
1 Introduction

One of the most important developments in the
field of computer-aided software engineering
(CASE) is the more and more widespread use of
the model driven approach in IT system synthesis.
The main advantage of this approach is that in-
stead of describing the solution of the problem to
be solved, the synthesis is based upon a gradually
refined sequence of problem formulations.
The new objective of the Object Modeling Group
(OMG) is to define such a synthesis process that
enables a high-level automation of refinement steps
by defining mappings between the individual
problem formulations.
In more details, the proposed Model Driven Ar-
chitecture (MDA) based approach [1] consists of
the following main steps:
• requirement formulation,
• definition of the platform independent model

(PIM) which describes the behavior of the
designated system,

• definition of the platform specific model
(PSM) introducing the architectural details
needed for a manual or automated implemen-
tation.

These models can be constructed by using different
notational elements of UML.
However, a pure design model is insufficient for in-
depth analysis purposes. For instance, a proof of
correctness necessitates the exact formulation of
the application-specific requirements. The check of
timeliness in real-time applications requires a
faithful model of the underlying platform with a

main focus on the use of resources, services, and
workload [2].
This way the automated analysis requires an en-
riched view of the target design.

2 Modeling Dependability

Although a complete paradigm for modeling de-
pendability attributes and dependability-increasing
components is far away from having a canonized
formulation, MDA provides a good potential for
integrating design for dependability into the
workflow.
• For instance, a PIM can be enriched by asser-

tions serving as a basis for algorithm-based
fault tolerance.

• Similarly, PSMs can be extended towards
checks and exception handling.

• Detailed models used for defining the interac-
tion between the target application can be ex-
tended to include both the qualitative and the
quantitative dependability attributes. The Gen-
eral Resource Model (GRM) [2] introduces
scenarios for modeling resource utilization and
its associated parameters (like performance) to
enable a quantitative analysis.

Obviously, this notation can be extended by intro-
ducing the corresponding dependability attributes
and parameters like faulty scenarios (fault-
dependent behavior of the individual resources)
and/or quantitative dependability characteristics
like reliability and availability measures, respec-
tively. It has to be mentioned that essentially the

Dependability – a Byproduct of Model-Driven System Synthesis?
Dr András Pataricza, Budapest University of Technology and Economics, Dept. Measurement and Information
Systems, Hungary

Abstract

The main trend in modern system design is the model-driven development of the designated target application.
This strategy uses a gradually refined set of semi-formal specifications starting from the initial requirements to
define the IT implementation. UML, the Unified Modeling Language, offers a standard graphical notation cov-
ering the entire design life cycle. During the last five years, it became obvious that the main advantage of using a
semi-formal modeling paradigm is the possibility to analyze the model from the point of view of correctness and
conformance to the requirements. Recent standardization efforts at OMG aim at such extensions of UML that
can serve as a basis for the mechanized proof of correctness of UML models. However, the modeling of depend-
ability attributes is still in its initial phase of development. The lecture will present an overview on the state-of-
the-art dependability modeling techniques.

same approach was already used in [3] before the
submission of this standard proposal.

3 Mathematical Model Gen-
eration

3.1 Transformation Methodologies

In order to analyze a semi-formal model usually
the following main steps has to be carried out:
1. the parts relevant to a specific analysis task

have to be filtered out of the complete and
usually very complex UML model of the appli-
cation;

2. the reduced UML model has to be transformed
to a model corresponding to the mathematical
analysis tool;

3. the analysis has to be performed;
4. the results have to be back-annotated to the

original UML model for presentation to the
designer.

