only contracts of the same ver-
sion can be conform to each other, or an ordering
of the different possible versions should be de-
fined, which ordering cannot be general enough.

Our proposal is to include the versions in the binding,
which means that different versions of the same
measures are described in contracts of the same con-
tract type and can be freely compared.
The contract type “Step” describes the more complex
structure of the QoS characteristics of the Step con-
cept in the OMG proposal. Besides having more nu-
meric-domain dimensions than the original one (some
of them without a unit) it deviates from the corre-
sponding definition in the OMG proposal by skipping
the characteristics “operations”.

type Step = contract{
 PAdemand: decreasing numeric ms;
 PArespTime: decreasing
 numeric ms;
 PAprob: decreasing numeric;

 PAdelay: increasing numeric ms;
 PAextOp: increasing set {pos-
 sible resource operations};
 PAinterval: decreasing
 numeric ms;
}

The “operations” attribute of the step is defined by the
OMG proposal to specify the set of operations of re-
sources used in the execution of the step but which
are not explicitly represented anywhere else in the
model. The actual value of the “operations” attribute
is defined by a string, which is used to identify an ex-
ternal operation and either
• the number of repetitions of that operation that are

performed
• or a performance time value.
Contrary to the OMG proposal the QML strictly sepa-
rates functional and quantitative properties of ser-
vices. It defines a service specification to contain an
interface and a QoS profile, the first one describing
operations and attributes exported by the service, and
the latter one describing QoS contracts for the attrib-
utes and attributes described in the interface.
We favour this separation of functional and quantita-
tive properties, and are of the opinion that it conforms
more to the multi-aspect nature of the UML, which
provides separate diagrams for describing different
views of the system under consideration. Therefore
we prefer modelling operations in interface descrip-
tions in class- and object-diagrams, assign QoS char-
acteristics to them explicitly, and associating them to
the given step.
For further examples two other QML contract types
are shown below: “Host” and “OpenLoad”.

type Host = contract{
 PAutilization: decreasing
 numeric;
 PAschdPolicy: enum {FIFO, HOL,
 PR, PS, PPS, LIFO};
 PArate: increasing numeric;
 PActxtSwT: decreasing numeric;
 PAprioMin: decreasing numeric;
 PAprioMax: increasing numeric;
 PApreemptable: increasing enum
 {TRUE, FALSE}
 with order {TRUE < FALSE};
 PAthroughput: increasing numeric;
}

The QML contract type “Host” applies two further
concepts of QML, the enumeration and the ordering
of domains (numeric domains are ordered per defini-
tionem). The enumeration-based schedulingPolicy
dimension (QoS characteristic) may be constrained to

any single literal, which are listed above. The isPre-
emptable dimension can be constrained to TRUE or
FALSE, and the above defined ordering implies that a
non-preemptable resource may be conform to a pre-
emptable client, since larger elements are stronger in
increasing domains. In general, ordering is transitive.
(To the question whether the isPreemptable dimen-
sion should be ordered, and if it should, then how, it is
stated again that the definitions of orderings and units
in this paper are only for demonstration purposes.)
In this contract type, the original priorityRange di-
mension is split into two simple numeric dimensions
to describe the lower and upper end of the range. The
QML specifies no range-based domains, however, it
would be simple to define it based on the semantics of
set-based ones.

 PAprioRange: increasing range
 numeric;

This way a range containing another range would be
defined to be larger, and in an increasing range-based
domain a larger range would be stronger.

type OpenLoad = contract{
 PArespTime: decreasing
 numeric ms;
 PApriotity: increasing numeric;
 PAoccurrence: increasing numeric;
}

The QML contract type “OpenLoad” applies no fur-
ther concepts of QML, but it contains a dimension for
the QoS characteristics occurrencePattern, which is
associated with a more complex domain (RTarrival-
Pattern) in the OMG proposal. This dimension is de-
fined to describe the pattern of inter-arrival times be-
tween consecutive instances of the start event depend-
ing on the nature of the series of intervals, but in
QML’s view it is practically nothing else but a nu-
meric dimension, which may be constrained in un-
usual ways (see Section 4.3.1).
Here we avoid the description of the contract types
for the other concepts of the OMG proposal, and
rather discuss how to describe the QoS characteristics
of a given system.

