EFFICIENT SYSTEM-LEVEL FAULT DIAGNOSIS OF
LARGE MULTIPROCESSOR SYSTEMS

by

Tamds Bartha
M.Sc., Budapest University of Technology and Economics, 1993

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
Faculty of Electrical Engineering and Computer Science
Budapest University of Technology and Economics

Copyright (© 2000 by Tamas Bartha

11

Abstract

Efficient System-Level Fault Diagnosis of
Large Multiprocessor Systems

Tamas Bartha, M.Sc.
Budapest University of Technology and Economics, 2000

Supervisor: Prof. Endre Selényi, D.Sc.

This document presents new results in different areas of multiprocessor fault tolerance.
The first main topic of research studied is fault diagnosis of large parallel computers. Both
the centralized and distributed approach to fault diagnosis are considered. In the frame-
work of centralized diagnosis a novel probabilistic fault diagnostic methodology, called local
information diagnosis (LID), is introduced. The LID approach combines the diagnostic
power of the generalized test invalidation model with the time efficiency of probabilistic
methods. The developed methodology is applied to create three classes of diagnostic al-
gorithms: limited inference, limited information, and scalar methods. The representation
and handling of the diagnostic information is different in the above classes, providing a
diagnostic accuracy/time complexity trade-off.

LID diagnostic algorithms employ the generalized test invalidation model to handle a
wide range of testing arrangements and failure behavior. They use parameterized inference
rules to obtain one-step diagnostic implications conforming to the fault hypotheses and the
actual syndrome. Scalar methods utilize only the one-step implications, thus achieving low
time and space complexity together with good diagnostic accuracy. Limited inference and
limited information methods generate multiple-step diagnostic implications by transitively
propagating one-step implications. They provide significantly better diagnostic accuracy
than either scalar or other existing probabilistic algorithms. Naturally, they have higher
time and space complexity than scalar methods, but their execution time and memory
requirements are still quite adequate for practical application. Different techniques of using
the diagnostic implications in the fault classification process are studied in detail. For
the purpose of fault classification based on diagnostic implications three heuristic methods
having different characteristics are developed and analyzed.

The thesis presents five new probabilistic fault diagnostic algorithms created on the
basis of the local information diagnosis methodology. The diagnostic and computational
performance of the algorithms are compared using both theoretical analysis and measure-
ment techniques. The measurement result confirm that the new algorithms have better
diagnostic accuracy than existing methods, while their time complexity is acceptable for
the application in large-scale computing systems. The results also demonstrate that the

developed methods are

iii

flexible

applicable in non-symmetric and heterogeneous test invalidation situations,

work in arbitrary system topology, and

e can improve the accuracy of the diagnosis by iteratively extending the amount of

diagnostic information extracted from the syndrome.

The thesis also introduces new results in the area of distributed fault diagnosis. An
innovative distributed diagnostic algorithm is described, which lays special emphasis on the
low induced diagnostic message load during normal operation. The algorithm schedules the
higher communication load during the initialization of the system, when the performance
requirements are not strict. During the initial stage a system-wide local diagnostic image
is generated in each processing element. In the later working stage this basic diagnosis is
updated incrementally. This diagnostic strategy also supports the event-oriented dissemina-
tion of the testing information, therefore new messages are only transmitted if they contain
relevant information. The diagnostic procedures are supplemented by two communication
protocols, tailored to the characteristics of the two stages of diagnosis.

The third topic of research presented is a backward error recovery scheme developed
for a practical system: the APEmille parallel computer. The created recovery scheme
unifies the error recovery mechanisms selected for the different components on the basis of a
component-level failure semantics model. It is argued that the two main architectural units
require distinct recovery approaches, and the main features that determine the applicable
solutions are explained in detail. The selection of component-level recovery mechanisms
extends to single and multiple failure occurrences in the considered resource. As part of the
recovery scheme a prospective implementation of a stable storage is given, which fits into
the architecture of the APEmille computer and does not require the inclusion of external

hardware components.

iv

Dedication

To my parents, for their love and support

Acknowledgements

This thesis would never have been completed without the support and encouragement
of my advisor, Endre Selényi. His insightful comments and constructive criticism taught me
to concentrate on the essential aspects of the presented work and helped me to overcome my
constant urge of exploring my new ideas without investigating into the depth of old ones.

I am also indebted to Andris Pataricza, who is a guiding influence of my professional
and personal life. I thank him for the possibility to have research opportunities abroad,
which helped me to get acquainted with new approaches and to discover new directions.

I express my gratitude to Professor Jézsef Bokor for providing me with the ideal con-
ditions to do my work. I would like to thank Professor Piero Maestrini, and Professor
Mario Dal Cin for hosting me in their research institutes and making it possible for me to
participate in the research projects.

I am grateful to all of my colleagues who collaborated me on various topics or simply
shared their opinion of my work with me. In particular, I would like to mention Istvian
Majzik, Jorn Altmann, and Stefano Chessa, whose friendship is one of the most important

results of the years spent with preparing this thesis.

vi

Contents

Motivation

Contribution

1 Introduction

1.1

1.2

Overview of multiprocessor fault tolerance
1.1.1 Dependability impairments
1.1.2 Means of dependability

1.1.3 Model and elements of system-level fault diagnosis

System-level fault diagnosis

1.2.1 Classification of system-level diagnostic algorithms

1.2.2 Centralized diagnostic algorithms
1.2.3 Distributed diagnostic algorithms
1.2.4 Generalized test invalidation

2 Centralized fault diagnosis

2.1

2.2
2.3
24

Local information diagnosis
2.1.1 Inference propagation based approaches
2.1.2 Fault classification heuristics
2.1.3 Scalar approaches
Algorithm properties
Measurement conclusions

Application of local information diagnosis

3 Distributed fault diagnosis

3.1
3.2

3.3

Tllustrative system: the Parsytec GCel parallel computer
An event-driven distributed diagnostic algorithm
3.2.1 Structure of the distributed algorithm
3.2.2 Implementation details

Adapting the LID approach to distributed systems . . .

4 Fault tolerant architecture of large computing systems

4.1
4.2
4.3

Tllustrative system: the APEmille parallel computer . .
Built-in support for fault-tolerance in APEmille
Failure model of APEmille.

vii

XV

xix

11
14
17
24
34

39
39
42
46
49
53
60
62

65
65
72
74
83
85

4.4 Backward error recovery in APEmille.
4.4.1 Recovery of APEmille processors
4.4.2 Recovery of Global and Local Host computers

4.5 Integration of local information diagnosis

4.6 Constraint-based system-level fault diagnosis
5 Conclusions and future work
A Definitions and notation
B Probability models

C Simulation of the LID algorithms
C.1 Measured characteristics
C.1.1 Practical aspects
C.1.2 Theoretical aspects
C.2 Measurement results
C.2.1 Comparison of fault classification heuristics .

C.2.2 Comparison to existing probabilistic methods

D Communication protocols for distributed diagnosis
D.1 Communication in the initial stage

D.2 Communication in the working stage
E Reliable storage in APEmille

Bibliography

viii

XXV

List of Tables

1.1
1.2
1.3
1.4

21
2.2

3.1
3.2

4.1
4.2
4.3

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8

E.1

Non-equivalent testing models Lo, 7
Comparison testing model oL oL Lo 10
Generalized model of test invalidation 34
Parameterized inferenceruleso L oo oL 35
Properties of the LID algorithms 53
Measurement activitieso L 61
Fault classification in the distributed algorithm 7
Test invalidation including interconnection links 88
Failure model of APEmille components 99
Component-level fault tolerance techniques for APEmille. 103
Test invalidation including interconnection links 108
Measured characteristicso Lo o C-2
Varying parameterso e e e e e e C-4
Measurement methods Lo Lo L C-5
Measured parameter values oo o C-8
Maximum misdiagnosed units in group fault patterns C-11
Time complexity versus number of iterations C-13
Average misdiagnosed units in various invalidation models C-15
Time complexity versus system size C-16
Realization of the stable storage properties E-2

ix

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5

C.1
C.2
C.3
C4

System dependability and related conceptso 2
The classification of faults o o000, 5
The relationship of failure classes oo, 6
An example diagnostic situationo oL, 11
Classification of main research areas of system-level diagnosis 17
Components of the inference graph 0L, 35
Inference graph creation oL 36
Structure of the inference matrix oL L. 37
Example of the two main fault pattern types 40
Ratio of the fault-free/faulty tester processors 41
Calculation of the X9[i] and X'[i] values 47
Example for determining the W weight function 52
The structure of a Parsytec GC processingnode 67
A Parsytec GC cluster e 68
The hardware layout a cluster 69
The logical organization of a GigaCube 70
The fault classification algorithm of the working stage 78
Distributed diagnostic example L oo 81
Barrierand loop 82
Software modules of the distributed algorithm 84
Average misdiagnosed units in a bordered two-dimensional mesh 87
Parsytec GCel communication scheme 88
Comprehensive test invalidation model of the Parsytec GCel 89
The logical structure of a Processing Board 93
Hardware layout of a Processing Board 94
The APEmillecrate 95
Testing the components of Processing Boards 97
Comprehensive test invalidation model of the Parsytec GCel 109
Average misdiagnosed units versus system size C-9
Average unknown classified units by the Clique heuristics C-9
Average misdiagnosed units versus fault set size C-10
Fault patterns to examine diagnosis on the fault group borders C-11

xi

C.5 Simulation rounds with incorrect diagnosis versus implication length C-12

C.6 Simulated system topologies oL oL C-12
C.7 Simulation rounds with incorrect diagnosis versus connectivity C-13
C.8 Average misdiagnosed units versus system size C-14
C.9 Average misdiagnosed units versus fault set size C-15
C.10 Measured time complexity oL C-16
D.1 The synchronous communication protocol D-2
D.2 Handling irregularity of the interconnection graph D-4
D.3 The asynchronous communication protocol D-6

xii

List of Algorithms

© 00 N O Ot W N =

—_
ja)

The LMIM algorithm 43
The DIL algorithm o 44
The LTC algorithm 45
The Majority heuristic L L 47
The Election heuristic L 48
The Clique heuristic 50
The CIP algorithm 51
Update phase of the CIP algorithm 52
The fault classification algorithm of the initial stage 76
The barrier detection algorithm 83

xiii

xiv

Motivation

The rapid development of electronic device manufacturing technology influences the de-
sign methodology of high-performance computing systems to a large extent. The present
tendency in the price to performance ratio of complex, highly integrated components (like
processors, memory chips, and controllers) expedites the use of parallel processing as the
primary architectural method for increasing the computational capacity. As a consequence,
distributed multiprocessor systems appeared in all application areas of computer technology
from networking to financial transaction processing. Massively parallel systems, capable of
incorporating as much as several thousand processing elements, represent the most compre-
hensive utilization of distributed computing. Nowadays workstation clusters start to gain
increasing popularity especially in universities and research institutes. These systems re-
quire only a high-speed local area network, several low-cost commercial desktop computers,
and some (public domain or self-developed) support software which are usually already avail-
able in these institutes. Thereby the supercomputer performance of large parallel machines

becomes accessible to a growing set of users.

At the same time the requirements of computer system dependability have also increased
accordingly, particularly in those application areas, where the continuous error-free oper-
ation has serious financial and moral consequences. Such areas are space engineering and
research, military technology, medicine, and energetics. While electronic circuits became
more reliable with the advances in manufacturing technology, the probability of error oc-
currence remained significant due to the large amount of built-in components. Since faults
will not ever be completely avoidable, computing environments must be equipped with the
ability to retain their integrity as experienced by the user in spite of low-level hardware
failures. The assurance of system availability is the task of fault tolerance.

There are two main approaches to provide a reliable computing service. A widely used
fault tolerance technique is error compensation. This approach uses redundant functional
units (duplicates, triple-modular redundancy, etc.) to compensate for the loss of the failed
devices. The advantage of the approach is its relative simplicity and effectiveness: faults
are tolerated transparently, without system down-time or performance degradation. On the
other hand, error masking is very expensive: the production cost is at least doubled, not
mentioning other important factors like physical dimensions, power consumption, and heat
dissipation that also grow accordingly.

Rather than depending on spare units, the other approach called error recovery bases on
the inherent redundancy of multiprocessor systems. The underlying idea of this approach is

to (physically or logically) remove the failed resources and redistribute the user tasks from

XV

the failed units to the remaining fault-free processing elements. Naturally, the decrease
of the system resources and the increase of the executed tasks per processor result in a
higher overall load and thus computational performance drops. Yet, system availability
can be maintained with only a small set of inexpensive additional devices (error detection
hardware, switches to isolate the faulty components). Therefore, error recovery is more
complex, but less cost-intensive fault tolerance technique than error masking. System-level
fault diagnosis is an important part of the error recovery process. Its purpose is to identify
the failed components using the results of high-level tests.

The theory of system-level fault diagnosis was founded in 1967 by the introduction of
the centralized deterministic fault diagnosis concept [1] of Preparata et al. The name of the
concept originates from the high-level modeling of the units constituting the multiprocessor
system and their relationship. The diagnostic model comprises processing elements and
test connections between them. The testing job is accomplished by the processors of the
distributed system themselves, without additional or external tester devices. The fault state
of the modeled devices is typically of pass/fail or GO/NO GO type. This simplified view,
however, is not disadvantageous within the field of application, as the purpose of diagnosis
is localization of faults in the component level and not a detailed report of the underlying
hardware phenomenon that caused the failures.

The methodology of centralized deterministic fault diagnosis remained the dominant re-
search area for more than ten years, but the advance of computer architecture created new
requirements also for diagnostic algorithms. Changes in the field necessitated the gradual
extension of the Preparata model, so new diagnostic approaches appeared to replace the
obsolete concepts. New test invalidation models have been developed to describe different
relationships between faulty and fault-free units. Parallel to the progress in system organi-
zation and complexity increase machines became heterogeneous, therefore only a generalized
test invalidation model could capture the new features. The limitations on system structure
and admissible fault sets required for complete (classifying every unit) and correct (reflect-
ing the real fault situation) diagnosis made the early algorithms inapplicable in cases where
these conditions could not be fulfilled.

The probabilistic diagnostic approach was designed to function in large multiprocessor
systems even when the limits of deterministic diagnosability are exceeded. The expansion of
the applicability of system-level diagnosis is at the cost of diagnostic accuracy: probabilistic
algorithms cannot guarantee the correct and complete classification of each system com-
ponent, diagnostic mistakes have a non-zero—albeit quite low—probability. Likewise the
extensive distributed environments proved that the centralized control of diagnosis causes
potential concerns in availability and performance. This problem can be solved by imple-
menting diagnosis with decentralized control, the topic is thoroughly investigated by the
theory of distributed system-level diagnosis. Of course numerous other additions and im-
provements have been devised in the framework of system-level fault diagnosis, the above
mentioned approaches are studied in detail within this thesis.

In general the methods existing in the literature contain only a certain aspect of the
mentioned extensions. There exists a deterministic algorithm that can handle heterogeneous

systems on the basis of the generalized test invalidation model, but that incorporates the

xvi

limiting conditions of deterministic diagnosability, and is not appropriate for use in massively
parallel computers due to its complexity. There exist simple and effective probabilistic
algorithms that use only a small portion of the total diagnostic information available in the
syndrome and leave the differences of components out of consideration, thus do not estimate
the fault state of units very precisely.

Nevertheless, large computing environments usually use many highly integrated commu-
nication, control, and monitoring devices. These supplemental devices have a complexity
comparable to that of processing elements, therefore it is necessary to involve them in the
diagnostic process. However, in such cases the system structure is no longer homogeneous,
the diagnostic model must handle variety in the behavior of faulty units. The employed
techniques must have small time complexity and low resource usage to handle the huge
set of test results collected from the numerous processing elements. The traditional di-
agnostic ¢-limit and similar restrictive conditions required for deterministic diagnosis are
unmaintainable due to the large dimensions but low local complexity of these systems.

A special class of multiprocessor systems, the massively parallel computers have other
important properties that can (and need to) be utilized in diagnosis. These machines have
regular physical and interconnection structure in order to retain scalability. The system
complexity is small and constant in the local environment of the processing elements. At
the same time the major part of relevant diagnostic information originates in this local
area. The computational requirements of the diagnostic algorithm can therefore be sig-
nificantly reduced by examining only the limited environment of a certain unit during its
fault classification, instead of the whole system. This is the basic idea of local information
diagnosis.

Centralized fault diagnosis is an integral part of a larger procedure, the error remowval
type of fault tolerance approach. Its results are utilized by each subsequent steps: error
confinement, damage assessment, the reconfiguration of the available resources and task
redistribution, as well as the recovery from errors by the restoration of a consistent valid
global system state. These steps depend on each other, therefore they must be designed and
implemented in a unified framework. Although the individual elements of the error recovery
process can be realized with the help of methods and ideas taken from the literature, the
structure of the recovery process itself is completely application-specific, and so it requires
customized methodology. By participating in the APEmille project which aims at the
development of a parallel supercomputer, the author was given the opportunity to formulate
such an error recovery scheme.

Although the architecture of the APEmille computer is particularly suitable for the
application of centralized fault diagnosis, other machines designed according to different
requirements are not capable of employing centralized methods. Typically the completely
distributed large scale systems containing many autonomous units belong to this category.
The use of central units or resources conflicts with the objectives of these computers. Con-
sequently, the need for adapting the diagnostic procedure to the distributed structure of
the system came up already in the eighties. The methodology of distributed fault tolerance
by Kuhl and Reddy assigned the task of fault diagnosis to the processing elements of the

distributed system themselves. The purpose of the diagnostic algorithm is to guarantee the

xvii

uniformity and validity of the created diagnostic image in the case of fault-free units. The
isolation of the faulty processors is also achieved in a distributed manner: the fault-free
units refuse to cooperate with the faulty ones based on the common diagnostic image, thus
boycotting them.

In the recent years many distributed fault diagnostic algorithms have been formulated,
indicating the importance of this research area. These methods periodically execute tests
in a static or adaptive assignment, then disseminate the local test results to every unit by
reliable multicast protocols. The processors receive every test result and perform the analysis
of the collected global syndrome individually. Existing methods, however, do not give
enough consideration to the message volume caused by the distribution of local test results
and the actualization of the adaptive testing arrangement. The possibility of improvement is
motivated by the technique of incremental checkpointing. Following its basic mechanism the
processors can create an initial global diagnostic image and then update only the differences
caused by the occurring new diagnostic events (failure, repair). This way the transmission
of the diagnostic messages can also be scheduled in an event-oriented way. Therefore only
the creation of the initial diagnostic image generates high message volume, which occurs
during the start-up phase of the system and thus does not imply additional load during the

execution of user applications.

xviil

Contribution

The thesis presents new research results in three main areas of multiprocessor fault tolerance:
centralized fault diagnosis, distributed fault diagnosis, and backward error recovery of parallel
computing systems. This section summarizes the new results of our work and refers to those

parts of the document where the results are described in detail.

Contribution 1. We have developed a new probabilistic diagnostic methodology based on
the counting of one-step diagnostic implications in the implication chains supporting a given
fault hypothesis. The new approach employs the generalized test invalidation model (in con-
trast with the probabilistic algorithms known in the literature). This way it is able to identify
the failed system components handling the additional diagnostic information inherent to sys-
tems having homogeneous non-symmetric and heterogeneous test invalidation [2]. We have
defined probabilistic diagnostic algorithms according to the new methodology [3]. We proved,
that the developed algorithms have linear time and space complezity, therefore they are par-
ticularly suitable for application in large scale systems [4]. The diagnostic methodology and

the corresponding new results are introduced in Sections 2.1 and 2.1.3.