Obviously, steps 1,2, and 4 require the implemen-
tation of complex transformation algorithms. Ad
hoc techniques based on a direct program-based
transformation frequently result in an intolerably
large code, and easily become a quality bottleneck.
Alternatively, model transformation can have a
solid mathematical foundation. The most promis-
ing approach is the use of graph transformations1.
Graph transformations are a generalization of the
traditional Chomsky grammars to graphs [4]. Sim-
ple rules define the elementary steps transforming
the fragments of the source graph (i.e. the UML
model of the application) to the target graph (e.g. a
Petri-net subnet). This approach is even able to
support the design of UML transformation rules in
UML itself [5]. Fortunately, any of the above men-
tioned approaches may generate mathematical
models of a good quality in the terms of the size
and redundancy of the model. Additionally, the
model generation time is usually negligible com-
pared to the model analysis time [6].

3.2 Typical analysis tasks

The first and most basic task in the assurance of
dependability is the assurance of the fault freedom
of the software design, as according to the statistics

1 This approach is in the main focus of the DFG
Priority Programme Software Specification - Inte-
gration of Software Specification Techniques for
Applications in Engineering (http://tfs.cs.tu-
berlin.de/SPP)

a portion as large of 75% of all operational failures
has software-related origins.
The first factor influencing the quality of the soft-
ware is the specification formulated as the initial
model of the design flow. Several tools like Para-
digm of Computer Associates offer a built-in-check
feature for the basic syntax of the UML model.
Obviously, the correctness of the syntax does not
guarantee alone the correctness of the design, espe-
cially in the case of mission-critical applications.
Here a basic requirement is the completeness and
consistency of the design [7] resulting in a prede-
fined, deterministic reaction of the system to arbi-
trary input sequences. These checks can be per-
formed on UML models in the same form [8].
The dynamic correctness of the design is one of the
most crucial points in the assurance of the func-
tionality. First industrial strength tools are avail-
able with an integrated check for embedded sys-
tems [9].
Academic research projects include the integration
of qualitative and quantitative fault models into the
functional UML model and their formal analysis.

4 Conclusions

Obviously, UML and automated code generation
will drastically increase the productivity of IT de-
sign. Formal methods can increase the quality of
the design and a systematic reuse of the best prac-
tice ideas from the field of dependability can lead
to a seamless integrated environment for depend-
ability.

5 Literature

[1] Miller, J.; Mukerji J.: Model Driven Archi-
tecture (MDA). OMG document No
ormsc/2001-07-01

[2] Response to the OMG RFP for Schedulability,
Performance, and Time. Revised Submission.
OMG document No ad/2001-06-14

[3] A. Bondavalli, I. Majzik and I. Mura: Auto-
mated Dependability Analysis of UML De-
signs. Proc. ISORC’99, the 2nd IEEE Inter-
national Symposium on Object-oriented Real-
time Distributed Computing, 1999, pp 139-
144.

[4] A. Corradini, U. Montanari, F. Rossi, H.
Ehrig, R. Heckel, and M. Löwe:. Handbook of
Graph Grammars and Computing by Graph
Transformations, World Scientific, 1997.

[5] Varró, D.; Varró G.; Pataricza, A.: Designing
the Automatic Transformation of Visual Lan-

guages Journal of Science of Computer Pro-
gramming (in press).

[6] A. Bondavalli, M. Dal Cin, D. Latella, I.
Majzik, A. Pataricza, and G. Savoia. Depend-
ability analysis in the early phases of UML
based system design. Int. J. of Computer Sys-
tems - Science & Engineering, Vol. 16, No. 5,
2001, pp 265–275.

[7] N. G. Leveson. SAFEWARE: System Safety
and Computers. Addison Wesley, 1995.

[8] Z. Pap, I. Majzik, and A. Pataricza. Checking
general safety criteria on UML statecharts. In
Computer Safety, Reliability and Security
(Proc. 20th Int. Conf., SAFECOMP-2001,
.pp.

[9] Bienmueller, T.; Damm, W.; Wittke, H.: The
STATEMATE verification environment –
making it real. Proc. 12th Int. Conf. on
Comp. Aided Verification, LNCS-1855, pp.
561–567. Springer, 2000.