4.3 Contracts for performance model-
ling

In QML, to capture the structure of contracts within a
given QoS category, a contract type specifies a di-
mension type for each dimension within the category.
Contracts are instances of contract types. In general, a
contract contains a list of constraints, and each con-

straint is associated with a dimension. A contract may
specify constraints for all or only for a subset of the
dimensions in its contract type. Omission of a specifi-
cation for a particular dimension indicates that the
contract is trivially satisfied along that dimension.
Constraints may be simple, containing of a name of a
dimension, an operator and a value (a domain ele-
ment). The QML uses the following set of operators:
{==, <, <=, >, >=}. Inequality operators are allowed
for ordered domains only. For decreasing domains
{==, <=, <} are allowed, and for increasing ones {==,
>=, >}. In the constraints, the domain of the allowed
values is the domain specified in the corresponding
dimension of the contract type.
In this paper, we do not discuss resources with multi-
ple interfaces, and do not regard classes with explic-
itly listed set of exported methods. This way, even if
we use the term “interface”, a class, an object, or the
unlisted set of methods exported by a class is meant.
We radically simplify the semantics of QML to adapt
it to the applied modelling techniques, however we
keep the original terminology to keep the way open
for extending our language for models with inter-
faces. In this context a QML profile does not consists
of a subset of exported methods and a contract, but
rather a class and a contract. However, the equiva-
lence of the terms “class” and “interface” is a conse-
quence of this simplification only.
A possible contract consisting of some simple con-
straints could be the following:

exampleHost = Host contract {
 PAutilization == 0.95;
 PAschdPolicy == FIFO;
 PAthroughput > 2;
}

The “exampleHost” contract an instance of the “Host”
contract type, and it describes a particular quality of
services. In this case, characteristics like the process-
ing rate are unconstrained.
In an object-oriented setting, interfaces are typically
subject to sub-typing or inheritance relationships.
Since the interfaces (the services of the resources) can
be defined through derivation and since there is a
close coupling between QML profiles (contracts) and
interfaces, the QML supports the derivation of pro-
files.
deriHost = exampleHost refined by {
 PAthroughput > 2.1;
 PArate > 1;
}

The “deriHost” contract is based on the “example-
Host” contract, but it is refined by some stronger con-
straints: The throughput must be larger, and process-

ing rates equal to or smaller than 1 are no more satis-
factory. The refinement of a contract may not contain
less strong constraints than the original one, because
of the inheritance of constraints. Contract refinement
allows simple and consistent QoS-description of de-
rived (specialised) resource and client objects.

4.3.1 Aspects

To specify constraints not only by a single value but
in a more general way, the QML supports more com-
plex statistical characterisations that are called as-
pects. The QML currently includes four generally ap-
plicable aspects: “mean”, “variance”, “frequency” and
“percentile”, but it allows user-defined ones as well.
Based on the OMG proposal, some other aspects are
defined.
In the above example the utilisation of a host is con-
strained to be exactly 0.95. In a more proper way it
should be specified by a flexible description:

 PAutilization {
 mean == 0.95;
 variance < 0.6;
 }

It specifies that the measured values of the utilisation
over some time period should have a mean of 0.95
and a variance less than 0.6. To avoid the unbounded-
ness of such statistical characterisations it is useful to
set limitations as well.