(a) We have defined the inference graph, which represents the one- (and multiple-) step
implications extracted from the syndrome on the basis of the generalized model of test
invalidation. We gave a probabilistic decision procedure for the classification of the
unit fault states [5]. The decision is based on the number of edges in the directed edge
sequences ending at a certain node of the inference graph. This quantity is equivalent
to the number of diagnostic implications supporting the fault hypothesis correspond-
ing to the given node. The decision making method assumes that fault-free tester
units dominate the local environment of the diagnosed unit. Contrasted to existing
probabilistic algorithms this new diagnostic approach considers the information orig-
inated not only the direct neighbors, but (to a limited depth) at the farther units
as well. The utilization of this additional information reflects in improved diagnostic
accuracy. (The definition of the inference graph can be found in Section 1.2.4, while
the different variants of the probabilistic decision mechanism are described in Sections
2.1.2 and 2.1.3.)

(b) We have developed an algorithm for the efficient (although distorted) estimation of
the basic quantities of the above probabilistic decision making method. The algorithm
uses two implication counters to compute the number of elements in the implication

chains supporting the fault-free/faulty states of units. Therefore, it is referred to as the

xix

CIP-2 (Count Inference Paths) algorithm [3]. The counter values are determined in
multiple iteration step, using only the counters of the neighbor units, thus achieving
linear time and space complexity. (The CIP-2 algorithm is one of the scalar LID
methods introduced in Section 2.1.3. The theoretical values of time complexity can

be found in Section 2.2, while the practical evaluation is presented in Section C.2.)

(c) We have refined the CIP-2 algorithm using four implication counters. The new al-
gorithm, called CIP-4, can differentiate the implication chains not only by their end-
points, but also by their start points. We have modified the probabilistic decision
making procedure to consider only implications drawn from the fault-free states of
units. This way a better estimation of the fault hypothesis likelihood was obtained
and diagnostic accuracy has been improved compared to the CIP-2 algorithm. (The
CIP-4 algorithm is the second scalar LID method described in Section 2.1.3. The

comparison of the two CIP algorithms can be found in Section C.2.)

The underlying idea of the developed local information diagnostic methodology is that
in the case of practical fault set types there is enough information available in the local
environment of units to determine the quantities used in the probabilistic decision making
procedure with sufficient accuracy. Existing deterministic algorithms typically classify
the fault states taking into consideration all of the units in the system. On the other
hand, probabilistic algorithms examine only the direct neighbors of the diagnosed unit.
Local information diagnosis creates a compromise between these two approaches. The
information used in the LID diagnostic process is gathered from a limited, but wider
range environment than the direct neighborhood. Therefore, we could derive algorithms
with smaller time and space complexity than the existing deterministic methods, while

achieving better diagnostic accuracy than existing probabilistic techniques.

For statistical measurement of the CIP algorithm properties we implemented a general-
purpose simulation environment. The simulation environment is capable of the verification
of each centralized probabilistic diagnostic algorithms developed in the framework of this
thesis, as well as the existing centralized algorithms known in the literature. (The de-
scription of the simulation environment is not covered by this document due to the many
options and detailed measurement results the simulator provides, a brief user’s guide is
contained in [6].) Both the CIP-2 and CIP-4 algorithms have been implemented within the
simulation environment, and their diagnostic properties were studied. We have confirmed
that the CIP-4 algorithm provides better diagnostic accuracy than the CIP-2 algorithm
[4]. Both algorithms were proved to correctly identify the fault state of those units which
can be surely classified based on the syndrome (provided they are run in an adequate
number of iterations) [3]. (These theoretical results are explained in Section 2.2, the

correctness proof is provided by Theorem 2.2.9.)

Contribution 2. We have developed a new probabilistic diagnostic method based on the
limited transitive propagation of one-step diagnostic implications. The method consists of

two subsequent phases. In the first phase the one-step diagnostic implications are collected

XX

and they are transitively propagated in a limited depth [7]. The employed data representation
includes the entire set of implications, therefore the method is able to extract the complete
diagnostic information contained in the syndrome (provided it is executed in an appropriate
number of iterations). In the second phase the generated implication set is processed using
heuristic fault classification rules [8]. Procedures for both phases of the new diagnostic
method have been devised. Using the created procedures we have formulated probabilistic
diagnostic algorithms. The developed algorithms were confirmed to have better diagnostic
properties than the CIP-2 and CIP-4 algorithms, as well as the probabilistic algorithms
known in the literature. The improvement of the diagnostic accuracy comes on the erpense
of the increase in time and space complezity [4]. The description of the new diagnostic
method and the procedures devised for the different phases can be found in Sections 2.1.1
and 2.1.2.

(a) We have devised a method for the limited-length transitive propagation of diagnostic
implications based on matrix multiplication. The method, called the LMIM (Limited
Multiplication of Inference Matriz) algorithm, obtains the multiple-step implication
set used in probabilistic diagnosis by computing a given power of the implication ma-
trix [9]. The time complexity of the method is O(n?3) in the function of the system size,
which is determined by the employed matrix multiplication. (The LMIM algorithm is

one of the limited inference methods defined in Section 2.1.1.)

(b) We have developed a new method for limited-length transitive propagation of diag-
nostic implications, which generates a diagnostically equivalent implication set to the
matrix multiplication. The new method, called the DIL (Distribution of Inference
Lists) algorithm, computes the partial implication set used in local information diag-
nosis with less time complexity (O(n?) instead of O(n?)) than the LMIM algorithm
[2]. The reduction of the time complexity is achieved by realizing the transitive prop-
agation in multiple iterations, using solely the implication sets of the direct neighbor
units. (The the DIL algorithm is the other limited inference method described in
Section 2.1.1.)

(c) We have developed a new method for limited-length transitive propagation of diagnos-
tic implications based on the transitive closure of diagnostic implications in a reduced
environment. The method has linear time and space complexity in the function of sys-
tem size. The time complexity depends on the extent of local environment considered
in diagnosis at a rate of O(v}). In large systems and for small considered environments
the new method, called the LTC (Local Transitive Closure) algorithm, computes the
partial implication set used in local information diagnosis more efficiently than the
algorithms known in the literature [2]. (The LTC algorithm is a limited information

method presented in Section 2.1.1.)

(d) We have formulated three new heuristic methods for the diagnostic analysis of the
generated partial implication set. The Majority heuristic classifies the fault state of

the diagnosed unit according to a majority decision on the implications drawn from

xx1

the fault-free states of the neighbor units. The Election heuristic performs the diag-
nostic task sequentially, by selecting the most likely faulty unit in each iteration step.
The Clique heuristic groups units according to the identical and opposite relationship
between unit fault hypotheses. Then, it selects the units classified as fault-free by
finding the largest group of units having identical and consistent fault states [8]. (The

three fault classification heuristics are defined in Section 2.1.2.)

The one-step diagnostic implications obtained from the system based on the actual
syndrome can be extended into multiple-step implications utilizing the transitive property.
The adaptation of the local information diagnostic methodology in this framework means
the limitation of the transitive propagation. We have given two different approaches to
solving the problem of limited propagation of diagnostic inferences. The limited inference
(LMIM, DIL) approach performs the transitive propagation of the whole implication set
in a restricted depth. The limited information (LTC) approach executes the transitive

closure of an implication set generated from a reduced environment [2].

We have shown that the limited inference and limited information approaches generate
identical implication sets (though possibly in a different number of iterations). Thus, they
are equivalent from the diagnostic viewpoint. (This statement is supported by Theorems
2.2.2, 2.2.4, and 2.2.7 given in Section 2.2.) We have demonstrated by simulation exper-
iments, that the computation of the transitively extended diagnostic implication set by
the matrix multiplication technique (known in the literature and employed by the LMIM
algorithm) performs many redundant operations in large, regular topology multiproces-
sor systems. The devised alternative methods (DIL, LTC) have much better suited time
complexity for practical applications [4].

The formulated heuristic fault classification methods are essentially the applications of
the probabilistic decision making procedure defined in Contribution 1. We have created
new probabilistic diagnostic algorithms combining the LMIM, DIL, and LTC implication
propagation methods and the Majority, Election, and Clique fault classification heuristics.
We have appointed the characteristics affecting the diagnostic accuracy of heuristics. With
the help of the simulation environment the developed fault classification heuristics were
compared to each other, and to several probabilistic diagnostic algorithms taken from
the literature [8]. The measurements have confirmed that the new algorithms are better
than the existing methods in terms of the selected characteristics up to one order of
magnitude. The improvement is particularly large in systems with non-symmetric and
heterogeneous test invalidation [4]. (The measurement activities and the obtained results

for the developed and existing algorithms are described in detail in Appendix C.)

Contribution 3. We have developed a new, general-purpose distributed diagnostic algo-
rithm. The new algorithm combines the static and event-oriented diagnostic approaches
existing separately in known algorithms, in order to reduce the induced message load [10)].
The algorithm consists of two main stages. The initial stage is executed in the startup period
shortly after the system was switched on. Its main purpose is to determine the actual fault

state of the whole system. The second, working stage is active during the execution of user

xxii

applications. Its objective is to handle the occurring failure events with smaller diagnos-
tic message overhead compared to the methods known in the literature [11]. The developed
distributed fault diagnostic algorithm, including the two operating stages, is presented in
Section 3.2.

(a) We have defined a diagnostic procedure for the initial stage which can quickly produce
a consistent global diagnostic image in each fault-free processor. The procedure gen-
erates a relatively high message load, however, in the startup period the performance
requirements are not strict. On the other hand, the time complexity of the procedure
is not adversely affected by the existence of a large number of faulty units (contrasted

to the known event-oriented algorithms) [12].

(b) We have defined a diagnostic procedure for the working stage which analyzes only
the changes in the syndrome incrementally, compared to the global diagnostic image
created in the initial stage. The distribution of the testing information is accomplished
by an event-oriented mechanism in order to decrease the transmitted message volume.
Diagnostic messages are started only in the case of detected new diagnostic events
(failure, repair), therefore the algorithm influences the system operation during user

application execution at a minimum level [12].

(c) We have determined those situations, in which the incremental approach used in the
working stage may lead to an inconsistent diagnostic image. Such situations are han-
dled by returning to the initial stage of the algorithm [11]. (The operation of the initial
and working stages, and the conditions controlling the alternation between them are
detailed in Section 3.2.1.)

Due to the machine-specific nature of distributed diagnosis the message communica-
tion protocols constitute an integral part of the diagnostic algorithm. The two stages
of the developed distributed algorithm require different protocols. We have defined an
effective, but tightly scheduled synchronous communication protocol for use in the initial
stage. (The synchronous communication protocol is specified in Section D.1.) For the
purposes of the working stage we have developed an asynchronous communication pro-
tocol in order to avoid deadlocks and scheduling problems. The asynchronous protocol
has been adopted to the two-dimensional mesh topology of the Parsytec GCel machine.
This refined protocol generates nearly optimum number of messages even in the presence
of faulty units in the system. (The asynchronous communication protocol is outlined in
Section D.2.) The operation of the developed distributed diagnostic algorithm and the
employed communication protocols was verified by an experimental implementation in
the Parsytec GCel system. (Some details of the practical implementation are covered by
Section 3.2.2. Other particulars, not included in this document for the sake of conciseness,
can be found in [13].)

We have studied the possibility and requirements of the application of local information
diagnostic algorithms in distributed environments were studied. We gave methods for

integration of the limited transitive propagation based probabilistic diagnostic algorithms

xx1ii

into the developed distributed algorithm. We have examined the possibility of further
decreasing the transmitted message volume by limiting the area of message dissemination
and showed the effect of the reduced testing information on diagnostic accuracy. (The
adaptation of LID algorithms to the distributed environment, and the influence of testing

information reduction are presented in Section 3.3.)

Contribution 4. APEmille is a Single Instruction Multiple Data parallel computer pre-
pared as a joint collaboration of several European research institutes. We have developed
a comprehensive backward error recovery mechanism that forms a part of the fault-tolerant
architecture of the APEmille machine [1}]. We have created a component-level failure model
of the system, and devised the state saving and state restoration procedures for each compo-
nent based on this model. In the procedures separate methods were formulated for the case of
single and multiple failures [15]. The results concerning the developed recovery mechanism

are summarized in Sections 4.3 and 4.4.

(a) The two main functional units of the APEmille system, the processing engine (SIMD
part) and the supervisor computers (MIMD part), must be treated differently with re-
gard to the recovery mechanism. We have devised separate recovery schemes for both
parts, taking into consideration the employed diagnostic algorithm and the planned
maintenance strategy [16]. (The recovery scheme for the SIMD part is given in Sec-
tion 4.4.1, while for the MIMD part it can be found in Section 4.4.2.)

(b) We have developed a prospective implementation of a stable storage, used in the
recovery mechanism for reliable recording of state information [17]. The proposed
implementation utilizes only the available hardware resources of the system. (The

structure of the developed stable storage is described in Appendix E.)

The results corresponding to the contribution are the first steps in the realization
of the APEmille backward error recovery mechanism. As this work is not preceded by
other research within the framework of the APEmille project, the author had to solve
problems outside of the scope of recovery, like the formulation of a simplified, component-
level failure semantics model for APEmille (which is included in Section 4.3). The work
on the recovery mechanism started at an advanced stage of the project, when it was no
longer feasible to suggest modifications in the hardware design. Therefore, one of the
requirements during the development of the state saving and state restoration procedures

was to employ only the available hardware resources.

Although the diagnostic algorithm, which constitutes a part of the recovery mechanism,
has already been completed by the time we started working on the topic of recovery, the
APEmille computer is also an appropriate platform for the application of local information
diagnosis. Thus, we examined the possibility and conditions of integration of the LID
probabilistic diagnostic methods in the fault tolerance of APEmille. (The integration

problems and solutions are explained in Section 4.5.)

xx1v

Chapter 1

Introduction

This chapter introduces the principles and means of fault-tolerant computing with respect
to multiprocessor fault tolerance. The basic notions and definitions are presented through
the dependability concept of Laprie [18]. A set of selected centralized and distributed fault
diagnostic algorithms are outlined to illustrate the main problems and existing solutions to
the task of fault diagnosis. Finally, the concept of generalized test invalidation and its use

for system-level fault diagnosis is described.

1.1 Overview of multiprocessor fault tolerance

Computer system dependability is the quality of the delivered service such that reliance can
justifiably be placed on this service. The delivered service is an abstraction of the system
behavior as it is perceived by other systems (its users) interacting with the considered
system. This abstraction is highly dependent on the application, for example time plays an
important role in the abstraction, as the time granularity for the system and its users are

generally different.

1.1.1 Dependability impairments

The impairments of dependability are undesired circumstances causing or resulting the
lack of dependability, whereby reliance cannot be justifiably placed on the service any more.

Reasons, causing the loss of dependability manifest in the forms of faults, errors, and failures:
1. a fault is the cause (in its phenomenological sense) of an error,

2. an error is the part of the system state which is responsible for the manifested failure

(i.e., the delivery of a service not complying with the specification), and

3. a failure occurs when the delivered service differs from the expected service, where the
expected service is described in the service specification. The failure occurred because

the system was erroneous.

Upon occurrence, a fault creates a latent error, which becomes an effective error upon activa-
tion. When the effective error modifies the delivered service, a failure occurs. For example,

a short circuit occurring in an integrated circuit is a fault, the consequence (modification of

2 CHAPTER 1. INTRODUCTION

FAULTS

LATENT
—— IMPAIRMENTS ERRORS —{

EFFICIENT
FAILURES

FAULT AVOIDANCE
PROCUREMENT

(,L\

FAULT TOLERANCE

ERROR REMOVAL
VALIDATION —{
ERROR FORECAST

RELIABILITY
\-—MEASURES ‘{ AVAILABILITY
MAINTAINABILITY

Figure 1.1: System dependability and related concepts

DEPENDABILITY -% MEANS

the circuit function) is a latent error. When the module where the error resides is activated
(an appropriate input pattern selects the erroneous function) the error becomes effective.
This effective error may produce incorrect data (value of results or timing of their delivery)
which may affects the delivered service creating a failure. Definitions of fault, error and
failure can be stated in other terms as: an error is the manifestation in the system of a
fault, and a failure is the manifestation on the service of an error. The granularity of a
particular dependability model always stops at the cause which is intended to be avoided or
tolerated. Otherwise, a faults would become nothing else than a failure of a system having
interacted with the considered system.

Faults can be categorized into the classes of physical faults: adverse physical phenom-
ena, either internal (threshold changes, short circuits) or external (environmental effects),
and human-made faults: imperfections, which may be either design faults (committed dur-
ing the system design and modifications) or interaction faults (violations of operating or

maintenance procedures).

The life of a system is perceived by its users as an alternation between service accom-
plishment (the service is delivered as specified) and service interruption (the delivered and
specified services differ). The events causing transition between the above two system states
are the failure and restoration (also referred to as repair). Quantification of the character-
istics of this accomplishment/interruption alternation leads to three possible measures of
dependability. Reliability measures the continuous service accomplishment (or equivalently
the time to failure) from a reference initial instant. Awvailability rates the service completion
with respect to the alteration of accomplishment and interruption. Maintainability quan-
tifies the continuous service interruption (or equivalently the time to restoration). These
characteristics depend on non-deterministic, stochastic processes, so they can be represented

mathematically as probabilities.

The error latency duration may vary considerably, depending upon the fault, the sys-
tem utilization and other circumstances. Whether or not an error will lead to a failure is

determined by the activation conditions that cause a latent error to become effective, the

1.1. OVERVIEW OF MULTIPROCESSOR FAULT TOLERANCE 3

system construction with the regard of available redundancy, and the definition of a failure
from the users point of view (for example, voltage threshold levels in logical circuits imply

the notion of “error acceptance regions”). Available redundancy can be classified as

1. explicit redundancy, built-in the system in order to ensure fault-tolerance, i.e., it is

directly employed to prevent an error from leading to a failure, and

2. implicit redundancy, the level of redundancy residing in every system, which may play
the same role as explicit redundancy. It is in fact difficult to build a system without

any form of redundancy.

1.1.2 Means of dependability

Constructing a dependable computing system requires the combined utilization of a set
of methods, which can be either fault-avoiding, preventing the occurrence of faults by ap-
propriate construction of the system, or fault-tolerant, utilizing the implicit redundancy in
a computing system to deliver the specified service in spite of that faults have occurred,
error-removing, trying to minimize the presence of latent errors so they cannot be acti-
vated, or error-forecasting, estimating the presence, creation and consequences of errors by
evaluation. The former two groups may be regarded as constituting dependability procure-
ment, attempting to provide the system with the ability to deliver service complying with
its specification, while the latter two groups may be considered as constituting dependabil-
ity validation, aiming at reaching confidence in the system ability to deliver the specified
service.

Fault-tolerance is carried out by error processing, which may be automatic or opera-
tor assisted. The purpose of error processing is the preservation of data integrity. Two
constituent phases can be recognized: (1) effective error processing, bringing the effective
error back to a latent state (if possible, back to the state right before the occurrence of the
failure), (2) latent error processing, ensuring that a latent error does not become effective
(again). This is carried out by making the error passive and reconfiguring the system to
make it capable of delivering the specified service. Effective error processing can be realized
either as error compensation, where the fault affected system component contains enough
redundancy to fulfill the delivery of an error-free service despite the erroneous internal state,
or error recovery, where an error-free state is substituted for the erroneous state.

Prior to error processing the erroneous state must be recognized (as early as possible),
which is the task of error detection. On the other hand, error compensation may be applied
systematically even in the absence of effective errors. This systematic application is called
error masking, and it ensures that any effective error (that was taken into account during
the design process) is brought back to a latent state. As an example, a logical AND gate
can be protected of a single stuck-at-1 fault by a wired OR connection of duplicated AND
gates. This way either of the two AND gates can independently pull down the output
and realize the logical function. However, error masking can at the same time result an
unregarded decrease of redundancy. This is well demonstrated by our example, as there is
no information if none, one, or both of the duplicated AND gates became faulty during the

operation of the system. Therefore, practical implementations of error masking generally

4 CHAPTER 1. INTRODUCTION

involve error detection. This way error compensation can be applied again when an effective
error has been detected, in order to check if latent error processing has to be executed.

