
1 Introduction

One of the most important developments in the
field of computer-aided software engineering
(CASE) is the more and more widespread use of
the model driven approach in IT system synthesis.
The main advantage of this approach is that in-
stead of describing the solution of the problem to
be solved, the synthesis is based upon a gradually
refined sequence of problem formulations.
The new objective of the Object Modeling Group
(OMG) is to define such a synthesis process that
enables a high-level automation of refinement steps
by defining mappings between the individual
problem formulations.
In more details, the proposed Model Driven Ar-
chitecture (MDA) based approach [1] consists of
the following main steps:
• requirement formulation,
• definition of the platform independent model

(PIM) which describes the behavior of the
designated system,

• definition of the platform specific model
(PSM) introducing the architectural details
needed for a manual or automated implemen-
tation.

These models can be constructed by using different
notational elements of UML.
However, a pure design model is insufficient for in-
depth analysis purposes. For instance, a proof of
correctness necessitates the exact formulation of
the application-specific requirements. The check of
timeliness in real-time applications requires a
faithful model of the underlying platform with a

main focus on the use of resources, services, and
workload [2].
This way the automated analysis requires an en-
riched view of the target design.

2 Modeling Dependability

Although a complete paradigm for modeling de-
pendability attributes and dependability-increasing
components is far away from having a canonized
formulation, MDA provides a good potential for
integrating design for dependability into the
workflow.
• For instance, a PIM can be enriched by asser-

tions serving as a basis for algorithm-based
fault tolerance.

• Similarly, PSMs can be extended towards
checks and exception handling.

• Detailed models used for defining the interac-
tion between the target application can be ex-
tended to include both the qualitative and the
quantitative dependability attributes. The Gen-
eral Resource Model (GRM) [2] introduces
scenarios for modeling resource utilization and
its associated parameters (like performance) to
enable a quantitative analysis.

Obviously, this notation can be extended by intro-
ducing the corresponding dependability attributes
and parameters like faulty scenarios (fault-
dependent behavior of the individual resources)
and/or quantitative dependability characteristics
like reliability and availability measures, respec-
tively.  It has to be mentioned that essentially the
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same approach was already used in [3] before the
submission of this standard proposal.

3 Mathematical Model Gen-
eration

3.1 Transformation Methodologies

In order to analyze a semi-formal model usually
the following main steps has to be carried out:
1. the parts relevant to a specific analysis task

have to be filtered out of the complete and
usually very complex UML model of the appli-
cation;

2. the reduced UML model has to be transformed
to a model corresponding to the mathematical
analysis tool;

3. the analysis has to be performed;
4. the results have to be back-annotated to the

original UML model for presentation to the
designer.

Obviously, steps 1,2, and 4 require the implemen-
tation of complex transformation algorithms. Ad
hoc techniques based on a direct program-based
transformation frequently result in an intolerably
large code, and easily become a quality bottleneck.
Alternatively, model transformation can have a
solid mathematical foundation. The most promis-
ing approach is the use of graph transformations1.
Graph transformations are a generalization of the
traditional Chomsky grammars to graphs [4]. Sim-
ple rules define the elementary steps transforming
the fragments of the source graph (i.e. the UML
model of the application) to the target graph (e.g. a
Petri-net subnet). This approach is even able to
support the design of UML transformation rules in
UML itself [5]. Fortunately, any of the above men-
tioned approaches may generate mathematical
models of a good quality in the terms of the size
and redundancy of the model. Additionally, the
model generation time is usually negligible com-
pared to the model analysis time [6].

3.2 Typical analysis tasks

The first and most basic task in the assurance of
dependability is the assurance of the fault freedom
of the software design, as according to the statistics

                                                       
1 This approach is in the main focus of the DFG
Priority Programme Software Specification - Inte-
gration of Software Specification Techniques for
Applications in Engineering (http://tfs.cs.tu-
berlin.de/SPP)

a portion as large of 75% of all operational failures
has software-related origins.
The first factor influencing the quality of the soft-
ware is the specification formulated as the initial
model of the design flow. Several tools like Para-
digm of Computer Associates offer a built-in-check
feature for the basic syntax of the UML model.
Obviously, the correctness of the syntax does not
guarantee alone the correctness of the design, espe-
cially in the case of mission-critical applications.
Here a basic requirement is the completeness and
consistency of the design [7] resulting in a prede-
fined, deterministic reaction of the system to arbi-
trary input sequences. These checks can be per-
formed on UML models in the same form [8].
The dynamic correctness of the design is one of the
most crucial points in the assurance of the func-
tionality. First industrial strength tools are avail-
able with an integrated check for embedded sys-
tems [9].
Academic research projects include the integration
of qualitative and quantitative fault models into the
functional UML model and their formal analysis.

4 Conclusions

Obviously, UML and automated code generation
will drastically increase the productivity of IT de-
sign. Formal methods can increase the quality of
the design and a systematic reuse of the best prac-
tice ideas from the field of dependability can lead
to a seamless integrated environment for depend-
ability.

5 Literature

[1] Miller, J.; Mukerji J.: Model Driven Archi-
tecture (MDA). OMG document No
ormsc/2001-07-01

[2] Response to the OMG RFP for Schedulability,
Performance, and Time. Revised Submission.
OMG document No ad/2001-06-14

[3] A. Bondavalli, I. Majzik and I. Mura: Auto-
mated Dependability Analysis of UML De-
signs. Proc. ISORC’99, the 2nd IEEE Inter-
national Symposium on Object-oriented Real-
time Distributed Computing, 1999, pp 139-
144.

[4] A. Corradini, U. Montanari, F. Rossi, H.
Ehrig, R. Heckel, and M. Löwe:. Handbook of
Graph Grammars and Computing by Graph
Transformations, World Scientific, 1997.

[5] Varró, D.; Varró G.; Pataricza, A.: Designing
the Automatic Transformation of Visual Lan-



guages Journal of Science of Computer Pro-
gramming (in press).

[6] A. Bondavalli, M. Dal Cin, D. Latella, I.
Majzik, A. Pataricza, and G. Savoia. Depend-
ability analysis in the early phases of UML
based system design. Int. J. of Computer Sys-
tems - Science & Engineering, Vol. 16, No. 5,
2001, pp 265–275.

[7] N. G. Leveson. SAFEWARE: System Safety
and Computers. Addison Wesley, 1995.

[8] Z. Pap, I. Majzik, and A. Pataricza. Checking
general safety criteria on UML statecharts. In
Computer Safety, Reliability and Security
(Proc. 20th Int. Conf., SAFECOMP-2001,
.pp.

[9] Bienmueller, T.; Damm, W.; Wittke, H.: The
STATEMATE verification environment –
making it real. Proc. 12th Int. Conf. on
Comp. Aided Verification, LNCS-1855, pp.
561–567. Springer, 2000.