 PAutilization {
 mean == 0.95;
 variance < 0.6;
 percentile 90 < 0.97;
 percentile 99 < 0.99;
 frequency (0, 0.5] > 30%;
 }

This more precise constraint states additionally, that
the strongest 90 and 99 percent of the measurements
or occurrences should be less than 0.97 and 0.99 re-
spectively, and that in more than 30% of the occur-
rences the utilisation should be larger than or equal to
0 and less than 0.5. (0 is included in the range but 0.5
is not. The use of open and closed boundaries is arbi-
trarily.)
Since the OMG proposal defines complex types (e.g.
PAperfValue, RTarrivalPattern) to describe some of
the QoS characteristics, other aspects are defined to
implement these types.
The QML aspects mean and percentile are already
known, sigma, kth-mom and max can be defined simi-
larly. Aspects like the following ones can describe the
standard probability distribution function values:

• bernoulli == real;
• binomialprob == real;

binomialtrial == integer;
• exponential == real;
• gammak == integer; gammamean == real;
• geometric == real;
• histogram1start == real;

histogram1prob == real;
histogram2start == real;
histogram2prob == real;
…
histogramnstart == real;
histogramnprob == real;
histogramendprob == real;

• normalmean == real;
normaldev == real;

• poisson == real;
• uniformstart == real;

uniformend == real;

The set of actually applicable aspects can be highly
dependent of the applied analysis tool. Aspects like
the following ones can describe the arrival pattern
values:

• boundedmin == real;

boundedmax == real;
• burstyinterval == real;
• burstymax == integer;
• irregular1 == real;

irregular2 == real;
…
irregularn == real;

• periodic == real;
periodicdeviation == real;

The aspects for probability distribution functions can
describe unbounded arrival patterns.
Not all of the allowed statistical characterisations
make sense for every dimension. The consistency of
the aspects of a given constraint is the solely respon-
sibility of the specifier, just like the accurateness of
the chosen distribution functions and the correctness
of the parameters.

4.3.2 Queries

If the UML description of the system under
consideration is the front-end of the analysis, and the
details of model analysis (including the specifics of its
internal algorithms and data representation) are
hidden from the modeller, there should be a way to
specify queries. In the query the modeller describes
the subject of the analysis, which will be passed to the
analysis tool together with the quantitative data
included in the model. In practice, of course, some

the model. In practice, of course, some knowledge of
the analysis tool and its techniques is both necessary
and useful. Generally, there is no way to use an analy-
sis tool without any knowledge about: what kind of
results can be expected from it, what information is
necessary for the analysis, and what types of specifi-
cation of the input data can be used by the tool. There
is no sense to feed data, which are described by expo-
nential distribution functions, in a tool, which can
only make analyses based on deterministic data.
The query require a set of values, which could not be
specified by the modeller (at the time of the analysis,
the modeller has no information to formulate con-
straints for the given dimension), therefore the query
can be included in the contracts. This way, the domain
of the result is specified unambiguously, and later it
can be used for another analysis. Since neither the
OMG proposal nor the QML specification discuss
queries of this kind (the QML was specified with
quite different goals), a new notation is specified. Any
constrains may be specified with the new unary op-
erator “?”. The automatic transformation of the sys-
tem model (Fig 1.) to a mathematical model has to
formulate the syntactically correct question for the
analysis tool (or report the erroneous query, if it is not
interpretable for the given tool). The back-annotation
has to replace the query with the result (or transform
the error report).

queryHost = Host contract {
 PAutilization {
 mean == 0.95;
 variance < 0.6;
 }
 PAschdPolicy == FIFO;
 PAthroughput ?;
}

The “queryHost” contract describes a query about the
throughput, while containing constraints for other di-
mensions. These constraints, together with other con-
straints specified on other components of the model
can serve as the basis of the quantitative analysis. In
this case, the domain of the result (and its possible
unit) is defined by the “Host” contract type.