The substitution of an error-free state for the erroneous state may be carried out in two
directions: backward or forward. Backward error recovery transforms the erroneous system
state into a previously occurred valid system state prior to the error becoming effective.
Forward error recovery finds a new valid system state instead of the erroneous system state,
which has never occurred or which at least has not occurred since the same erroneous state.
In forward error recovery the damage caused by a detected error must be assessed. Damage
assessment can be omitted in the case of backward recovery, provided that the mechanisms
enabling the replacement of the erroneous state to a valid state have not been affected by
the present faults.

Error processing is generally achieved by maintenance, which is aimed at removing latent
errors. Maintenance actions can be corrective, removing the latent errors that became
effective and have been processed, and preventive, eliminating latent errors before they
become effective in the considered system. These latent errors can be the results of either
physical faults occurred since the last maintenance action, or design faults led to effective
errors in other similar systems. The classes of faults which can be tolerated depend on
the fault hypothesis considered in the design process, and thus rely on the independence of
the implicit or explicit redundancy from the fault creation and activation processes. The
mechanisms being liable for fault-tolerance must be protected against the faults affecting
them (e.g., voter replication, self-checking observers, stable memory for recovery programs
and data [19]). Some system properties, like structural regularity, may limit the necessary
amount of redundancy [20]. These properties directly affect the fault model of the system,
and so indirectly the set of tolerated faults will also be influenced by them.

The necessary operational time overhead for effective error processing significantly differs
in the two main prevention concepts. In error masking, the time overhead is constant, and in
practice the duration of error compensation is much shorter than error recovery, due to the
larger amount of redundancy. In error detection and recovery, the time overhead is longer
when an error becomes effective than when it was latent (it is related to the preparation
of recovery points). These characteristics of error processing constrain the applicable fault
tolerance methods with respect to the user time granularity. On the other hand, they
introduce a relation between operational time overhead and structural redundancy, in its
most simple form: “the more the redundancy in the system structure, the less the operational

time overhead incurred.”

1.1.3 Model and elements of system-level fault diagnosis

System-level fault diagnosis uses a simplified system model composed of units, connections,
faults, and tests. The system is built of units called processing elements (PEs) connected
by interconnection links. The units execute independent tasks and cooperate with other
units using messages. A unit can either be fault-free or faulty. Faults in the system are
uncovered using system-level tests performed by the units on adjacent units or neighbors,

directly accessible via an interconnection link. The collection of system-level test results is

1.1. OVERVIEW OF MULTIPROCESSOR FAULT TOLERANCE 5

FAULTS
Nature Origin Persistence
Phenomenological System Phase of
cause boundaries creation

/N /ON N

Accidental Intentional Physical Human-made Internal External Design Operational Permanent Temporary
faults faults faults faults faults faults faults faults fauls faults

Figure 1.2: The classification of faults

the syndrome. The diagnostic process is the analysis of the syndrome in order to identify
the faulty units.

Faults. Faults are undesirable—but preferably not unexpected—circumstances negatively
affecting the service a system delivers. The sources of faults may be classified according
to three main viewpoints: their nature, their origin, and their persistence. The main fault
classes according to the three viewpoints [21] are presented in Figure 1.2.

System-level diagnosis distinguishes the following main fault categories:

Permanent faults. Permanent faults remain to exist after their occurrence until the re-
lated faulty component is repaired, or replaced. Their presence is not affected by
point-wise conditions, thus they always produce errors when they are fully exercised.
Internal physical or design faults belong to this category.

Intermittent faults. Intermittent faults are temporary internal faults. These faults are
essentially permanent faults, but their activation depends on rare combinations of
conditions. By their nature, intermittent faults do not occur consistently, which makes
their detection a probabilistic event over time. Recurrent faults, whose activating
conditions can be reproduced are also considered as intermittent faults in system-level

diagnosis.

Transient faults. Transient faults are temporary external faults. They originate from the
effects of the physical environment. Transient faults only affect the operation tem-
porarily, usually without causing a permanent fault in the corresponding component.
This fault class is hard to deal with in system-level diagnosis. Transient faults can-
not be distinguished from intermittent faults just by simply observing the system.
However, the difference is very important: the affected component cannot be declared
faulty if a transient fault occurred (although a restart or a temporary shutdown might

be necessary to restore the integrity of the system).

Hybrid-fault model. Transient and intermittent faults are the major source of errors in
systems. Recent studies have shown, that generally more than 80 percent of the field
failures were caused by these fault types [22]. Therefore, Mallela and Masson [23]
introduced the concept of a hybrid-fault situation. The hybrid-fault model specifies

bounded combinations of permanently faulty and intermittently faulty components in

6 CHAPTER 1. INTRODUCTION

(‘Byzantine failure h

(‘Authenticated h
Byzantine failure

(Value failure D

(— .
Omission failure

Crash failure

Fail-stop failure

. J

Timing failure
=)

Figure 1.3: The relationship of failure classes

the system. The concept includes as special cases the case where each faulty unit may

only be either permanently or intermittently faulty.

A system generally does not always fail in the same way. The ways a system can fail
are specified as its failure modes [24]. They also may be categorized according to different
viewpoints. The two main viewpoints significant in system-level diagnosis are the failure
domain viewpoint, and the failure perception viewpoint [21]. From the failure domain
viewpoint one can distinguish: value failures, when the value of the delivered service does
not comply with the specification, and timing failures, if the service is not delivered within
the specified response time frame. The latter class is sometimes called a performance failure.
Early and late timing failures can be defined depending on whether the service was delivered
before or after the specification. A class of failures relating to both value and timing failures
are the stopping failures: the system activity is not any more perceptible and a constant
value service is delivered. The special case of stopping failures when no service is delivered
is called omission failures. If the omission of service delivery is persistent, a crash failure
has occurred. The relationship of these failure classes is illustrated in Figure 1.3.

When a failed service is delivered to multiple users, the failure perception leads one to
distinguish consistent failures, if all users have the same perception of the failure, or incon-
sistent failures, when the system users may have different perception of the same failure.
Inconsistent failures are usually termed as Byzantine failures, because in this failure class a
faulty processor may send different messages to its neighbors during the broadcast of a given
piece of information [25]. Since any fault is possible within the Byzantine model, this failure
class can be considered the universal fault set. Authenticated Byzantine failures constitute
a subclass of Byzantine failures, where messages sent by processors are authenticated and

even a failed sender unit cannot imperceptibly alter an authenticated message.

Tests. Testing is a dynamic verification of the system. A test, in a general sense, can be
imagined as the application of some sequence of input patterns and the observation of one
or more outputs for one or more time frames [26]. Tests are aimed at uncovering active
faults by detecting the errors they caused. The generation of the test inputs can be either

deterministic or probabilistic:

1.1. OVERVIEW OF MULTIPROCESSOR FAULT TOLERANCE 7

Table 1.1: Non-equivalent testing models according to [27]

Notation Name Reference Test outcome
O=20 020 ;20 =R
Too 0-fail-safe tester 0 1 0 0
To1 perfect tester 0 1 0 1
Tox sequential tester 0 1 0 X
T11 irreflexive invalidation =~ HK2 [28§] 0 1 1 1
(1-fail-safe tester)
Tix reflexive invalidation HK1 [28] 0 1 1 X
Tx1 asymmetric invalidation BGM [29] 0 1 X 1
Txx symmetric invalidation =~ PMC [1] 0 1 X X
Tpr partial tester 0 X X X
Ty O-information tester Blount [30] X X X X

@® fault-free unit, ® faulty unit, — test assignment

Deterministic testing. Test patterns are predetermined according to the adopted criteria
and the given fault model. Test generation can be functional or structural, depending
on whether the selection process is related to the function or the structure of the

system.

Random, or statistical testing. Test patterns are selected on the basis of a defined prob-
ability distribution on the input domain. The distribution and the number of input

patterns are determined according to the adopted criteria and the given fault model.

A test is said to be complete for a certain fault if it always fails when the fault is present,
and passes when all faults are absent. On the system level, a test performed by unit u; on
unit u; is complete if it detects all low-level faults that can cause a failure in unit u;. Yet,
for highly complex components such as processors exhaustive testing can take a lot of time
and processing capacity, and still not produce accurate results. If the t; test detects only
the subset F¢ C F,|F?| = ¢¢ of faults from the set of all possible faults F,|F| = n, it is
called incomplete. The performance of ¢; can be characterized by the test coverage, defined
as cov(t;) = ¢%/n. Naturally, complete tests have 100 percent test coverage. A second
problem that reduces the effectiveness of tests is test invalidation. Ideally, the outcome of a
test on a fault is not influenced by the presence or absence of other faults. A complete test
is called inwvalid if some faults can make it erroneously pass when the fault (for which the
test is complete) exists, or can make it erroneously fail when the same fault does not exist.

The phenomena of testing impairment (incompleteness, invalidation) is determined by
the behavior of the (faulty) tester unit (i.e., its failure semantic [24]) and the relationship of
the tester and tested units. Table 1.1 presents a complete tabulation of the non-equivalent
testing models. The table lists the test result in the four possible configurations, respective
to the fault state of the tester and tested units. The test result is denoted by 0 if it has
passed, 1 if it has failed, and X € {0, 1} if the test result may be arbitrarily pass or fail in
the same fault situation.

Test invalidation models are also strongly dependant on the applied testing mechanisms.

8 CHAPTER 1. INTRODUCTION

The most commonly used testing mechanisms are:

Direct testing. In direct testing, the units of the system execute tests on each other.
Typically, unit u; tests unit u; by giving it certain input sequences and comparing
the resulting output sequences with the set of correct responses. Usually only the
normal communication facilities can be used for testing purposes. Since units are able
to execute the tests individually, these tests can be invalidated only by a fault in the

tester unit. This is also known as single invalidation per test (SIPT).

Self-testing. Testing can also be performed by each processing element on itself in a series
of self-tests. Kuhl and Reddy proposed a hierarchical system of built-in fault tolerance
techniques and monitoring devices [31]. These include hardware or software checkers,
watchdog timers and processors, error-checking codes, or redundancy with voting.
Thus, the testing of a unit becomes a simple request to the built-in self-test component

for the actual fault status of the tested unit.

Comparison testing. A practical method of detecting faults in components is performed
by comparison. Two or more units are assigned the same task and the output of the
task execution of each unit are compared to each other. A difference in comparing
the results of two units signifies an error in one or both of them, but there is no way
to tell which one of the units is/are faulty. Using comparison testing and n-multiple

redundancy (NMR) techniques up to [n/2] — 1 errors can be tolerated.

While direct testing is mostly performed periodically in dedicated testing sessions
between normal system activities, comparison tests can take place concurrently to
productive tasks. An error is detected immediately upon propagation. Comparison
tests can be made more compact by creating and comparing signatures of the results,

such as checksums or cyclic redundancy checking (CRC) codes.

Multiple invalidation per test. A test may consist of a large number of stimuli to obtain
a good test coverage. Testing can be done by a single unit, but as another possibility,
it can be the result of cooperation among multiple testing units. In the latter case a
fault in any of the participating units can invalidate the result. If the failure of more
than one independent modules can invalidate a test, the test invalidation model is

follows a multiple invalidation per test (MIPT) scheme.

Time domain testing. A large portion of the potential failures manifests in the time
domain (see Figure 1.3). Therefore, it is necessary to also test the behavior of system
components with respect to time. When a unit fails to complete a task by a certain
deadline, or a message is not received within a certain time frame, a timing failure
occurs. Errors causing timing failures can be detected using time stamps and watchdog
timers. The consistency of time domain testing usually requires the presence of a
global set of synchronized clocks. A common time domain testing technique is the
use of < I'm alive > or “heartbeat” messages. In this technique units periodically

send < I’'m alive > messages to their neighbors, and validate the incoming messages

1.1.

OVERVIEW OF MULTIPROCESSOR FAULT TOLERANCE 9

by time-outs. When an < I’'m alive > message is late or is omitted, the origin of the

message is declared as faulty.

Note, that the time domain testing model is orthogonal to the value domain testing
methods described earlier. Timing errors may remain undetected in the value domain

as well as value failures may stay uncovered in the time domain.

Direct testing is the oldest and most thoroughly studied testing method. Many invalida-

tion schemes have been devised over the years, most of them have already been mentioned

in Table 1.1. The leading ideas behind the main invalidation schemes of direct testing are

the following:

Symmetric test invalidation. This model was introduced in the late sixties by Preparata

et al. [1]. Since then it became the most widely used test invalidation model in system-
level diagnosis. The main feature of symmetric invalidation is that a faulty tester unit
generates an arbitrary test result, i.e., the test may pass or fail independent on the
state of the tested unit. The main advantage of the model lies in its generality: all
other complete test SIPT invalidation models produce syndromes compatible with
it. Thus, the algorithms designed for symmetric test invalidation are applicable to
a wide range of systems, even if they will not necessarily provide optimal diagnostic

performance.

Asymmetric test invalidation. Barsiet al. proposed a less restrictive invalidation model

in [29]. In their concept the system components are complex devices having many
different failure modes, so testing units must apply a large number of test stimuli for a
complete test. They assumed that two distinct units fail identically with a negligible
probability. Therefore, at least one mismatch occurs between the test outputs and
expected results when the tested unit is faulty. However, a faulty tester unit testing
a fault-free tested unit can still produce an arbitrary test result. The above model is
called asymmetric invalidation. The limitation of the possible syndromes make the
decoding of syndrome easier: all tests with outcome a;; = 0 unambiguously identify
a fault-free tested unit. The a;; = 1 test results have the same interpretation as for

symmetric invalidation.

HK models. Later, Kreutzer and Hakimi [28] used the same assumptions to extend the

BGM model. They suggested, that a test on a fault-free tested unit by faulty tester
unit should always fail. Two mechanisms comply with this situation: in reflezive
invalidation arbitrary test outcomes are possible when both the tester and tested
units are faulty, while in irreflezive invalidation a faulty unit tester always generates
a failed test result. They also convey more diagnostic information than the original
Preparata model: for reflexive invalidation, the a;; = 0 test outcome means that both
units associated with the test have the same fault state; for irreflexive invalidation it

even implies that they are unambiguously fault-free.

General test invalidation models. Somani et al. presented a generalized characteriza-

tion theorem for system-level diagnosis [32]. They considered permanent and inter-

mittent faults, and symmetric and asymmetric test invalidation in their model. For

10 CHAPTER 1. INTRODUCTION

Table 1.2: Comparison testing model

Comparator Compared unit v; Compared unit u; Comparison result

fault-free fault-free fault-free 0
fault-free fault-free faulty 1
fault-free faulty fault-free 1
fault-free faulty faulty 1
faulty both states both states X

the model they derived the necessary and sufficient conditions for any fault pattern of

any size to be uniquely diagnosable.

Selényi introduced a unified framework for complete test SIPT invalidation schemes
[33]. His work includes the diagnosability analysis of all the nine possible invalidation
mechanisms, as well as the optimal testing arrangements for them. He also developed
a diagnosis algorithm for the unified model. The algorithm can handle heterogeneous

systems consisting of various components following different test invalidation models.

Malek [23] introduced the comparison approach for system-level diagnosis and gave a
method to assign comparison edges in the testing graph. A syndrome of comparison results
is created by labeling an edge with a “0” if it connects two units that agree, and with a “1” if
it connect two disagreeing units. Maeng and Malek [34] suggested that a third unit should
be employed to compare the results, thus decentralizing the arbitration of comparisons.
Their testing model is shown on Table 1.2.

The theory of multiple invalidation per test was introduced by Russel and Kime [35, 36,
37]. Their model is formulated of faults, tests, and their relationships. The model assumes,
that at least one complete test exists for each possible fault in the system. The tests are
complete for one and only one fault, there is a single unit per test (SUPT). Tests can be
invalidated by any number of faults, that is hard-core tests (not invalidated at all) are also
included in the model. The authors defined two different types of systems (the notation
T(F*) represents the set of tests invalidated by the presence of fault pattern F?):

1. semimorphic systems: T(F' U FJ) C T(F*) UT(F7), and
2. morphic systems: T(F* U FJ) = T(F*) UT(F7)

Kime [35, 26] and later Maheswari and Hakimi [38] extended the model by allowing tests
that are complete for more than one fault. More precisely, a valid test ¢; will fail if one or
more faults in F(¢;) are present, and will pass if all faults are absent (F'(¢;) denotes the set of
faults ¢; is complete for). This testing scheme is called multiple units per test (MUPT). As
Gupta and Ramakrishnan [39] pointed out, multiple invalidation can sometimes may result
in loss of diagnostic information. They considered systems, where several units conduct
multiple independent tests on a unit. Each of the tests probes a different part of the unit
under test, and the results are combined into one complete test. Under these conditions, a

faulty testing unit does not necessarily make the combined results unreliable.

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 11

Figure 1.4: An example diagnostic situation

1.2 System-level fault diagnosis

To get acquainted with the problem of system-level fault diagnosis and the possible solution
methods, let us consider a small example taken from [33] of a fault-tolerant multiprocessor
system consisting of 7 units. Each unit is capable of testing two other units, as illustrated
in Figure 1.4. The directed arcs represent tester-tested unit relationships, the arrow points
from the tester unit to the unit under test. In other words, Figure 1.4 is a 7-node, directed
D12 testing graph. Every unit conforms to the symmetric test invalidation model.

In centralized diagnosis first each test is carried out and the results are collected by
the central supervising module. The complete set of test results is then analyzed. In our
example, the outcome of the tests is written on the arrows (passed tests are denoted by a 0,
failed test by a 1). From the syndrome we can draw the following conclusions on a purely

logical bases without any particular knowledge of system-level diagnosis:

e The system contains at least one faulty unit, otherwise all of the test would pass fol-
lowing from the complete-test assumption. This conclusion provides a fault-detecting

information.

e Unit w; is surely faulty. Let us suppose that u; is fault-free. In this case, units ug
and u3 must also be fault-free, since they were tested by fault-free units and the tests
passed. However, at the same time ug is faulty according to w;. Since there is a
contradiction among the conclusions, we must invert our original hypothesis. This

conclusion provides a fault-localizing information.

e The fault state of units us, us, us, ug, and w7 is the same. The reason is that these
units are involved in a closed loop of 0-links (passed tests). Suppose one of these units
is fault-free. Then the unit tested by the fault-free one must also be fault-free. On
the other hand, if one of the units is faulty, then its tester must be faulty as well.
The same rule applies for every situation where units are part of a closed loop (or a

strongly-connected subgraph) composed only of 0-links.

12 CHAPTER 1. INTRODUCTION

e A possible diagnosis is that all of the units in the system are faulty. Since faulty
units can generate any test outcome independent on the state of the tested unit, every

syndrome is is compatible with this situation, including the one shown in Figure 1.4.

The last conclusion is not very useful in practice, however it cannot be left out of consid-
eration without some a priori information. Assume we can guarantee (with an acceptable
probability) that at most two units can be faulty at the same time—based on the thorough
knowledge of the system. In this case units us, us, us, ug, and u; are surely fault-free. This
can be inferred, because these units have the same fault state and the existence of 6 faulty
units would exceed our assumed limit. Consequently, u4 is faulty, according to units ug, us.
We managed to classify all of the units in the system! Our classification is contradiction-free
and compatible with the syndrome, thus it is another possible diagnosis.

Further experimenting with our example, we can state the following;:
e No diagnosis exists if no more than one unit can be faulty.

e When at most 2 to 5 units can be faulty the above described diagnosis is the only

solution.

e When at most 6 units can be faulty, there are two possible diagnoses: the one described

above, and the “only unit u4 is fault-free” solution.

The fundamental model for multiprocessor system-level fault diagnosis was developed by
Preparata, Metze, and Chien [1]. This model formed a framework for much of the research
in the area. We present the model as a basis for all main issues in further discussion.