4.4 Conformance of contracts

Conformance allows comparing of two syntactically
unrelated profiles. A profile P conforms to another
profile Q if satisfaction of P also implies satisfaction
of Q. (As in this paper interfaces are disregarded,
“profiles” are equal to “contracts” here, because P
conforms to Q if the contracts in P associated with an

interface entity e conform to the contracts associated
with e in Q.)
Contract conformance is defined in terms of confor-
mance for constraints, which defines when one con-
straint in a contract can be considered stronger or as
strong as another constraint for the same dimension in
another contract of the same contract type. Confor-
mance for constraints for dimensions with ordered
domains is based on ordering, for set-based dimen-
sions it is based on the set inclusion relation. For un-
ordered domains the conformance relation reduces to
equality. If a profile contains a query, it is not con-
form to any other profiles.
For constraints including statistical characterisations
(aspects like mean, percentile etc.) the conformance
relation is based on aspect signatures. The aspect sig-
natures of the predefined QML aspects and the formal
definition of the conformance relations based on them
are described in [10]. The signature of the aspects,
which are defined in this work additionally, can be
defined in the same way. For the sake of brevity, this
details are not outlined here.
Conformance checking is to compare two different
QoS, whether the quality offered by a given resource
satisfies the quality required by a client. Being a sim-
ple yes/no question, this is not part of the traditional
quantitative analysis. However, if there are many QoS
descriptions in a system model, this task should be
automated as well. A framework for modelling, which
provides tools for the quantitative analysis, should be
able to perform this simple rule-based comparison of
structured data.

5 Binding

A contract defines the characteristics of a quality, in
which system components may provide their services.
Contracts (profiles) do not describe the QoS of a
given component, they are formulated without any
references to given components. The reference is first
defined by bindings.
To define the QoS, that is required or offered by vari-
ous components in the system, requires that a profile
(contract) can be bound to a relation between a client
and a resource object as part of the design.
In UML, the inter-object relations are described in
class and object diagrams. An extension of the UML
is defined in [8] to support the definition of QoS
properties. This extended design notation fits the gen-
eral requirements well, but it only covers the static
structure diagrams. A similar notation can be used in
deployment diagrams for layered models (i.e. in mod-
els, where the client and the resource are not really
co-existing, but rather two complementary perspec-
tives of the same modeling constructs).

These diagrams are suitable to describe the resulting
QoS of the system components (the QoS requirements
and offers), which cumulate from the QoS of the
model elements. If there are interfaces in the model,
then the cumulation is confined to the set of services,
which is provided by the given interface. Analysing
resulting QoS characteristics requires checking of
profile conformance. Since the conformance relation
is not symmetric, the asymmetric notation proposed in
[8] and [10] is appropriate.
However, many of the quantitative characteristics de-
scribe properties of domain concepts, which are rep-
resented by interaction, activity or statechart dia-
grams. In this case, the individual QoS properties –
which cumulate in the resulting values after the quan-
titative analysis of the model has provided the results
– apply to model elements like collaborations, steps,
states, activities and transitions.
For quantitative analysis the QoS properties are
bound to the objects statically. The framework, which
implements the automatic transformations to the ap-
plied analysis tool, has to provide the contract types
for the modeller. The profiles (contracts) are defined
textually using QML, and they either complement the
UML model as an external document (since there are
no appropriate constructs in the UML), or they are
described by tagged values. The two kinds of repre-
sentations may be combined in models. We prefer de-
scription of contracts (profiles) in such a way, that
several model elements (with the same QoS character-
istics) can reference the same contracts. Especially in
the early phases of the design, when many design de-
cisions are not yet made, the quantitative analysis (for
comparison of possible architectures, algorithms and
design concepts) is often based on typical values,
which are the same for many model elements. In this
case, common description of identical QoS properties
facilitates:
• fast model construction,
• consistent modification of the values for testing

different design concepts,
• consistent modification of the values for different

kind of analyses of the same design.
If the profiles are described externally, binding can be
represented:
• either by a tagged value, which associates the

name of the chosen profile (contract) with the
model element,

• or by a reference, which is drawn as a rectangle
with dotted border within which the profile (con-
tract) name is written. (This notation originates in
the original QML specification.)