Preparata et al. made several assumptions considering diagnosable systems. They as-
sumed that a large computing system is composed of many small processing units. These
units can execute test on each other to determine the condition of other units. A test out-
come is evaluated as “pass” or “fail” on the basis of the test responses. The tester unit
classifies the tested unit as fault-free or faulty. Units are intelligent: they are able to per-
form testing task individually, independent on other units. A fault-free unit is always able to
identify accurately the fault state of the tested unit (this is the complete test assumption).
A faulty unit produces unreliable test results, independent on the fault state of the tested
unit (i.e., they behave according to the symmetric test invalidation model as mentioned in
Table 1.1). All faults are hard or permanent faults. Tests are executed periodically by each
unit on its neighbors according to a predefined schedule. The local test results are sent from
the units to a central diagnostic device. The diagnostic algorithm running on the central
device analyzes the syndrome and creates a global diagnostic image containing the fault
state of each unit in the system.

Three important problems arise in connection with the Preparata, Metze, and Chien
(PMC) model:

Characterization problem. Characterization aims at finding the necessary and sufficient
conditions for the test connection assignment of a system to achieve a given level of

diagnosability under a certain fault model and an allowable family of fault sets.

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 13

Diagnosability problem. Diagnosability means determining the necessary and sufficient
conditions for a group of fault sets in a given test connection assignment and fault
model to be uniquely identifiable.

Diagnosis problem. The goal of diagnosis is to determine a fault set present in a systems
based on a given syndrome, test connection assignment, and fault model assuming

that the set of faults present belongs to valid group of fault sets.

Note, that the characterization problem and the diagnosability problem are not the same.
The former is a theoretical problem while the latter is an algorithmic problem. Thus,
a good answer to the characterization problem may result an efficient algorithm for the
diagnosability problem.

Originally, Preparata et al. were interested in the so-called t-diagnosable systems. These
systems allow correct and complete diagnosis under the presented conditions if at most ¢
units can become simultaneously faulty. A diagnosis is said to be complete if all faulty units
can be identified from a syndrome resulted in the presence of this fault set. A diagnosis is
correct when no fault-free units are improperly classified to be faulty.

Two different diagnostic strategies can be applied to {-diagnosable systems: one-step
diagnosis and sequential diagnosis. In one-step diagnosis or diagnosis without repair any
possible fault set can be diagnosed correctly and completely based on a single syndrome
produced by the system. This is the highest quality of diagnosis, but at the same time it
has the strongest conditions. In sequential diagnosis or diagnosis with repair the location
of faulty units is determined in more phases. At first only a subset of the faults present is
diagnosed. These faulty units are replaced or repaired. Then the set of tests in the system
is executed again, and the same process is repeated until no more errors are detected. To
succeed, the diagnosis algorithm has to identify at least one faulty unit decoding every single
syndrome.

The necessary conditions of one-step ¢ diagnosability for a system consisting of n units

under the PMC model were given by the authors:

n > 2+1 (1.1)
T=Y(u;)| > t,Vu; such that u; € U (1.2)

Hakimi and Amin showed that for the special case when mutual tests between units are not
allowed, the necessary conditions are also sufficient [40]. To achieve a general characteriza-

tion of one-step t-diagnosable systems they also added a third condition:

T=Y(Uy)| > p,Vp such that 0 < p <t, and
VUy, such that Uy CU and |Ug| =n —2t+p (1.3)

The most significant result for sequential ¢-fault diagnosability deals with single-loop systems
(i.e., systems in which there is exactly one test on each unit and one test performed by each

unit) [1]. A single loop system is sequentially ¢-diagnosable if and only if 7, the size of the

n> K#ﬂ +1 (1.4)

loop, satisfies

14 CHAPTER 1. INTRODUCTION

The diagnosability problem was solved by Sullivan [41]. He used network flow to con-
struct an O(|E|n?%) algorithm that computes the ¢-diagnosability of a given test connection
assignment under the PMC model. Recently, Raghavan and Tripathi improved the effi-
ciency of the algorithm to O(nt?*%) [42]. They also proved that calculating the sequential
diagnosability of reparable systems is co-NP complete [43].

The problem of finding a minimal cardinality set of faulty units in whose presence a
system can produce a given syndrome (i.e., the diagnosis problem) is NP complete according
to Fujiwara and Kinoshita [44]. Still, much work has been done in restricted situations. For
t-diagnosable systems under the PMC model Kameda, Toida, and Allan gave an O(t|E|)
algorithm (KTA) of one-step diagnosis. Later, Sullivan improved the KTA solution and
extended it by employing weighted digraphs in his system model [45]. The algorithm has
O(t3 + |E|) time complexity, which is the best known solution in the practically relevant
case when ¢ is small compared to n.

The best method in terms of worst case efficiency was given by Dahbura and Masson
[46, 47]. Their algorithm first calculates the union of implied faulty sets for all units,
represented by the graph Gy, called the L-graph. Then, the set of faulty units is identified
as the unique minimum vertex cover set of G,. The authors proved, that for the class of
graphs that include G, the problem to find a unique minimum vertex cover set can be solved

in polynomial time. The total time complexity of the diagnosis algorithm is O (n??).

1.2.1 Classification of system-level diagnostic algorithms

Practice has quickly proven that the original system model and diagnostic goals formulated
by Preparata et al. make a number of assumptions that do not directly conform to existing
hardware. Much research have been therefore conducted toward more widely applicable
diagnostic models. The addressed shortcomings of the PMC approach and the proposed

solutions are the following:

Complete tests. Algorithms based on the PMC model assume, that the result of a test
performed by a fault-free tester unit always reflects the real fault state of the tested
unit. However, in most practical cases it is impossible to set up tests that fully probe
all of the complex components of a unit. Thus, tests usually do not have 100 percent
coverage. The comparison testing technique can improve on this situation, but it still
does not assure the test to be complete. Probabilistic methods attempt to provide the
most probable diagnosis to cope with imperfect tests. The most general attempt in
this direction is Blount’s 0-information tester model, although that approach could

never gain any practical significance despite of all its generality.

Permanent faults. The only fault class the PMC model considers is the class of permanent
faults. It was also assumed, that fault-free and faulty units do not change their fault
states (i.e., do not fail or get repaired) during the whole testing session. Fault injection
based experiments [22] and practical experience [48] has shown that the majority of
occurring faults are either transient or intermittent. Many different fault models were
proposed to include intermittent and hybrid fault situations in system-level diagnosis.

Most of the diagnosis methods based on these models can handle not only intermittent

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 15

faults but also incomplete tests. This is not surprising since the fault to syndrome

correspondence is very similar in both cases.

Incomplete knowledge of failure modes. The Preparata model has a very simplified
and pessimistic view of the behavior of faulty units. This general approach may be
applicable to many systems, but more efficient algorithms can be formulated if there
are additional information available on faulty units. Asymmetric invalidation by Barsi
et al. placed less restrictive requirements on faulty units [29], later Hakimi and Amin
suggested different invalidation mechanisms [40]. Still, these models assume that the
system consist of identical components, i.e., it is homogeneous. The generalized test
invalidation model [33] integrates all of the possible SIPT/SUPT mechanisms and
at the same time can handle heterogeneous systems. Recently, a constraint-based
representation was introduced in the framework of generalized invalidation, further

extending its modeling power [49, 50].

Intelligent tester units. The majority of testing mechanisms require the tester unit to
carry out the testing task individually. A test may be so complex that it requires
the cooperation of several units. Unfortunately, this also means that the test is in-
validated by multiple faults. Only MIPT diagnostic models are able to represent
these situations. Another disadvantage of assuming intelligent tester units is that it
excludes passive components not participating in the diagnosis (like communication
devices, mathematical coprocessors, etc.) from the scope of the diagnosis. Liaw et al.
suggested a solution to the problem by introducing a heterogeneous model composed
of testing and non-testing units [51]. The authors also gave a classification and a

distributed diagnosis algorithm for their model.

The number of faults is bounded. Preparata et al. proved that n > 2¢ + 1 must hold
for the number of units in one-step t-fault diagnosable systems. Since n in most cases
does not grow during run-time, the above condition is essentially an upper bound on
the number of faults. In practice, if the system was not built specifically to fulfill the
above condition then ¢ may exceed the static limit. There are two approaches that
handle larger amounts of faulty units: sequential diagnosis and probabilistic methods.
Sequential diagnosis concentrates on locating and repairing only one fault at a time
[62]. If the repair-rate is larger than the fault-rate, this strategy will eventually lead
to a completely fault-free system. Probabilistic diagnostic methods try to the fault
state of each unit, but the correctness and/or completeness of the resulting diagnostic

image is not guaranteed.

Centralized diagnosis. Often it has been assumed that a hard-core central supervising
module exists in the system to analyze syndromes. Every unit transfers its local test
results to this module via a direct and reliable communication link. This assumption
violates two important design principles. The first principle states that a fault-tolerant
system must be free of single-point failures;in other words it cannot have hard-core

components. According to the second principle reliable massively parallel systems

16

Test

CHAPTER 1. INTRODUCTION

should be scalable and gracefully degrading. The diagnostic algorithm itself must be
distributed to avoid these pitfalls.

organization. Tests are organized in space (testing graph) and in time (test sched-
ule). The testing graph defines the tester—tested unit relationships, and so it mainly
depends on the interconnection topology of the system. Many diagnostic algorithms is
restricted to a specific topology. General topology algorithms have no such restrictions,
thus they can be applied to all kinds of ‘topologically static’ systems. Sometimes the
interconnection topology is also subject to change (e.g., due to failures in communi-
cation devices). In this case adaptive algorithms—which automatically accommodate
to the dynamically changing circumstances and use an optimal amount of tests—can

be used.

Many diagnostic algorithms ignore the timing requirements of tests: the test schedule.
They treat the syndrome as a static ‘snapshot’ of the system. Thus, all of the units
are supposed to be tested simultaneously, and there cannot be a new fault occurrence
during testing and diagnosis. In reality, the execution of tests and the distribution
of test results have a significant execution time. Units must perform the testing in a
coordinated way to avoid deadlocks and performance bottlenecks. They must also be
able to reconstruct the temporal order of the tests, no matter how the communication
delays and the lack of synchronization among units may have distorted it. The time
spent with communication should be kept minimal. These issues are addressed by

event-driven algorithms.

Reliable communication. Communication is a vital issue in system-level diagnosis. Since

testing is performed locally at processing elements, the test results must be transferred
to the central supervising module (centralized diagnosis) or broadcast to a set of other
units (distributed diagnosis). Usually the algorithms leave the failures of the intercon-
nection links and devices out of consideration. In this case the underlying hardware
must guarantee the reliable message transport using techniques as broken line de-
tection, error detection and correction (EDAC) codes, message authentication, etc.
Adaptive algorithms can operate in weaker conditions: it is enough if the communi-
cation has fail-stop or crash failure semantics. Finally, the scope of diagnosis can be
broadened to include the location of faults in the interconnection links and devices
as well. It is most advantageous in fine-grain large distributed systems, where proper

diagnostic support can reduce the time and cost of maintenance.

Diagnostic goals. A natural expectation of a diagnostic algorithm is to find every faulty

unit at once. However, this one-step diagnosis is usually quite a time and resource
consuming task. Other methods achieve less precise results, but have much lesser
requirements. Sequential diagnosis finds only one fault at a time. Set diagnosis [53]
aims at finding a set of units, containing all of the faulty ones and potentially some
fault-free ones as well. This can be acceptable when either single-unit diagnosability
is not practical, or the system granularity is so coarse, that replacing a set of units

can be done by replacing a single field-replaceable unit (FRU).

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 17

Special topologies
One-step diagnosi{ t -diagnosable

systems

[PMC model Sequential diagnosis

Set diagnosis

Adaptive diagnosis
~ Complete test —

~ Asymmetric invalidation
n{ Selényi algorithm

Constraint-based methods

 Generalized invalidatio

— Deterministic - Comparison testing

~ MIPT models

— Distributed diagnosis

Intermittent faults

— Incomplete test {
Hybrid fault model
System diagnosis—|

 Majority diagnosis
Complete test — Scheinerman method

— Confidence level

— Probabilistic O-information tester

~ Threshold diagnosis
Incomplete test 7~ Locally optimal diagnosis

- Multiple syndrome diagnosis

— Distributed diagnosis

Figure 1.5: Classification of main research areas of system-level diagnosis

System-level diagnosis aims at solving fault classification problems equivalent or similar
to the example in the beginning of this section in the form of a general algorithm. As Fig-
ure 1.5 points out many approaches to generalize the diagnostic task were developed over
the years. They are too numerous to be described even briefly, therefore we chose a differ-
ent approach. Instead of a global and outlined overview, only those works are mentioned
which either illustrate a basic concept or have some direct correspondence to the diagnostic
algorithms subject to this thesis. For further discussion of the field the reader is referred to
a survey of system-level diagnostic algorithms [54] by the author, or a broader view of the

consensus and diagnostic problems [55] by Barborak et al..

1.2.2 Centralized diagnostic algorithms

This section briefly outlines a selected set of centralized diagnostic algorithms. In the first
part deterministic algorithms are desribed, then the existing probability models and the

most notable probabilistic diagnostic approaches are introduced.

18 CHAPTER 1. INTRODUCTION

Deterministic centralized diagnosis

One of the first methods presented for one-step t-fault diagnosable systems was the KTA
algorithm by Kameda, et al. [56]. They treated the syndrome decoding as a state-space
search. Their state-space consists of the different unique fault state to unit assignments.
The search terminates when a complete unit classification is achieved. The control algorithm
assures that the generated diagnosis is unique, free of contradictions, and consistent with
the syndrome.

At the beginning an arbitrary unit is selected and assigned to be fault-free U° + U° Uu;
(explicit assignment). Then two sets, the ‘implied fault-free’ L(u;) and ‘implied faulty’
L'(u;) sets are calculated. The sets are initialized to L°(u;) < u; and L'(u;) < . New

elements are appended to the sets using the following implication rules:

Unit Test outcome Implication

u; € L°%(w;) ajr=0 LO(u;) < LO(u;) U ug
u; € L°%(w;) ajr=1 LY (u;) < L' (u;) U ug
u; € LO(u;) ap; =1 LY(u;) = LY(u;) U ug
u; € LY (u;) ag; =0 LY (u;) + LY (u;) Uug

The algorithm encounters a contradiction when the L%(u;) N L'(u;) # 0 condition is
met during the generation of the sets. In this case the initial explicit assignment was not
consistent with the syndrome, so it is changed to faulty: U° < U® — u;,U! « U' U u;
(forced assignment), L%(u;) < 0 and the L'(u;) set is recomputed. Another condition to
evaluate is the number of the faulty units found so far: |U'| = |L!(u;) U L; U---ULy. If
this number is below the diagnostic ¢ limit, the units in L°(u;) and L'(u;) are tentatively
labeled as fault-free and faulty, respectively. If it exceeds the limit, again the last explicit
assignment is changed to faulty, L°(u;) + § and L'(u;) is recomputed.

Forced assignments are sure classifications and cannot be changed. Normal explicit
assignments, however, are just fault hypotheses and eventually they may need to be changed.
When such an assignment is changed its consequences must be cancelled (backtracking step).
Therefore the algorithm maintains a stack structure to store the explicit assignments and
the corresponding L°(u;) and L'(u;) implied sets. Due to the above ‘branch and bound’
technique, the algorithm traverses the state space in a depth-first manner. The search
terminates when either all of the units were assigned a fault state (diagnosis is complete),
or a backtracking would be necessary and the stack is empty (diagnosis is impossible).

Meyer and Masson published a much simpler algorithm for the same problem in [57].
They store the explicit assignments and their consequences in a matrix representation
to avoid backtracking. Forced assignments are not used, the conditions of one-step t-
diagnosability guarantee the solution to be unique anyway. Their algorithm also requires a
specific topology to work: the testing graph is a D ; interconnection design. However, the
algorithm can be easily adopted to other testing structures.

The consequence matrix B is a binary matrix: Vi, j : b;; € {0,1}. It is initially empty.
The B; row vector contains the implications drawn from the explicit assignment U°? <
U Uw;. First the b;; elements in the main diagonal of B are set to 0. Then the row vectors

are filled one-by-one. Let us imagine that the By,...,B;_1 vectors are already complete.

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 19

The b; element of B; is 0, reflecting that unit u; is supposed to be fault-free. Take the
a;j test results local to unit u;, where u; € I'(u;),5 =4+ 1,9+ 2, ..., i+ t. Let bj; < a;;
including the last passed test, say a;x, until a; ;11 = 1. Now take the ay; test results local to
ug, that is u; € T(ug),l = k+ 1, k+2, ..., k+ ¢ and repeat the previous procedure. The
fill process is terminated when either the row vector is completely full, or the number of
ones in the row (the fuond failed test results) reaches ¢. In the latter case the remaining
row vector elements are set to 0.

The completed B consequence matrix has the following two properties: (1) the row
vectors corresponding to fault-free units are identical, i.e., the b;; element of these vectors
reflect the correct fault state of unit u;, and (2) the elements of row vectors corresponding
to faulty units contain arbitrary values. Now it is easy to understand the final, classification
step of the algorithm. Since it is known that the fault-free units are in majority in the
system (due to the conditions of one-step t-fault diagnosability, since there are n > 2t 4 1
units and only at most ¢ of them might be faulty), we can conclude that at least ¢t + 1 B;
row vectors are filled out correctly. Then, a unit u; can be classified as faulty iff in the
corresponding column the bj elements (j = 1, 2, ..., n) contain at least ¢ 4+ 1 ones.

Dahbura and Masson approached the diagnostic problem from a purely graph-theoretical
viewpoint [46, 47]. Their solution is composed of three main steps. In the first step they
generate the so called ‘implied faulty’ graph. Then a maximum matching of this graph is
computed. Finally, a labeling method is applied to the graph, where the labels represent
the classification of the corresponding units.

The ‘implied faulty’ G°! graph is an undirected graph, which contains an edge from each
node u; to the nodes corresponding to units in the ‘implied faulty’ L!(u;) set of unit u;.

The ‘implied faulty’ set can be created from the syndrome using the following equation:
L'(u;) = A1 (Do(us)) U Ao(A1(Do(us)))-

The authors propose a more effective method to obtain the information required to construct
the GO graph. Let X be an n x n matrix such that z;j = 1 if and only if a;; = 0 or ¢ = j,
and 0 otherwise. It follows that X, the transitive closure of X is an n X n matrix in which
z;; = 1 if and only if u; € Dy(u;). Let Y be an n x n matrix such that y;; = 1 if and only if
a;; = 1 or aj; = 1, and 0 otherwise. Then the matrix Z = XYXT is an n x n matrix where
z;; > 0 if and only if u; € L'(u;). The so obtained Z matrix is the adjacency matrix of the
graph GO'.

The ‘implied faulty’ graph is a bipartite graph due to the rule of symmetry: for u;,u; €
U,uj € L'(u;) if and only if u; € L}. The authors proved that this graph contains a
maximum matching which saturates each node corresponding to faulty units in a one-step
t-diagnosable system. The minimum vertex set of this maximum matching is the set of
faulty units. The algorithm employs a simple labeling method to determine the minimum
vertex set. Those units not saturated by the maximum matching can be immediately labeled
as fault-free, and placed into a queue. One of these units, say unit u; is then removed from
the queue. If u; is labeled as fault-free, then the units adjacent to it are labeled as faulty
and placed into the queue. If u; is faulty, then the unit adjacent to u; in the maximum

matching is labeled as fault-free and placed into the queue. This procedure is repeated until

20 CHAPTER 1. INTRODUCTION

the queue is empty, that is the labeling is complete. The generated node labeling constitutes
the diagnosis.

In traditional centralized fault diagnostic algorithms it is explicitly assumed that one
first chooses a set of test connections T', then obtains the results of these tests, and finally
analyzes the test results to identify the faulty units (assuming that the number of faulty
units does not exceed the ¢-limit). Nakajima [58] was the first to suggest a departure from
this practice. He proposed an adaptive scheme to choose the tests to be executed and to
examine their results until at least one fault-free unit can be identified. Then, one can
use this unit as a tester and to locate all of the faulty units. Nakajima showed that one
can identify a fault-free unit by using the results of some ¢(¢ + 1) tests. This implied that
(n—1) + t(t + 1) tests are sufficient to find every faulty unit.

Later, Hakimi and Nakajima improved on this result [59]. Their method requires only
2t — 1 tests to find a fault-free unit. Therefore, every faulty unit can be located after the
application of at most n+ 2t — 2 tests. The authors also gave an optimal adaptive diagnostic
algorithm for the asymmetric test invalidation model, and examined the possible application
of their methods to fault diagnosis in computer networks. The algorithm for identifying one
fault-free unit is based on two observations. First, if u; and u; are two adjacent units in the
system and aj; = 0, then it is not possible that u; is fault-free while u; is faulty. Second, if
aj; = 0, then it is not possible that both of u; and u; are fault-free.

Two sets of units are generated by the algorithm: U° denotes the set of possibly fault-
free units, and U' denotes the set of accused faulty units. At the beginning both sets are
empty. First an arbitrary unit u; € U is selected and placed in U?. Then, one of the units
uj € I'~!(u;) is instructed to test u;. If aj; = 0, then u; is appended to set U, Otherwise,
in case of a;; = 1, u; is removed from U° and both units u; and u; are placed in set U'.
Note, that the units in U? at a given time are either all fault-free or all faulty. On the other
hand, at least one of each pair of units added to U! is surely faulty (but we do not know
which one). Therefore, the above process must continue until |[U°| + |U'|/2 = ¢ + 1. Then,

the latest member of U is surely fault-free.

Probabilistic centralized diagnosis

The deterministic diagnostic methods presented in the previous section identify the entire
fault set (or a predefined subset of all faults) from the syndrome, provided that certain
restrictions on the testing structure and the behavior of the units are satisfied. By contrast,
probabilistic diagnosis methods try to locate the faulty units with high probability and require
no restrictive assumption on the set of faulty units or the structure of the testing assignments
(i.e. the concept of diagnosability is not applicable to probabilistic diagnosis). On the other
side, probabilistic methods cannot guarantee that a correct and complete diagnosis is made
in every situation.

In probabilistic diagnosis a probability model is used to model the operation of fault-
free and faulty units. The existing probability models are summarized in Appendix B.
On the basis of the chosen probability model, a procedure—which may be heuristic—is

used to diagnose a set of units as faulty. The important issues in probabilistic methods

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 21

are the complexity of the diagnosis procedure and the quality of the diagnoses generated.
Many of these methods use probabilistic parameters to describe the behavior of units and
to evaluate diagnosis performance. However, the way of obtaining these parameter values
in real computing systems is still an important unsolved problem [60]. Another limitation
of probabilistic diagnosis algorithms is that they assume the outcome of test performed by
different units to be statistically independent. Statistically dependent test results do not
make these diagnosis algorithms useless, but they may lower the level of the diagnostic
accuracy.

It is clear from the previous sections that if 100 percent test coverage is assumed, then
there are numerous deterministic methods available to solve the diagnostic problem. Note,
that in particular cases—like one-step t-diagnosable systems—even a unique set of faulty
units can be identified. The reason for the introduction of probabilistic fault diagnostic
algorithms in the complete-test model is to extract diagnostic information from situations
with more than ¢ faulty units and for general testing graph structures.

Scheinerman presented a probabilistic approach with desirable asymptotic properties
[61]. In his algorithm, first a core group of non-faulty units is identified. This is accomplished
by finding a strongly connected subgraph of G' in which all edges are labeled by a 0 test
outcome and in which the more than the half of the total units is included. Since in this
component each unit has the same fault state (all of them are involved in a circle of 0
edges), they are surely fault-free provided that only the minority of the system units may
fail. Other units accessible from the core group via a path of 0 edges are then added to the
set of fault-free units. All other units are finally classified as faulty.

The author showed that his algorithm produces asymptotically correct and complete
diagnosis in random graphs in which a unit is connected to another unit with a probability
(clogn)/n, where ¢ > 1/(1 — py). A significant weakness of the algorithm that it does not
work if a fault-free core group cannot be found. Such situations can easily occur even for
a moderate number of faults (e.g. when the testing graph is “cut up” into more than two
strongly connected subgraphs by “chains” of faulty units). Scheinerman’s work is important,
however, since it provided the first proof of asymptotically correct and complete diagnosis.

Using Blough’s probability model, Blough et al. presented a complete-test probabilistic
diagnostic method in which each unit u; simply evaluates itself to be fault-free or faulty
based on the majority opinion of its testers [62]. Thus, u; is diagnosed as faulty if and only
if
I‘_l(ui)

0y € T (s = 1) > [T

The authors were able to demonstrate that asymptotically 100 percent accurate diagnoses
can be obtained for hypercube testing topologies, as the size of the system approaches
infinity, if py < 0.067. Additionally, it was shown that asymptotically correct and complete
diagnosis can be generated for a special class of testing graphs with nw(n), where w(n) is
any function that grows to infinity, albeit arbitrarily slowly.

Somani and Agarwal introduced three more complex algorithms for the same problem
[63, 64]. These algorithms first assign confidence levels to indicate how likely a certain

processor can be considered as faulty. There are two confidence levels: units are classified

22 CHAPTER 1. INTRODUCTION

as either ‘likely good’ or ‘likely faulty’. The decision between the two classes is based on a
majority voting of the testers, just like in Blough’s algorithm. Then, the found potentially
fault-free units are used to locate at least one definitely fault-free unit (again using a majority
voting, this time only taking into account the votes of likely good units). Finally, test results
of the definitely fault-free units are propagated and the other units are diagnosed iteratively.
The iteration continues until no further diagnosis is required or possible. At the end the
algorithms check the consistency of the generated diagnostic image with the symmetric test
invalidation model.

The three algorithms differ in the voting technique they use. The first algorithm LDA1
employs majority voting in both phases. The second algorithm LDA2 differs from the pre-
vious one only in that unanimous voting among the likely good units is required to identify
a faulty processor. The third algorithm LDA3 uses unanimous voting to classify likely good
and likely faulty units, and also to find definitely fault-free units. The LDA2 and LDA3
algorithms are meant to be gradually simpler methods than the LDA1 algorithm. Somani
and Agarwal described the conditions under which their diagnostic algorithms produce cor-
rect and/or complete diagnosis. They also present several examples to show that a good
diagnostic accuracy can be obtained with the LDA1 algorithm in /7 X v/n mesh topologies.

Probabilistic diagnosis is most useful in situations where the units can be intermittently
faulty or the tests have significantly less than 100 percent coverage. Although, probabilistic
methods by definition cannot guarantee that the produced diagnosis is accurate, neither can
deterministic methods make such a claim in the case of intermittent faults or incomplete
tests. The best possible probabilistic method in terms of diagnostic accuracy is the one
that outputs the most probable set of faulty units given a syndrome. Blount gave an
early approach for the solution of this problem [30]. He described the O-information tester
model and used the common probability model to define a mapping from syndromes to
fault patterns. The diagnostic process uses a lookup table, which contains the fault set ¥
that has the largest probability P(S|F') for a given syndrome S. Whenever an observed
syndrome needs to be decoded, the lookup table is consulted to find the most probable fault
set. Though straightforward, this method is very resource consuming. Given |E| edges and
n units, there are 2/¥ possible syndromes and 2" possible fault sets. Thus, to create the
lookup table, O(2" /1) calculations and O(2/F') memory locations are required.

Lee used the partial tester and common probability models to produce a more efficient
method for finding the most probable diagnosis given a syndrome [65]. In his method, he
introduced several heuristics to speed up the search for the most likely fault set by bounding
the search tree as early as possible. Although the average behavior of this algorithm is fairly
good, its worst-case computational complexity is O(2|F |), where F' is the set of faulty units
identified.

Realizing the limitations of finding the most probable diagnosis, Blough et al. used
Blough’s probability model to develop an O(|E|) algorithm which is able to achieve asymp-
totically correct and complete diagnosis in systems of O(nlogn) testing connections [66]. In
the algorithm, the number of failed tests on a unit |A;y| is compared to an a priori threshold
value k. The unit u; for which |Aj,(u;)| — k; is maximal (i.e. the unit most exceeding its

threshold) is selected and placed in the set of faulty units. Next, all of the test results gener-

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 23

ated by u; are set to 1 (to imitate that each of them has failed). The difference between the
number of failed test and the threshold is the re-calculated at the units u; € I'(u;). Again,
the process looks for the maximal difference to place another unit in the set of located faults.
This iteration terminates when there are no more wuy units for which |Ain(u;)| > k;. The
rest of the system is classified as fault-free.

The authors proved that asymptotically correct and complete diagnosis can be obtained
if the k; threshold values local to unit u; are chosen as follows:

ki = [pf +p2]2(1 _pf) ‘F_l(uz)|J]

They also describe a heuristic method of choosing better threshold values, based on the

following lower-bound estimate of the correct diagnosis:

N

N\ . .
Peorrect 2> 1_n(1_pf) Z (-)pif(l_pf)N_J_
j=kt1 N
N N . .min(j,k) j .
— S |(T)acer X (et a9

when a common threshold k; = k, failure probability p;, and detection probability p;; = pq is
used, and N = max,, ey [T !(u;)|. To find the best common threshold, the above expression
is evaluated for all possible values of k and the threshold resulting the highest probability
of correct diagnosis is chosen. Note, that the threshold selected by this method is not
necessarily an optimal one.

Dahbura et al. gave a comparison-testing based probabilistic diagnostic algorithm of
O(n?) time complexity [67, 68]. It repeatedly selects the unit that is incident to the largest
number of 1-links (failed test), i.e. max, e |Ain(w;)|. This unit is placed in the set of
diagnosed faults and excluded from the testing graph, as well as its local test results are
removed from the syndrome. This procedure is iterated until there are no 1-links in the
testing graph. Using an assumed upper bound on the number of faulty units, it was shown
that the probability of incorrect diagnosis is extremely small given a completely connected
testing assignment. Later, Lee [65] was able to show that this algorithm has the same
asymptotic properties as the method from Blough et al. [66] while performing significantly
better for several different topologies and probability parameter values. This demonstrates
that asymptotic accuracy is not sufficient in itself to indicate the usefulness of a probabilistic
diagnostic algorithm.

Lee and Shin presented another set of diagnostic algorithms [69]. They observed that
many of the approaches to that time used only partial syndrome information in classifying
the fault state of each unit. The authors defines several categories of methods respective to
the type of partial syndrome information they used. Then, Lee’s probability model was used
to calculate a posteriori fault probability values for the individual units in each categories
of diagnosis. Faulty unit were identified on the basis of these a posteriori fault probability
calculations. All of the algorithms developed was shown to have the same asymptotic
properties as Blough’s algorithm. The main advantage of Lee and Shin’s work is that their

methods find the most probable fault set given a particular type of syndrome information,

24 CHAPTER 1. INTRODUCTION

resulting in a locally optimal diagnosis. Their most significant disadvantage is that the
syndrome decoding process is relying on the use of probability parameter values.

Fussell and Rangarajan introduced an entirely different type of diagnostic methodology
[70]. Given that the testing graph is the subgraph of the processor interconnection graph,
the algorithms described so far require each unit to be tested by at least logn other units
for asymptotically correct and complete diagnosis. Fussel and Rangarajan suggested to
conduct multiple mutual tests in each pair of units. If the number of these tests on all of
the units grows faster than logn, then the same asymptotic properties can be obtained in
systems with lower connectivity (e.g., meshes or rings), thus improving on the connectivity
bound. Their algorithm uses several stages of comparison testing. In testing stage i, all
units are assumed to execute the same test task, then the local test results of each unit are
compared to the results of all adjacent units. The testing link between two units u; and
uj is labeled by c¢;; = ¢j; = 1 if the tests ¢;; and t;; gave identical results. In this manner,
r independent syndromes are collected at the end of the testing stages. Two thresholds
sy (tester threshold) and k, (test threshold) are used to classify the units. The algorithm
assigns labels to the vertices of the testing graph in two steps. First, a super label of value
1 is associated with units for those adjacent to 1-links exceeding the tester threshold s,.
Given r syndromes, 7 super labels are created. In the second step, a decision label of value
1 is associated with units for which the sum of super labels exceeds the test threshold k,.
These units are diagnosed as fault-free, all others are faulty.

The authors chose k, = 1 and a range of values was indicated as being acceptable
for s,. In later works [71, 72], they derive better k, and s, threshold values and discuss
a hierarchical version of the above algorithm. The hierarchical method conducts testing
and diagnosis in clusters. A third threshold A, is used to compute a hierarchy label which
has similar role in the diagnostic process as the previous two ones. The new method thus
preserves the topological flexibility of the previous algorithm, while allowing the number
of tests each tester must perform to be tailored to the requirements of the interconnection
topology.

Referring to the use of multiple testing stages and multiple syndromes as a multiple-
syndrome diagnosis method, Lee and Shin derived a locally optimal multiple-syndrome
diagnosis algorithm using their own probability model [65]. The only change introduced
by the authors is the way in which the thresholds k, and s, are chosen, but in the other
aspects the algorithm is the same as Fussel and Rangarajan’s algorithm. Calculations of
the a posteriori fault probabilities help to derive optimal values for &, and s,. Due to the
similarities and the optimal thresholds, the algorithm shares the same desirable asymptotic

properties as Fussell and Rangarajan’s method.

1.2.3 Distributed diagnostic algorithms

In massively parallel computing systems several problems arise employing diagnosis with a

centralized control:

o The space and time complexity of the diagnosis algorithm increases. The processors

cannot transmit their local test results to the central observer simultaneously, thus

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 25

the communication phase becomes longer. The diagnosis can take place only after
the complete syndrome has been collected by the central observer. The computing
power of the parallel processors is not utilized during diagnosis (the central observer
executes the diagnostic algorithm alone). Yet, the system cannot proceed with its
normal tasks, since diagnostic results are necessary to validate the correctness of the

computation completed up to that point.

e The information storage and processing capacity requirements of the central unit also
increase. The duration of processing the larger diagnostic image becomes longer as
well. The amount of memory in the central observer is finite, and the time available
for the diagnosis process is also bounded (since diagnosis is almost always a real-time
task). The existing solutions to these limitations have contradicting effects. Data
compression can be applied to reduce the necessary amount of memory space, however,
data compression algorithms are fairly complex, computation-intensive methods. On
the other hand, large, fast access memory can be used to speed-up diagnosis. A good

compromise of these solutions is hard to find [26, 73].

e Due to the finite amount of resources the central observer tends to become overloaded

and hence diagnosis might be inefficient or even impossible.

e The central observer is exclusively responsible for locking out faulty components, i.e.,
it is a diagnostic hard-core. A failure in this hard-core causes a single-point failure

which is inadmissible in a fault-tolerant system.

Since massively parallel systems are distributed, there is an opportunity to use the dis-
tributed observer approach, where no global monitoring and control is present. There exists
no central facility in the coordination or mediation among the processors. The distributed
nature of such a diagnostic process requires that the units are able to make local decisions re-
garding certain tasks like scheduling, resource allocation, etc. These decisions can be based
only on the information obtained via normal, unit-to-unit communication links. Moreover,
any action taken in response to the detection and location of a fault must be local, and may
again involve only normal communication.

The distributed fault-tolerance concept was proposed by Kuhl and Reddy [31] to avoid
the problems with the centralized observer. As its name implies, distributed fault-tolerance
allows diagnosis and subsequent isolation of faulty processing elements in a way that does not
centralize the failure handling devices in the system. The requirements for fully distributed
fault-tolerance are as follows: each fault-free unit must be able to independently achieve
correct diagnosis of all other units in the system. Once a unit has recognized the failure of
another one, it can “discriminate” against the faulty processor simply by refraining from
further cooperation. Since all fault-free units locate the fault(s) and refuse to interact with
the faulty component(s), the erroneous part is in effect isolated from the rest of the system.

A processing element is capable of testing only neighboring units. The local test results
must be broadcast throughout the whole system to enable the diagnosis of remote units.

All of the messages are forwarded through the interconnection network. Units may rely

26 CHAPTER 1. INTRODUCTION

only on indirect information passed via a neighbor in order to obtain the condition of non-
neighbors. Since the model allows a faulty processing element to transmit incorrect test
results, or alter and even destroy the information routed through it, fault-free units may
only trust data received from neighbors they “personally” tested and found to be fault-free.
Cooperation and communication with faulty units is forbidden. For this reason, fault-free
processors perform a test before transmitting and after receiving a message to a certain
neighbor. If the neighbor was found to be faulty, the message is not sent or the received
message is ignored. Due to this mechanism, all of the messages are distributed over a path
of fault-free processors to assure their reliability.

Kuhl and Reddy introduced a new diagnosability measure for distributed multiprocessor
systems: t-fault self-diagnosability. A system is considered to be t-fault self-diagnosable if
and only if each fault-free processing element can correctly identify all faulty (and fault-
free) units in the system, provided that no more than ¢ faults are present. Faulty units
block the inter-processor communication and thus hinder the reliable dissemination of the
syndrome among fault-free units. If the system is cut up into isolated areas by faulty
units that cannot exchange information, then it is impossible to generate a system-wide
diagnostic image. Therefore a multiprocessor system with a testing graph Gp = (Vr, Er)
is t-fault self-diagnosable on the basis of the distributed fault-tolerance concept if and only
if KZ(GT) > 1.

The algorithm SELF presented by Kuhl and Reddy in [31] conducts the testing in the
system in rounds. A round of testing consists of the execution of each test represented by
the testing graph. It is assumed, that no failures occur in the system from starting a round
of testing till every fault-free processor completes its diagnosis. This assumption means that
the diagnostic algorithm analyzes a static ”snapshot” of the status of different components
at a fixed point of time.

In the algorithm SELF each unit u; computes a fault vector containing its conclusions
about the condition of each other unit. Initially, the local test results are obtained. The
units then label themselves as ‘good’ and all other units as ‘unknown’ in their fault vector.
They examine and record the local test results in the fault vector. Every unit u; prepares a
message containing the local test results for broadcasting to each u; € I'"!(u;). A unit u;
records any new test results received from a neighbor that it tested and found to be fault-
free in the fault vector, and forwards these test results to each uy € I'"'(u;). The messages
sent by units tested and found to be faulty are ignored. Note, that diagnostic information
travels backward over the directed arcs in the testing graph via only fault-free units. This
process iterates at each unit until either their fault vector is complete or contains indications
of ¢ faults. In the latter case, the remaining unspecified entries in the fault vector are filled
with fault-free classification since at most ¢ faults can coexist in the system.

The SELF algorithm developed for the distributed fault-tolerance concept had some
imperfections. The algorithm did not take into consideration faults in the communication
links and reintegration of repaired, replaced, or simply recovered faulty components was
not supported. An improved algorithm called NEW _SELF dealing with these problems was
introduced in [74, 75]. The new algorithm is based on the same theoretical concept, thus

the same assumptions and notion presented above are used.

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 27

The validation of diagnostic messages possibly altered, destroyed or erroneously issued by
faulty units has been changed. A unit u; accepts a diagnostic message from a neighbor unit
uj only if u; € I'(u;) and it has ascertained that unit u; is fault-free. This is accomplished
by the following mechanism: when unit u; sends a diagnostic message, unit u; temporarily
stores this message in a buffer, provided u; has found u; to be fault-free last time it tested.
Upon the next test on u;, if the result indicates that it is still fault-free, unit u; confirms
all pending messages waiting in the buffer. Of course, this strategy requires the assumption
that a unit cannot fail (undetected) and recover from the fault in the interval between
two consecutive tests on it. If the self-testing processing elements are equipped with latch
circuitry for storing error indications, then even transient faults can be detected by acquiring
the condition of these latches.

The possibility of reentry of previously faulty units and/or communication links, or entry
of new units adds considerable complexity to the diagnostic process. This complexity is due
to the necessity of keeping track of temporal ordering among different messages traveling
over the interconnection network. To deal with this problem each unit contains a local clock,
and messages incorporate a time stamp. This mechanism is similar to that commonly used
in distributed systems for message sequencing and maintaining consistency in distributed
databases, but it is complicated by the fact that a failure may cause the unit to lose its old
clock value.