Having separate graphical entities for QoS profiles
allows us to clearly show when the same profile is
referenced to from multiple places. However, the

specification of the separate entity requires a signifi-
cant addition to the UML metamodel.
For automatically generated QoS characteristics (e.g.
back-annotation of analysis results), a separate de-
scription of contracts for each model element is more
appropriate.

6 Conclusion

In this paper we have defined an object-oriented nota-
tion for modelling quantitative aspects. Our main goal
was to support quantitative (performance, dependabil-
ity, timeliness etc.) analysis of system models de-
scribed in the Unified Modeling Language (UML).
We supposed that the modelling of the system in con-
sideration follows the UML Profile for Schedulability,
Performance, and Time. In this work we have adopted
the QoS Modeling Language (QML) for this context,
which is different from its original one.
This way we have provided a notation, which can be
tailored to a broad variety of quantitative modelling
and analysis environments, depending on the main
analysis goal, on the applied modelling techniques
and tools.
We have shown that the QML is a proper language to
extend UML model for quantitative analysis. We have
outlined the adaptation end extension of the QML for
describing the domain concepts, which are defined in
the OMG proposal for performance modelling. Fur-
thermore QML provides a uniform notation of QoS
properties in the static and dynamic structure dia-
grams of the UML, and it extends traditional quantita-
tive analysis by conformance checking. It can help in
reducing visual clutter, which is one of the main com-
mon problems of the current proposals in this field.

Literature

[1] J. Rumbaugh, I. Jacobson and G. Booch: The
Unified Modeling Language Reference Manual –
Addison-Wesley Longman, Inc., Reading, Mas-
sachusetts, USA, ISBN 0-201-30998-X, 1999

[2] UML Semantics, Version 1.4 – Object Manage-
ment Group, Needham, MA, USA, September,
2001, (www.omg.org/technology/documents/
formal/uml.htm)

[3] A. Bondavalli, M. Dal Cin, D. Latella and
Pataricza A.: High-level Integrated Design
Environment for Dependability (HIDE) - In Proc.
of Fifth Int. Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS-99F), IEEE
Computer Society Press, Los Alamitos, CA,
USA, ISBN 0-7695-0616-X, pp. 87-92, Novem-
ber 18-20., Monterey, California, USA, 1999

[4] D. Harel: Statecharts: A Visual Formalism for
Complex Systems – In Science of Computer Pro-
gramming, 8(3), pp. 231-274, 1987

[5] A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik,
A. Pataricza and G. Savoia: Dependability Analy-
sis in the Early Phases of UML Based System
Design – International Journal of Computer Sys-
tems, Science & Engineering, 16(5), pp. 265-
275., September, 2001

[6] M. Dal Cin: Structured Language for Specifica-
tion of Quantitative Requirements – In Proc. of
the fifth IEEE Int. Symposium on High Assur-
ance Systems Engineering (HASE 2000), IEEE
Computer Society Press, Los Alamitos, CA,
USA, ISBN 0-7695-0927-4, pp. 221-227, No-
vember 15-17., Albuquerque, NM, USA, 2000

[7] UML Profile for Schedulability, Performance,
and Time – Object Manage-ment Group,
Needham, MA, USA, June, 2001 (revised sub-
mission, OMG ad/2001-06-14, www.omg.org/
cgi-bin/doc?ad/01-06-14)

[8] S. Frølund, J. Koistinen: Quality of Service
Specification in Distributed Object Systems De-
sign – In Proc. of the 4th USENIX Conf. on Ob-
ject-Oriented Technology and Systems (COOTS),
April 27-30., Santa Fe, New Mexico, USA, 1998

[9] S. Frølund, J. Koistinen: Quality of Service Awa-
re Distributed Object Systems – In Proc. of the 5th
USENIX Conf. on Object-Oriented Technology
and Systems (COOTS), pp. 69-89., May 3-7.,
San Diego, California, USA, 1999

[10] S. Frølund, J. Koistinen: QML: A Language for
Quality of Service Specification – HP Labs Tech-
nical Report (HPL-98-10), February, 1998