The algorithm maintains at each unit u; two arrays: ACCUSERS; and ENTRY,;. The
elements of both arrays are sets of messages stored by u; for diagnostic purposes. The j-th
element of these arrays is associated with the unit u;. At any time, a fault-free unit u; will
have in ACCUSERS;[j] a number of messages representing that unit uy started a message at
its local time 75, indicating that u; was faulty. The element ENTRY[j] will contain messages
indicating that unit u; tested u; at its local time 7; and found it to be fault-free. In order to
prevent the ACCUSERS and ENTRY arrays from growing boundlessly, messages are added
to these arrays only if they represent new and useful information. Any messages superseded
by newer information are removed. A unit uses similar criteria to determine whether it
should or should not forward a message to its testers, thus ensuring finite message lifetimes
(a message never passes through a unit more than once).

A unit u; tests a neighbor u; € I'(u;) according to some locally determined schedule.
In addition to periodically scheduled tests, u; may test in response to some suspicion con-
cerning unit u; (e.g., not having communication with u; for an abnormally long time) or
in response to a request for an entry message from unit u; (which is possibly added to the
network or was repaired, replaced, or recovered from a transient failure). If u; finds u; to
be faulty, it composes a message including the local clock value 7; of the time of test, and
broadcasts it to each uj, € T !(u;). This is the initiation of the reliable dissemination of the
message throughout the network backward along paths in the testing graph. After each test
performance u; increments 7;. When wu; finds u; to be fault-free and it has earlier received
any message indicating that uy found u; to be faulty at its local time 7%, then it composes
and broadcasts an announcement that u; has recovered from the failure detected by uy.

The actual diagnosis is accomplished by examining the ENTRY; array. The presence
of a message in ACCUSERS;[j] does not necessarily imply that u; is faulty. It may also

28 CHAPTER 1. INTRODUCTION

represent an old failure from which u; has recovered, but for which no entry message will
ever reach u;. Similarly, the presence of a message in ENTRY;[j] does not imply that u; is
fault-free, because it is possible that the test u; unit has failed after sending the message,
and subsequent to this u; has also failed. However, u; can discover which units are fault-free
by performing a simple computation on the ENTRY; array. First, u; can directly certify the
condition of the units it has tested. Then, for any unit uy € I'(u;) found to be fault-free, if
there is a message indicating that u; has tested u; and found it to be fault-free, then u; can
be accepted as being fault-free. Also, for any message reporting a successful test on unit u;
by uy or u;, then u; must be fault-free, and so on. The diagnosis is achieved by a simple
breadth-first like search of the ENTRY; array. Upon completion all of the fault-free units
generate a correct and complete system-wide diagnostic image, provided the testing graph
remains strongly connected when the vertices and edges corresponding to faulty units are
removed.

The NEW_SELF algorithm also allows the classification of interconnection links. In
order to take the inter-processor communication devices and their potential faults into con-
sideration, the notion of a link failure domain was incorporated in the diagnostic model of
the algorithm. A link failure domain of a distributed computing system is any single source
of failure in the inter-processor communication devices. The link failure domain set is the
set of all link failure domains for the network. The detection and location of interconnection

link faults are accomplished in one of two ways:

1. If a test on a unit u; performed by unit u; fails, then it may be due to an error in
u; or in the communication path between u; and u;, or both. Therefore, the failure
message of u; must be interpreted by the units receiving it as being possibly indicative

of any of these situations.

2. A unit u; may have difficulties accomplishing normal, non-diagnostic communication
with a neighbor u; due to a faulty inter-processor link. In such a case, if u; € '™ (u;)
it can broadcast a message identical to any other failure message. If u; ¢ T'~!(u;),

then the generated message has the special form of a link failure report.

A processor ug, receiving a failure report initially treats the message as indicative of a fault
in processor u;, and adds it to ACCUSERS[j]. If, in fact, u; is fault-free and only the
communication path between u; and u; is faulty, then u; should eventually receive an entry
message of another tester of u; reporting a successful test. Upon receiving this message uy
removes the entry indicating the failure of u; from ACCUSERS,[j], and adds a new entry
to the array FAULTY _LINKSy.

An adaptive diagnosis approach based on the Meyer and Masson algorithm [57] was
introduced by Bianchini and Buskens in [76, 77]. The algorithm, called Adaptive DSD, is
similar to the centralized adaptive methods in that the testing assignment is determined
by the actual fault pattern present in the system. The algorithm is only applicable for
systems with a fully connected interconnection topology (these include bus-oriented systems
or networked workstations). Unit failures and repairs are considered; link failures are not.
The number of faulty units in the fault set is not bounded, the fault-free processing elements

correctly diagnose the fault state of all units in the system.

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 29

In the algorithm each unit u, maintains a local array called TESTED_UP,. The array
contains n elements, indexed by the unit identifier. Each element of the TESTED _UP,, array
contains the identifier of a certified fault-free unit. That is, the entry TESTED_UP,[i] = j
indicates that u, has received diagnostic information from some fault-free u; unit confirming
that he has tested u; and found it to be fault-free. The basic mechanism of the Adaptive
DSD algorithm is that each unit first tries to identify another fault-free unit. Assume that
units are listed in sequential order: wug,...,u,_1. Unit u; identifies the first fault-free unit
subsequent to itself in this ordered list. This is accomplished by testing consecutively units
Ug41,-- - Ugtn—1 (modulo n) until a fault-free unit, say unit u,, is found. Then u, sends a
request to u, to transmit back the contents of its local TESTED_UP, array.

A test on the unit uy is assumed to pass, if u, has remained fault-free since the last test
performed by u; including the period required for unit u, to send the TESTED_UP,, array.
This guarantees that the diagnostic information represented by TESTED_UP, is accurate.
This information is utilized to update the local data structures of unit u, in the following

manner:

1. the entry TESTED_UP,[z] is set to y, specifying that unit u, has tested unit u, and
determined it to be fault-free,

2. all other elements of TESTED_UP,, are updated to the values of corresponding entries
in TESTED_UP,,.

Note, that the diagnostic information in the TESTED _UP arrays are communicated among
units in the reverse direction of tests.

Diagnosis is achieved at unit u, by following the fault-free paths from u, to other fault-
free units. Results of the analysis of TESTED_UP, are recorded in array STATE,, where
the entry STATE,[i] represents the diagnosed fault state of unit u;. Initially, all units are
classified as faulty in STATE,. a variable called node_pointer (denoted by NP) is set to
z, the identifier of the unit performing the diagnosis. The algorithm traverses the forward
fault-free paths in the test set, labeling each of the units visited as fault-free. This is
accomplished by marking the unit represented by STATE,[N P] as fault-free. Then setting
NP is set to TESTED_UP,[N P], which is the sequentially next fault-free unit in the ordered
list. This procedure is repeated until NP is set to every fault-free unit and returns to z.

Later the same authors applied the Adaptive DSD algorithm for systems using a com-
parison based unit validation scheme. They omitted explicit tests as being impractical to
detect arbitrary failures. Instead, a unit monitors the communication of two other units to
decide whether they are reliable or not. T'wo new models for the behavior of faulty units
were defined. On-line distributed diagnostic algorithms that operate correctly under the
new failure semantics were also given.

The standard “black box” method for testing consists of applying the input test se-
quences at the control points and observing the outputs of the tested device. The test
passes when the outputs conform to the specification of the system given its inputs. In the
model of Buskens and Bianchini, the input of each unit corresponds to diagnostic messages
the unit receives, and its outputs are the diagnostic messages the unit generates. Unit u;

attempts to validate the operation of unit u; by observing its input and output messages.

30 CHAPTER 1. INTRODUCTION

However, u; may not able to directly observe the input messages of ;. In this case it is
required to request this information from any unit that sends messages to u; (e.g., unit
ug). Thus, ug transmits messages to two different units. There is no guarantee that the
two messages will be identical, unit u; may send message mi to u; and message ma to u;.
There are two classes of faulty units depending on the relation of mi to mq: consistent liars
always send incorrect diagnostic information on response to a request, while inconsistent
liars arbitrary disseminate correct and incorrect diagnostic information. Faulty units that
distribute correct diagnostic information are indistinguishable from fault-free units. Explicit
tests are not used to detect faults, redundant message passing provides evidence of faulty
behavior instead.

There are two variations of the so called Robust algorithms for systems with consistent
and inconsistent liars. Every message transmitted by fault-free units during the operation of
the algorithms is assumed to be delivered correctly. The receiver of a message can identify
the sender of the message. The absence of a message can be detected. Every unit can
communicate with every other unit (fully connected topology).

The version of Robust for systems with only consistent liars is very similar to the Adap-
tive DSD algorithm. If there is only one faulty unit, then the algorithm tries to identify a
unique fault-free unit and update the local Syndromes array with the information received
from that unit. (The Syndromes array is equivalent to the TESTED_UP array of the Adap-
tive DSD algorithm.) Units are listed in sequential order: wug,...,u,—1. Unit u; requests
Syndromes information from the next two consecutive units in the ordered list: u,, u,. If
uy does not validate with u,, then u, requests the Syndromes information from a subse-
quent unit u,, and identifies the first unit that validates with u,, as fault-free. Diagnostic
information from the validated unit is then used to update the local Syndromes array. By
this mechanism, the contents of the Syndromes arrays at different nodes will be identical
to the TESTED_UP arrays of the Adaptive DSD algorithm for symmetric test invalidation.
Consequently, processing of the Syndromes array to achieve diagnosis of each unit is done
with the same method of the TESTED_UP array described before.

Diagnosis of inconsistent liars is complicated by the fact that an inconsistent liar may
forward valid information in addition to corrupt information. Therefore, in systems with
inconsistent liars it is not always possible to uniquely identify a fault-free unit. To ensure
that diagnosis is always correct in such situations, multiple units may be validated by a
single unit. Therefore, each fault-free unit validates with at least one other fault-free unit.
Suppose, there is no more than one faulty unit in the system. The version of Robust for
systems with only inconsistent liars first attempts to identify a unique fault-free unit. If it
fails, it evaluates two units as fault-free. In either case, the Syndromes array is updated
from the found fault-free unit(s).

The algorithm can be generalized to handle at most ¢ inconsistent liars similarly to the
case of consistent liars. A validation path of length ¢ must be found to guarantee that at
least one fault-free unit is identified. Faulty units may appear on the path if they do not
lie conclusively. As such, fault-free units may exist that are not on the validation path.
To ensure that fault-free units are not incorrectly diagnosed, every unit validating with the

farthest unit on the validation path must be classified as fault-free.

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 31

Stahl, Buskens, and Bianchini developed an on-line diagnosis algorithm called Adapt on
the same theoretical background as the algorithm of Bagchi and Hakimi [78]. The testing
assignment is adaptive. The diagnostic process is composed of two main steps. In the
first step, test connections are established locally by each tester unit to ensure the strong
connectivity of the testing graph. Execution of this step occurs in parallel at different
PEs to minimize diagnosis latency. Redundant tests are removed in the second step. The
algorithm locates any number of faulty units provided that the testing graph of the whole
system remains strongly connected (i.e., there are sufficient number of available reliable
units in the first step of the algorithm).

The Adapt algorithm does not classify the interconnection links, but it handles blocked
communication paths due to its adaptive nature. The tests in the system are periodic.
A unit may not fail and subsequently recover undetected during the interval between two
consecutive tests by the same tester unit. A message validation scheme, similar to that of
the NEW_SELF algorithm is used to ensure that messages received from faulty units are
ignored. Both unit failures and repairs are considered. The algorithm consists of three
phases. Immediately after a fault event occurs, the algorithm enters into the Search phase
to reconstruct a strongly connected testing graph. Once the Search phase completes, the
algorithm begins the Destroy phase to remove redundant tests (i.e., to minimize the number
of test connections). Finally, the Inform phase is invoked to notify all units about the most
recent testing assignment. When the testing assignment is updated, units execute the same
diagnosis procedure as described at the Adaptive DSD algorithm.

A unit begins the Search phase when it detects the failure or repair of a neighbor unit.
It generates a Search packet containing information about the diagnostic event, then it
broadcasts the packet in the system. All units receiving a Search packet enter the Search
phase and forward the Search packet to other units. Every tester unit entering the Search
phase updates its local representation of the testing graph and verifies if it remained strongly
connected after the inclusion of the new diagnostic event. If a certain unit cannot find a path
to any other system unit, it will attempt to add new tests to the testing graph, and updates
the forwarded Search packet is to reflect the changes. At the end of the search procedure
the resulting testing graph is guaranteed to be strongly connected. The Search phase is
finished when a single Search packet completely traverses the whole network, indicating
that all units have accomplished the search procedure.

Completion of a Search packet signals the start of the Destroy phase. During this phase
a single Destroy packet is circulated to all units of the network, causing each unit to execute
a destroy procedure on the testing graph. A unit excludes a test if it can remove the test
and still finds a directed path to all other units in the testing graph. A strongly connected
testing graph containing no redundant edges exists at the completion of the Destroy phase.
Finally, the algorithm begins the Inform phase. In this last phase an Inform packet is
circulated to distribute the new testing graph to each unit.

The Search procedure can be executed on several units in parallel. The Destroy proce-
dure, however, must run sequentially to assure that a unit does not remove tests required by
another unit for connectivity. Parallelism occurs in the Search phase when multiple Search

packets are created for the same fault event by two or more units. Since several Search

32 CHAPTER 1. INTRODUCTION

packets can simultaneously exist in the network, coordination is necessary for correct opera-
tion. Packet dominance defines a competitive relationship between two packets. Packets are
compared on the basis of syndrome time stamps generated by the units upon entering the
Search phase, included in every Search pocket. Given two packets A and B, packet A is said
to be dominant (denoted by A > B), if either all time stamps in packet A are greater than
the corresponding time stamps in packet B, or the time stamps are equal but the sender
identification code (also included in the packets) of packet A is greater than of packet B.
Two packets A and B are bidominant (denoted by A <> B) if some of the syndromes in
packet A have greater time stamps than the corresponding syndromes in packet B and some
of the time stamps in packet B are greater than in packet A.

The dominance and collision rules assure that if multiple Search packets were generated
in the network, then only a single Search packet completes. Therefore only one Destroy
packet is created, ensuring the destroy procedure is executed sequentially. The collision
rules are modified for a Destroy or Inform packet to provide that the Destroy or Inform
phase is terminated when a new Search phase begins. If a Destroy or Inform packet is
bidominant with the information stored at a certain unit, then a (new) search packet must
be created.

In the distributed fault-tolerance concept processing elements were considered to be
identical from the diagnostic viewpoint, i.e., the system was homogeneous. A more gen-
eral, non-homogeneous diagnosis model was presented by Liaw, Su and Malaiya [51]. A
processing element in the model can be either a testing unit capable of performing tests on
neighbors, and a non-testing unit only tested by others. Accordingly, interconnection links
also have different types. A test-and-transfer edge implies a message transfer capability in
the direction indicated by the corresponding directed arc in the testing graph, and a testing
capability in the opposite direction. A transfer-only edge implies a message transfer capa-
bility in the given direction, but no test is made via the link represented by this arc. A
test-only edge indicates that the corresponding link is not capable of transferring data, yet
a test can be performed via the link in the direction opposite to the respective directed arc
in the testing graph. If there exists both a transfer-only and a test-only edge between two
units in the same direction, then they can be logically replaced by a single test-and-transfer
edge. In the testing graph, there is at most one edge from a unit to another.

The tests in the model are assumed to be complete, that is the test covers all faults in
the tested unit and the interconnection link. If the testing unit is fault-free, but a fault
exists in either in the tested unit or the interconnection link between the two units, then
the testing unit obtains a failed test result. Otherwise the test passes. The inter-processor
communication network is considered to be a passive component having a simple and easy-
to-test structure. As long as both of its terminal units are fault-free, the receiving unit
can verify the correct operation of an interconnection link with a simple test. A failure of
a unit or a link involved in the communication can corrupt any message passed through.
In order to protect essential information from unnoticed alterations during transmission,
error-correcting codes are proposed. Each message will include a private identification code
of the sending unit. FEach non-testing unit can decode and detect errors in codes, so any

information with valid identification code received by a non-testing unit will very likely be

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 33

correct.

The authors also developed a new diagnosability measure for their extended model.
They defined a system to be unweighted if all of its elements have equal reliability. When
different components are not equally reliable, a positive integer weight may be assigned to
each component to reflect their relative reliability. The weight assignment should satisfy the
following condition: a set of faulty units with smaller total weight is (assumed to be) more
probable to fail than other fault sets with larger total weight. Such a system is called a
weighted system. A weighted system is w-weight self-diagnosable if each fault-free unit can
correctly identify all faulty (and fault-free) units in the system, provided that the weight
of the fault set present is not greater than w. A testing path is a sequence of testing edges
in the same direction. The first edge may either be a test-and-transfer or a test-only edge,
but all the subsequent edges must be test-and-transfer edges. A message path is a sequence
of test-and-transfer and transfer-only edges in the same direction, that cover only testing
units except a non-testing unit at the receiving end. A set of paths sharing sending and
receiving units are blocked by a fault set (not including the two terminal units) if none of the
paths remain completely connected after the removal of faulty components. The following

conditions must be fulfilled by a weighted system to be w-weight self-diagnosable:
e if w; is the total weight of testing units, then w < Lﬂ‘;—lj,

e from every unit to a testing unit there exists either a test-and-transfer or a test-only
edge, or a set of testing paths that cannot be blocked by any fault set with a weight

less than w, and

e from every testing unit to a non-testing unit there exists either a test-and-transfer or
a transfer-only edge, or a set of message paths that cannot be blocked by any fault

set with a weight not greater than w.

Self-diagnosis of a weighted, non-homogeneous system incorporating both testing and
non-testing units is achieved in three steps. First, diagnosis of individual units via test links
is performed. Testing units record test outcomes in the local syndrome. Then the testing
units exchange diagnostic information among each other to complete their diagnosis about
the whole system. Finally, testing units broadcast information to non-testing units and let
them achieve their diagnosis.

In the first step of the algorithm all of the tests included in the testing graph are executed
by testing units. Non-testing units can also verify the transfer-only edges connecting them to
testing units. The second step is very similar to the SELF algorithm with some differences:
diagnostic messages are only broadcast over test-and-transfer edges, and the process is
iterated until either the fault vector is fully specified, or the weight of the identified fault
set is reaches or exceeds w (unclassified units are labeled as fault-free). In the third step
each testing unit generates a message for each fault-free non-testing unit, containing the
completed fault vector and the personal identification code. Testing units only start those
messages that can be forwarded over a chain of testing units they diagnosed to be fault-free.
Upon receiving a message, non-testing units first decode the identification code to verify

the integrity of the information. Valid messages are stored in a stack structure, invalid

34 CHAPTER 1. INTRODUCTION

Table 1.3: Generalized model of test invalidation

Tester unit Tested unit Test result

fault-free fault-free pass

fault-free faulty fail

faulty fault-free C € {pass, fail, or arbitrary}
faulty faulty D € {pass, fail, or arbitrary}

messages are ignored. Since faulty testing units may transmit a diagnostic message more
than once, such messages are counted and are taken into consideration only when received
for the first time. The weight of subsequently received fault vectors is added to the weight

of the identical fault vector already recorded in the message stack. If the weight of a certain

w;+1
2

is terminated and the fault vector is accepted. The fault vector selecting process is similar

fault vector on the stack becomes greater than or equal to w < | |, then the procedure

to the algorithm of Meyer and Masson [57].

1.2.4 Generalized test invalidation

In heterogeneous systems consisting of various functional units, test invalidation will likely be
heterogeneous as well. The generalized test invalidation scheme provides a unified framework
to handle the differences of the invalidation models of system components [33]. The model
is described in Table 1.3. Due to the complete test assumption fault-free units always test
other units correctly. Test results of faulty tester unit can have three outcomes: always pass,
always fail, or arbitrarily pass/fail independent on the fault state of the tested unit. These
results correspond to the constants 0, 1, and X. Nine possible test invalidation models are
encompassed by the generalized scheme, denoted by the respective C' and D values. For
example, symmetric invalidation is referred to as the Txx, and asymmetric invalidation as
the Tx; test invalidation model.

The relationship between tester and tested units encapsulated by generalized invalidation
can be used to derive parameterized inference rules. An inference rule is affected by three
main parameters: (1) the test invalidation of the tester unit, (2) the (supposed) fault state
of the tester/tested unit, and (3) the actual test outcome. Parameterized inference rules
are useful to extract one-step implications from the syndrome in the form of “fault state a
of unit u; implies the fault state b of unit u;” (denoted by f# — fjb)

Four types of one-step implications exist: tautology, forward and backward implication,
duality, and contradiction. A tautology implication simply repeats the value of a logical
variable: f — fF, where z = {0,1}. Although they seem to be unnecessary, tautology
implications play an important role in the transitive extension of diagnostic knowledge.
Forward and backward one-step implications are derived from the parameterized inference
rules, expressing the relationship of two adjacent units. Duality rules are the formal nega-
tions of forward and backward implications: if f — ij exists, then f;y — fi"% is also a
valid implication. A contradiction provides a sure inference. It expresses that either the
fault-free or the faulty state of a certain unit is incompatible with the syndrome: f2 — f}

(u; is surely faulty) or f} — f? (u; is surely fault-free). The complete set of parameter-

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 35

Table 1.4: Parameterized inference rules

Tester unit Tested unit Test result | Implication

Name Type fault state invalidation fault state

[a.1] tautology fault-free =1
[2.2] forward fault-free pass 2=
[a.3] backward Tip fault-free pass f;—’ - f
[b.1] forward fault-free fail =1
[b.2] backward Tip, Txp fault-free fail =1
[b.3] contradiction Top fault-free fail f](-) — fjl
[c.1] backward Teo faulty fail fi—= £
[c.2] forward faulty T10, Txo fail fl—= f;(')
[c.3] forward faulty To1, Tx1 pass flof
[c.4] contradiction Tco faulty pass fi—=f
[c.5] contradiction | faulty Too fail =R
[c.6] contradiction | faulty T pass fi=f
[d.1] tautology faulty fl = fl
[d-2] backward Tco, Tex faulty pass fi—=f
[d.3] forward faulty Too, Tox fail =1
[d.4] forward faulty Tho, Tix pass fl=f jl

ized one-step inference rules derived from the general test invalidation model is shown in
Table 1.4.

Diagnostic implications can be drawn in a graphical form using the notion of the inference
graph, as introduced by Definition 1.2.1.

Definition 1.2.1. The inference graph is a directed G; = (V, V1, Er) graph composed of the

?,vil € Vr vertices corresponding to

the f0, f1 € F possible fault states, and the set of ('uf,'u;’) € Ey directed edges representing

V partitions symbolizing the U set of units, the set of v

the p;; € P possible one-step implications between the u;, u; € U units. The V' partitioning
function assigns a v; partition to each pair of v) and v} vertices: {v?,v!} > v;. A directed
edge exists between (v7, v;/) iff fFf — f]y is a valid one-step implication extracted from the
actual syndrome.

In the graphical representation partitions, nodes and edges correspond to boxes, circles

and arrows (see Figure 1.6).

10 O F

fil O f \Q fjl

Ui U

Figure 1.6: Components of the inference graph

Figure 1.7 demonstrates both the application of the inference graph, and the extraction

of the diagnostic information from a given syndrome. In Figure 1.7(a) a testing assignment

36 CHAPTER 1. INTRODUCTION

(a) Example testing graph with syndrome (b) Corresponding inference graph

Figure 1.7: Inference graph creation

with four units (two fault-free and two faulty ones) and four tests can be seen, each unit
conforms to the symmetric test invalidation. After applying the parameterized inference
rules, the one-step implications displayed in Figure 1.7(b) could be extracted from the four
test results.

Two one-step implications can be combined into a two-step implication using the tran-
sitive property: if f — fJ’-’, and f]’-’ — fi are two valid one-step implications, then they
imply f — fg. The set of all one-step and multiple-step implications obtained by repeated
application of the transitive property is the transitive closure. It contains all information
that can be extracted from the syndrome.

The use of the transitive closure in the fault classification procedure was first introduced
by Selényi [33]. In his algorithm one-step implications are stored in a 2nx2n M hypermatrix,
called the inference matriz. The M matrix consists of four n X n binary minor matrices:
M% MO MY and M!!. The m*¥[i, j] element of the M®¥ minor matrix can be expressed

as

N - fJQ is a valid one-step implication,
m*[i, j] = .
0 otherwise.

The inference matrix has the following three structural properties: the M% and M!' minor
matrices contain the identity matrix (m%Ji,i] = 1 and m°[i,i] = 1) due to the tautology
implications; and M% equals to the transposed (M'')T matrix, while M°' and M0 are
symmetric minor matrices, both due to the duality implications. The structure of the
inference matrix is illustrated in Figure 1.8.

Transitive closure of the one-step implication set can be computed by the logical closure
of the M matrix. This is achieved by the repeated application of the MK+ MK vk
(the contents of M in the (k + 1)-th step is the square of M in the (k)-th step) iteration.
The transitive propagation stops when no new non-zero elements appear in the subsequent
iteration steps. In the resulting M transitively closed matrix the non-zero elements in the
main diagonal of M%' and M!? indicate a contradiction, and so the corresponding units can
be surely classified.

After the identification of the surely diagnosable units, the algorithm employs the di-
agnostic t-limit to classify the fault state of the remaining processors. For the purpose an

undirected graph, which contains an edge from each node u; to the nodes corresponding to

1.2. SYSTEM-LEVEL FAULT DIAGNOSIS 37

Ui

T IR o |
: 1 I : C‘o M I
| 1 " /)//‘c.? :
u|>*:%> moo[z]] O;O/r :

! | ©
BV P O
L ___. L ___.
M: r—--=-=-=-=-=-= =7 | r—--=-=-=-=-=-=- =7 |
: o Mo : : 1 N M :
L % Y 1 !
1 ‘90 P! 1 |
! /O/“ ! 1 |
! /0,> ! 1 I
: O 1!
L ___. L - __

Figure 1.8: Structure of the inference matrix

units in the ‘implied faulty’ set is created. The ‘implied faulty’ graph set is obtained directly
from the M%!' minor matrix after removing the elements corresponding to surely classified
units from the M closed inference matrix. It is proven, that the ‘implied faulty’ graph
contains a maximum matching which saturates each node corresponding to faulty units in
a one-step #-diagnosable system. The minimum vertex set of this maximum matching is the

set of faulty units.

Chapter 2

Centralized fault diagnosis

This chapter introduces a novel centralized probabilistic fault diagnostic approach called
local information diagnosis (LID). The basic ideas of the new methodology are explained,
then the approach is utilized to create three classes of LID algorithms. The classes differ in
the extraction, representation and utilization of the diagnostic information in the fault clas-
sification process. Certain algorithms operate on the complete set of diagnostic inferences,
for these we define three different original heuristic methods of fault classification. The
created algorithms and heuristics are compared with each other and other algorithms taken
from the literature by analytical and measurement methods. Based on the analytical results
and measurement experiences the prospective application areas of the developed methods

are outlined.

2.1 Local information diagnosis

The transitive closure is obtained using the implication rules derived from the generalized
test invalidation model, and it is the complete source of topology and fault set independent
diagnostic information. A diagnostic algorithm based on the transitive closure has the

following structure:

1. One-step diagnostic implications are extracted using the parameterized implication

rules and the actual syndrome.

2. Multiple-step implications are obtained by transitively combining one-step implica-
tions. Inference propagation may continue until all possible implication chains are

expanded in full length, that is, the transitive closure is created.

3. All units involved in contradictions found in the transitive closure can be surely clas-

sified as fault-free or faulty.
4. Other units are diagnosed by a deterministic or probabilistic fault classification method.

For units whose fault state cannot be surely classified there are two possible diagnostic
approaches. Deterministic algorithms usually assume that certain predefined conditions on
the possible fault sets and the testing assignment hold. The restrictive conditions allow the

diagnostic algorithm to eliminate diagnostic uncertainty by leaving certain fault sets out of

39

40 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

consideration. This way a one-to-one correspondence is created between the fault sets and
the resulting syndromes, and the generated diagnostic image is guaranteed to be correct
and complete when the requirements are justified. However, there is no information on
the behavior of the deterministic algorithms outside the valid range of their assumptions,
i.e., they may produce arbitrary results. Probabilistic methods give a possibility to achieve
a satisfactory diagnostic result even where the deterministic approach is useless. They
apply fault classification heuristics to determine the fault state of system units. The aim of
these heuristics to estimate the most likely fault state, while they must remain simple and
computationally efficient at the same time.

There are two main performance bottlenecks of the above outlined procedure. First
and foremost, generating the transitive closure of a large inference graph is a computation-
intensive task. The underlying idea of local information diagnosis (LID) is that a proba-
bilistic algorithm can achieve high probability of diagnostic correctness without expanding
the implication chains in full length. The informal explanation of this claim requires us to

examine the possible fault configurations.

(a) Scattered fault set (b) Group fault set

Figure 2.1: Example of the two main fault pattern types

The possible fault patterns occurring in an MP system can be divided into two main
types: (1) the faults are scattered throughout the system, separated from each other, and
(2) the faults are located close to each other forming a group. Examples for both fault
set types are shown in Figure 2.1. In most practical cases both situations can be handled
using just a portion of the diagnostic information [79]. When faults are separated, the
failed test results appear locally in the syndrome. The faulty units are surrounded by fault-
free tester processors, thus enough diagnostic information is available to identify the faulty
units. In the second case, however, diagnostic uncertainty caused by faulty units “blocks”
the propagation of the inferences. In other words, the faults constituting the group border
isolate the inside of the group from the rest of the system. The implication chains do not
lead into the core of the group.

For this reason, any classification method can only attempt to identify the units on the
fault group borders. These peripheral units are surrounded by fault-free testers similarly to

separated faults, and can be reliably identified even if only a partial diagnostic information

2.1. LOCAL INFORMATION DIAGNOSIS 41

(a) Ratio of testers (scattered faults) (b) Ratio of testers (grouped faults)

Figure 2.2: Ratio of the fault-free/faulty tester processors

is extracted from the syndrome. The diagnosis of the fault group core will improve only little
when the implication chains are calculated in full length. This phenomenon is illustrated in
Figure 2.2. The figure revisits the two example fault patterns introduced in Figure 2.1. In
the places corresponding to faulty units in the examples two values can be seen. The upper
value gives the number of fault-free tester processors, while the lower value is the number
of faulty tester processors located among the 1-neighbors of the given unit. It can be seen,
that even in such a limited environment the fault-free tester processors are in majority in

the case of individual separated faulty units and units on the borderline of group fault sets.

The other performance bottleneck originates in the classification of those units which
are not involved in a contradiction and whose fault state cannot be surely identified. De-
terministic algorithms require complex methods for this task, since they must guarantee a
correct and complete diagnosis (if only in a restricted set of cases). A typical requirement
employed by many traditional diagnostic algorithms is a static upper bound on the num-
ber of tolerated faulty units. This diagnostic ¢-limit is a very serious restriction in large
systems, because a significant amount of fault sets consisting of more than ¢ faulty units
are unambiguously diagnosable [32]. Moreover, the amount of unambiguously diagnosable

faults increases proportionally with the system size.

Along these guidelines the author developed a family of probabilistic diagnostic algo-
rithms based on the local information diagnosis methodology [2, 7]. These simple and effi-
cient algorithms use the generalized test invalidation principle making them able to handle
a class of heterogeneous systems. They are significantly faster than deterministic algorithms
as they analyze only a portion of diagnostic information contained in the transitive closure.
Several one of them exploits the regular structure and low local complexity of MP systems
by propagating implications only among the neighbor units. The fault classification step
uses a simple heuristic rule, solely based on the collected one- and multiple-step implications
independent on the number of faulty units. This further reduces the time complexity of the
algorithms, and provides good diagnostic accuracy even for fault sets significantly larger
than the #-limit.

42 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

The four local information diagnostic algorithms subject to this document can be divided
into the following three categories [9, 8]:

Limited inference algorithms. Limited inference algorithms use the inference matrix
representation of the one- and multiple-step implications derived from the syndrome.
The repeated multiplication of the inference matrix transitively propagates the stored
implication chains. The underlying idea of limited inference methods is to compute
implication chains only in a limited, predetermined length. This way only a subset of
the transitive closure is obtained. Units are classified on the basis of this incomplete

diagnostic information.

Limited information algorithms. Another method of reducing the diagnostic complex-
ity is to limit the amount of information taken into account during inference propaga-
tion. The concept of this approach is to “cut out” the local environment of the unit
under diagnosis, and perform a full transitive closure in this restricted area. Thus, the
computation-intensive transitive closure computation is performed n times, but only

for a small, constant size M (u;) reduced inference matrix.

Scalar algorithms. Scalar algorithms compute and utilize only the quantity of implica-
tions supporting a given fault hypothesis. They do not keep record of the implication
chains connecting the fault states. The time and space complexity of this class of algo-
rithms is quite low, while they provide considerably good diagnostic accuracy. On the
other hand, the scalar representation obviously results in the loss of diagnostic informa-
tion. The relationship of non-neighbor units cannot be determined and multiple-step
contradictions remain undetected. A further consequence of this information loss is
that the fault classification heuristics presented in this paper are not applicable to
scalar algorithms. The heuristic classification rule in these methods is included in the

form of a specific weight function used in the implication sum calculation.

2.1.1 Inference propagation based approaches

Inference propagation methods use a more verbose description of the diagnostic information
than scalar methods: they represent each implication between two arbitrary units instead
of only maintaining implication counters. The implications are extended by transitive prop-

agation, and the resulting implication set is used for fault classification.

Limited inference algorithms

Limited inference algorithms process the complete set of diagnostic inferences, but propagate
the implication chains only in a limited, predetermined length and classify the units on the

basis of this partial transitive closure.

Limited Multiplication of Inference Matrix (LMIM) algorithm. The LMIM algo-
rithm is a simplified variant of the Selényi algorithm [33]. One-step implications are collected
and stored in the 2n x 2n M inference hypermatrix. Recall, that the M matrix consists of

four n x n binary minor matrices: M, M M!0 and M!!. The m®¥[i, j] element of the

2.1. LOCAL INFORMATION DIAGNOSIS 43

MY minor matrix equals to 1 if there exists a valid f* — f;-’ one-step implication between
units u; and u;, otherwise it is 0.

Transitive closure can be computed by the logical closure of the M matrix. This is
achieved by the repeated application of the M*+1) « M®*) . M®*) (the contents of M in the
(k+1)-th step is the square of M in the k-th step) iteration until no new implications appear
in the subsequent steps. However, in the LMIM algorithm the M matrix is raised only to a
small, constant power (hence the name of the method), i.e., the iteration is executed only
a few, constant times. Thus, the resulting matrix contains only a subset of the diagnostic
implications included in the M transitive closure. The subset comprises both the original
one-step and transitively propagated multiple-step implications. In the inference matrix
representation these two implication types are not distinguished. That is, when in the
inference graph there are more than one edge-disjunct paths between two respective fault

hypotheses, they exist as a single implication in the inference matrix.

Algorithm 1 The LMIM algorithm

01 m!% m!! implications

Ensure: Propagate m, m
for all u; € U do {one-step implications}
for all u; € N(u;) do
m®[i] <= uj, Ipij : [= f]
m[i] <= u;,3pi; - [= [}
mlo[i] < uj,3ps; le - fJO
mll[i] <~ uj, Elpij : le — f]1
end for
end for
for all £ =1 to number of iterations do
for all u; € U do {transitive propagation of p;; implications}
for all u; € U do
for all u, € U do

mOO,(k-H) [z,g] = moo,(k) [i, .'L'] A m00,(lc) [;L',]] vV mOl’(k) [,L :U] 10 (k) [;L']]
In01,(Ic+1) [’L,J] = mOO,(k) [i, .'L'] A mOl,(k) [;L',]] vV In01,(Ic) [7, SU] 11 (k) [:L']]
m10:(k+1) [ij] « m10:(k) [i, 1.] A mO00:(k) [x,J] v mlt(k) [z m] A m10:(k) [w J]
mil(k+1) [’L,]] P m10:(k) [i, 1_] A mOL:(k) [.Z’,J] vV mil:(k) [’L :II] Am!b (k) [.Z' J]
end for
end for
end for
end for

Non-zero elements in the main diagonal of the M% and M minor matrices signify
contradictions. For example, if m%[i,i] equals to 1, then the fZ-O — fil implication holds.
This implies that the f? fault hypothesis is not compatible with the syndrome, thus unit u; is
surely faulty. Analogously, all u; units corresponding to the non-zero m%[j, 5] and m1[j, 5]
elements can be surely classified. For other, not surely classified units some heuristic fault
classification rule, like those described in Section 2.1.2, must be used to determine their
fault state.

Distribution of Inference Lists (DIL) algorithm. The DIL algorithm uses the same

representation as the LMIM method. However, it has a better time complexity, because it

44 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

exploits the properties of regular topologies. These topologies have a constant, relatively
low connectivity of nodes, i.e., each processor has only a few neighbors. In such systems, the
matrix multiplication used to compute the transitive closure performs a lot of redundant
operations, especially in the first few iterations. For example, the m%[i, j] element of the

MO% minor matrix is computed as

n
i 5] = 3 0O, a] - m O,] + mOL O,] - ! OBz,
r=1
In the first iteration only one-step implications exist and these can be combined into two-step
implications only at neighbor nodes, therefore each multiplication where uj ¢ N(u;) NN(u;)

is surplus.

Algorithm 2 The DIL algorithm

0, m%, m'% m!'! implications

Ensure: Propagate m®, m
for all u; € U do {one-step implications}
for all u; € N(u;) do
moo[i] = Uj, Elpij : sz — fJO
mOl[i] <~ Uy, Hpij : fzo — le
mw[i] <~ Uy, Hpij : le — fJO
m''[i] < wj, Ipi; - i = ff
end for
end for
for all £ = 1 to number of iterations do
for all u; € U do
for all p;; € P[i] do {transitive propagation of m*¥ vectors}
if pij = f2 > fJO then
mO0:(k+1) [J] = m990;(k) [J] U mO90:(k) [7,]
m10:(k+1) [J] = m10:(k) [J] U m10:(k) [7,]
else if p;; = f — f} then
mOL:(k+1) []] <= mO1:(k) [J] U mO90:(k) [l]
m11,(k+1) []] <= mll,(k) [J] U mlo,(k) [l]
else if p;; = f — f) then
mOO,(k-H) [J] = mOO’(k) [J] U mOl,(k) [l]
m10:(k+1) []] P m10:(k) [J] U mlL:(k) [Z]
else if p;; = fl = fj1 then
mOL:(k+1) [J] « moL(k) [J] U mOL:(k) [7,]
mil(k+1) [J] = mil:(k) [J] U m!l:(k) [Z]
end if
end for
end for
end for

The idea of DIL algorithm is to avoid these redundant operations by propagating infer-
ence chains only among neighboring nodes. For every u; unit four binary vectors: m%/[3],
m®![{], m!°[i], and m!![i] contain the set of one-step implications according to the local
view of u; (these are the row vectors of the respective minor matrices in M). In every itera-

tion the set of implications is propagated locally at each u; unit by unifying the appropriate

2.1. LOCAL INFORMATION DIAGNOSIS 45

row vectors of u; with the row vectors of its neighbors (see Algorithm 2). At the end of
the process, sure classification is indicated by the i-th components of the m°![i] and m!9[4]
vectors. Unclassified processors are diagnosed with the help of heuristic fault classification

rules, similarly to the LMIM algorithm.

Limited information algorithms

The limited information approach uses a different concept to utilize regularity. Instead of
limiting the length of implication chains, this approach limits the area of inference propa-
gation. That is, one-step implications are collected only among the k-neighbors of the unit
to be classified. Units not included in the set of k-neighbors are left out of consideration, as
if the implications would come from a smaller system. Then, the reduced implication set is

propagated in full length.

Local Transitive Closure (LTC) algorithm. The LTC algorithm calculates a complete
transitive closure, but only in a small local environment of the diagnosed units. The di-
agnosis of every u; unit begins with the creation of an additional 2v; X 2y, hypermatrix.
This reduced My (u;) matrix includes only the u; processor and its k-neighbors, and the
one-step implications among them. In the second step the transitive closure of the reduced
matrix is computed, and the resulting implications are copied back to the M matrix. Since
each My (u;) matrix contains paths of at most k + 1 length, the final M matrix includes
implications of at most 2k + 1-step length. Space and time complexity is reduced due to the
smaller size of the reduced matrix. The resulting M matrix is used for sure and heuristic
fault classification identically to the LMIM and DIL algorithms.

Algorithm 3 The LTC algorithm

00 m% m!® m!'! implications

Ensure: Propagate m
for all u; € U do
for all u, € N (u;) Uu; do {one-step implications}
for all uj € N(u,) do
m9 (u;)[a] < up, Ipap = fO — fP
md (u;)[a] < up, Ipas : 2 = f}
m;0(u;)[a] < up, Ipas = f1 = Y
K (uilal < up, Ipas : fo = f
end for
end for
repeat {transitive closure of My, (u;)}
M (1) <« M () - M (u;)
until Mgfﬂ)(ui) = MS) (us)

for all u; € Ni(u;) do {copy back implications}
0

m®[j] <= m®[5] Um§® (us)[j]
m®[j] <= m® 5] U m§! (us)[j]
m'%[j] <= m"°[5] Uy’ (us)[j]
m*[j] < m [T U my! (us)[j]

end for

end for

46 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

2.1.2 Fault classification heuristics

The inference propagation methods described in Section 2.1.1 generate a transitively prop-
agated diagnostic implication set. To achieve fault diagnosis, these diagnostic implications
must be processed by a special kind of decision making procedure, called fault classification.
The fault classification procedure assigns either a ‘fault-free’ or a ‘faulty’ label to each di-
agnosed unit. For this purpose, it must assess the likelihood of the fault hypotheses based
on the diagnostic implications.

When a f — f;-’ implication exist and the f{* fault hypothesis is fulfilled, then the
f;-’ fault hypothesis is guaranteed to be justified as well. Consequently, the number of
implications supporting a fault hypothesis can be used as the measure of its likelihood. The
only problem is that only one of the two fault hypotheses of a unit can be true, and we
do not know which one. Implications related to false fault hypotheses can (and usually
do) support other false hypotheses. Therefore, we need to use some (heuristic) method of
selecting the considered implications. Recall the example fault situations in Section 2.1.
There we saw that the fault-free tester processors dominate the local environment of the
diagnosed units. This observation can be used for fault classification as follows: only those
implications must be taken into account which originate in a fault-free state, and then some
form of majority decision must be applied. It is easy to see, that this heuristic approach
performs well in the two situations mentioned in Section 2.1, namely for separated faulty
units and fault group borders.

The quality of the employed fault classification heuristic significantly affects diagnostic
accuracy. We developed three alternative heuristic methods of fault classification and com-
pared their diagnostic performance. The three fault classification heuristics called Majority,
Election, and Clique presented in this section are all based on the above outlined decision
making procedure. However, each heuristic uses the assumption of local fault-free tester
dominance differently. The heuristics can be applied on the implication sets computed by

any of the previously presented inference propagation methods: LMIM, DIL, or LTC.

Majority heuristic

The idea of Majority heuristics is simple: the implications from the fault-free states (stored
in the M and M°' minor matrices) are counted and compared. The fj(-) — f2 and f](-) — f}
implications (j =1, 2, ..., n) can be interpreted as votes for the fault-free and faulty state
of the u; unit, respectively. The fault classification is simply a majority decision between
the votes for the fault-free/faulty state. The sum of votes, i.e., the sum of fj(-) — f? and
f]Q — fz-1 implications can be calculated by counting the non-zero elements stored in the i-th
column of the M% and M°" matrices (see Figure 2.3).

Comparing the two sums X°[i] = > m%[j, 4] and B[] = > mO[j,4], the umit is
diagnosed as faulty if 3°[i] < X1[i], otherwise it is fault-free. In a system with more fault-
free than faulty units and a completely connected testing graph the Majority heuristic will
always correctly classify the fault state of all units (see also Theorem 2.2.10 in Section 2.2).

The pseudo code of the Majority heuristic is described in Algorithm 4.

2.1. LOCAL INFORMATION DIAGNOSIS 47

uj u;
— ~ ~ —
M EEV N 1
M LM |
2%l Dl

Figure 2.3: Calculation of the X.9[i] and %![s] values

Algorithm 4 The Majority heuristic
Require: filled M inference matrix

Ensure: fault classification of Yu; € U
for all u; € U do {initialization}
]« o0
Bl <0
end for
for all u; € U do {compute votes}
for all u; € U do
if m%[j,4] = 1 then
YO[i] < =] + 1
else if m%[j,i] = 1 then
Bl < =i + 1
end if
end for
end for
for all u; € U do {classification}
if ¥0[i] < £1[i] then
u; is classified as faulty
else
u; is classified as fault-free
end if

end for

Election heuristic

The Election heuristic applies the mechanism of the CFT algorithm [2] to limited inference
methods. The basic idea is to identify the faulty units sequentially one-by-one. Units are
ranked according to the likelihood of them being faulty for the purpose of selection, and
in each identification step the unit with the highest ranking is diagnosed as faulty. Then,
the diagnostic uncertainty is decreased by removing the useless and confusing implications
originating in the actually located faulty unit. Naturally, ranking must be recomputed each

time the set of diagnostic implications is changed.

The CFT algorithm extends the idea presented by Dahbura et al. in [68]. At first the

48 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

number of test failed on each w; unit is counted and stored in the FT[i] (failed tests count)
variable. Those units for which there exists at least one failed test are considered as suspect
units (the set of suspect units is denoted by U®). If there are no suspect units the algorithm
terminates. Otherwise, it selects the u,, € U° unit with a maximum FT[m] value. Since the
number of faulty units is relatively low, the selected unit is faulty with a high probability.
When multiple units have maximum FT[m] values, then the one having a minimum NFT[m)]
(count of failed tests on neighbors) value will be selected. The NFT|[m] value is the sum
of failed tests on the testers of unit u,,. The choice of minimum NFT[m] assures that the
testers of the selected unit are most likely to be fault-free. The u,, unit is then added to the
U' set of faulty units. The unit and its test results are removed from the FT[;] and NFT[i]
counters of each remaining u; € US suspect unit, and the next iteration of the selection
procedure starts. When there are no more failed tests the remaining units are classified as

fault-free.

Algorithm 5 The Election heuristic
Require: filled M inference matrix

Ensure: fault classification of Vu; € U
US <0
for all u; € U do {initialization}
LF[i] < 2] — =9[4
if ¥1[i] > 0 then
US « USUu;
end if
NLF[i] « Ej LF[j] : u; € T (u;)
end for
UF <9
while Ji, j : m°![i, j] # 0 do {election}
for all u,, € US do
find u,, with max} LF[m] A min] NLF[m]
end for
Uf <« U Uuy,
US < US —upy
for all u; € US do
m®[m,i] <0
m% [m,i] < 0
recalculate %.°[i] and X'[i]
recalculate LF[i] and NLFi]
end for
end while
for all u; € U do {classification}
if u; € U then
u; is classified as faulty
else
u; is classified as fault-free
end if

end for

2.1. LOCAL INFORMATION DIAGNOSIS 49

The procedure of the Election heuristic is defined in Algorithm 5. The likelihood LF[i]
of the faulty state of unit u; is estimated as LF[i] = £![i] — X°[i]. For ranking units with
identical LF values, the likelihood NLF[i] of the faulty state of units testing u; is also
counted: NLF[i] = >, LF[j] for each u; € I !(u;). The units are sorted to find the unit
um, most likely to be faulty with the most reliable testers, i.e., having the maximum LF[m]
and the minimum NLF[m] values. The u,, unit is then added to the ® set of faulty units.
The unit and its f2 — f! implications are removed from the M inference matrix, and the
entire selection procedure starts again. When there are no more implications in the MO}

minor matrix the remaining units are classified as fault-free.

Clique heuristic

The Clique heuristic is based on the diagnostic algorithm by Maestrini et al. [80]. The
concept is similar to the Majority heuristic: if some fault-free units could be located, then
their test results could reliably identify the fault state of other units. However, instead of
comparing the feasibility of the fault-free/faulty states individually, the algorithm tries to
group the units into two separate cliques. Since in the worst case each clique can contain
only one element, clique generation must be done on a per unit basis. The friendly clique
CY[i] of unit u; contains units with a fault state identical to u; (they are either all fault-free
or faulty), while the foe clique C![i] groups units with a fault state opposite to u; (if u;
is fault-free, then they can only be faulty, and vice versa). Obviously, the clique sets of
neighbor fault-free units are identical.

Cliques are initialized using the implications in the M% and M°" minor matrices. Clique
membership is then extended using the following two rules: (1) “my friend’s friend is my
friend”, and (2) “my friends foe is my foe”. The other two possible rules: (3) “my foe’s
friend is my foe”, and (4) “my foe’s foe is my friend” are not used, since they could lead to
inconsistent cliques due to faulty units. Then the algorithm searches for the wu,, unit with
a maximum cardinality C°[m] set and minimum cardinality C![m] set. The units belonging
to the C°[m] set are called the Fault-Free Core, they are classified as fault-free. Units in the
C![m] set are diagnosed as faulty. Since some parts of the system can be separated by faulty
units, there can be units neither contained in the C![m] set nor in the C![m] set. These
units get the unknown classification, i.e., the Clique heuristic may lead to an incomplete

diagnostic image. The pseudo code of the method can be seen in Algorithm 6.

2.1.3 Scalar approaches

The decision factor in the case of scalar algorithms is the number of implications supporting
a given fault hypothesis. These algorithm achieve a significant time and space complexity
reduction by not representing the implication chains themselves. This is advantageous from
the efficiency viewpoint, but obviously results in further loss of diagnostic information. As a
consequence, the relationship of non-neighbor units cannot be determined and higher order
contradictions remain undetected. To compensate for this effect additional information—

like a weight function—must be included in these methods.

Count Inference Paths (CIP) algorithm. The CIP algorithm estimates the likelihood

50 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

Algorithm 6 The Clique heuristic
Require: filled M inference matrix

Ensure: fault classification of Yu; € U
for all u; € U do {initialization}
Coli] <0
Clli] < 0
for all u; € U do
if m%[i,j] =1 then
COi] < Cli) Uu;
else if m%[i,j] =1 then
C'[i] < C'[i] Uy,
end if
end for
end for
repeat {clique closure}
for all u; € U do
for all u; € C°[i] do
COHD[] &« COHHFI[i] u CO R[]
Cl’(k+1)[i] = Cl’(k)[i] U Cl,(k) [J]
end for
end for
until CO*+D[§] = COHKI[] A CLEFD[§] = CLK)[4]
for all u,, € U do {fault-free core selection}
find u,, with max? |C°[m]| A min} |C*[m]|
end for
for all u; € U do {classification}
if u; € C°[m] then
u; is classified as fault-free
else if u; € C'[m] then
u; is classified as fault-free
else
u; is classified as unknown
end if

end for

of a fault hypothesis as the number of implications supporting it [3]. For this purpose
the algorithm maintains two counters X.°[i] and X![i] at each u; unit, corresponding to the
weighted number of edges in implication chains ending in the fault-free state f and the
faulty state f} of u; in the inference graph. The X°[i] and $'[i] numbers are calculated by an
iterative algorithm. The initial value of the counters is set using the one-step implications
collected from the syndrome. One-step contradictions are detected during the initialization
process, and they are used to surely classify the affected units. For processors without sure
classification the number of the implications supporting both fault states of the unit are
counted. The algorithm is outlined in Algorithm 7.

In the (k + 1)-th iteration the counters are increased appropriately by the number of
paths added to the counters of neighbor units in the k-th step. This Update mechanism
is described in Algorithm 8. The value of the added paths is multiplied by the W (p;;)

2.1. LOCAL INFORMATION DIAGNOSIS 51

Algorithm 7 The CIP algorithm
for all u; € U do
for all p;; : uj € T(u;) UT (u;) Uu; do
if p;j = f) — f} then {contradiction}
surely classify u; as faulty
else if p;; = f} — f? then {contradiction}

surely classify u; as fault-free
else {one-step implications}
P[l] = P[Z] U pij
end if
end for
end for
for all iteration do
for all u; € U do
for all p;; € P[i] do
if w; is surely classified then
surely classify u;
else {count edges in implication chains}
compute X°[i], £1[i]
end if
end for
end for

end for

weight of the p;j implication connecting the unit and its neighbor. The W weight function
is set to compensate for the effect of incorrect implications corresponding to faulty units.
In the subsequent iteration steps all implication chains of length 2, 3, ..., k are added to
the calculation. The set of surely classified units is also extended using the implications
drawn from the already surely classified fault states. After the given number of iterations
the remaining unclassified units are diagnosed as faulty if X![i] > 3°[i], otherwise they are

assumed to be fault-free.

There are two variants of the CIP algorithm. The above outlined method is referred
to as CIP-2, because it uses two counters to calculate the weighted number of edges in the
= f? and f]y — f! (where z,y € {0,1} and j =1, 2, ..., n) type of implication chains.
The refined CIP-4 variant maintains four counters called $%°[:], X°![3], X1°[i], and S!1[4].
Now it is possible to separately calculate the fJQ — fZ-O, fj(-) — fz-l, f]-1 — fZ-O, and f} — fz-1
type of implication chains.

Furthermore, the refinement also reduces the number of circuits in the traversed inference
paths, which results in a less distorted computation of the implication counts. Due to the
mechanism of the CIP counting method, the local differences of the implication counters
“travel along” the directed edges of the inference graph in each iteration step. While this
mechanism works perfectly in a circuit-free graph, the “difference packets” get stuck in a
circuit. Thus, they circulate endlessly, and get counted again in each [-th iteration step
(assuming [is the length of the circuit). Note, that circuits in the inference graph represent

tautology implications, and so they do not provide useful diagnostic information. This

52 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

Algorithm 8 Update phase of the CIP algorithm
Require: P[i] set of one-step implications

Ensure: compute X°[i], £1[i]
for all uz €U do {initialization}
Vi) =
El(1)[1]
0, 0)[1]
n, 0)[1]
end for
for all £ = 1 to number of iterations do
for all u; € U do
for all p;; € P[i] do {count edge increments}
ifpiy =f2 > fJ(-) then
EO0[j] & TOG-D[] 4+ W (i) - (SO - TOC-2)[])
else if p;; = f — f} then
SHO] = SHED[]+ W () - (504D - 5062
else if p;; = f} — fJO then
SO0 & SOGD[]+ W (pyg) - (D] - 502
else if p;; = f} — f} then
SHO] & S+ W () - (220D - SHE-D)
end if
end for
end for

end for

problem does not occur in inference propagation methods due to the different representation.
Scalar methods maintain only one-step implications and therefore cannot detect and avoid
circuits. Nevertheless, as the measurement experiments proved, the CIP algorithms achieve
good diagnostic accuracy despite the distortion introduced by circuits.

The CIP-4 algorithm is otherwise completely identical to the CIP-2, only the Update
routine must be adjusted to handle the four counters instead of two. The fault classification
step is also different: the remaining (not surely classified) units are diagnosed as faulty if
YO > %%[4], other units are fault-free. This way only the implications originating in
fault-free unit states are considered, providing a better estimation of the likelihood of fault
hypotheses. Note, that in the case of both the CIP-2 and CIP-4 scalar algorithms the fault
classification heuristics introduced in Section 2.1.2 are not applicable. The “fine-tuning” of

these methods can be achieved by modifying the elements of the W weight function.

Figure 2.4: Example for determining the W weight function

2.2. ALGORITHM PROPERTIES 53

Table 2.1: Properties of the LID algorithms

Algorithm CFT CIP LMIM DIL LTC
Type scalar scalar limited limited limited

inference inference information

Time complexity O(¢(n +cp)v) O(nv) O(n?) O(n?v) O(nv})

Space complexity O(n) O(n) O(n?) O(n?) O(nv})
Implication set 0(1) O(k) O(2%) O(k) O(k)
Invalidation model symmetric general general general general
Propagation no local global local local
Heterogeneous no yes yes yes yes

Determining the elements of the W weight function is explained in Figure 2.4. The
figure shows a diagnostic situation with three units of which u;, ue are fault-free, and
ug is faulty. On the corresponding inference graph it can be seen that there is only one
implication supporting the fault-free state of ug, while two implications support its faulty
state. This imbalance results from the duality implication which infers that if f§ — f?,
then also f{ — f4. To compensate for this imbalance we set the elements of the W weight

function as follows

W (i) = { 2 if p;; is among the parameterized inference rules { [a.2], [a.3], [c.2],[c.3] }
1 otherwise.

With this selection the f0 — fJQ implications get higher weight, and consequently fault-free
testers of the diagnosed unit do not get outvoted by the faulty testers. Note, that the same
considerations apply for the CIP-2 and CIP-4 algorithm, therefore the W weight function
is identical in both cases. Although this simple setup of the weight function performed
considerably well in the measurement experiments, the detailed analysis of diagnostic mis-
takes could probably result a more sophisticated setup which could provide better diagnostic

accuracy.

2.2 Algorithm properties

The main properties of the presented local information diagnosis algorithms are summarized
in Table 2.1. This section explains the derivation of these theoretical values and also presents
correctness proofs for the operation of the transitive inference propagation and implication
counting methods. The table also contains the CFT algorithm (developed by the author),

which is a good example of the existing probabilistic methods and is included for comparison.

Time complezity. The fastest methods are the CIP algorithms which propagate the infor-
mation among the adjacent neighbors locally, therefore their complexity depends only on
the max,, e, v(u;) maximum connectivity of the testing graph, and it is linear respective to
the system size. The complexity of the CFT algorithm is additionally determined by the
¢ number of faulty units, but it is also linear with regard to the system size. The LTC
algorithm is the third linear method considering the number of units, but its complexity

depends polynomially on the v, = max; vk (u;) number of k-neighbors examined, and so

54 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

it cubically depends on the amount of diagnostic information considered during diagnosis.
Note, that the v and vy values are constant in the function of system size, so the CFT,
CIP, and LTC algorithms have essentially O(n) time complexity. The DIL method propa-
gates binary vectors among adjacent units requiring O(n) operations, but since the vectors
are composed of n elements the total time complexity is O(n2). The LMIM algorithm has
relatively low performance due to its cubical complexity which results from the redundant

operations making it topology independent.

Space complezity. The values reflect the amount of data manipulated for diagnostic pur-
poses, not including the syndrome. For large systems, and in case of small number of
considered k-neighbors the LTC algorithm has the best space complexity among the infer-
ence propagation based approaches, but although the scalar CIP algorithms have also linear

space complexity they require less memory.

Number of diagnostic implications. This row of the table shows the size of the transitively
propagated implication set after k iteration steps. (CFT is not an iterative method.) In this
respect LMIM is far more effective than the other algorithms, since it increases exponen-
tially the length of the considered implication chains, and yet it has linear time complexity
respective to the number of iterations. The LTC algorithm is the worst among LID methods
in this respect: it can only linearly increase the amount of diagnostic information at the
cost of cubical time complexity.
Other characteristics. The LID algorithms employ the generalized test invalidation model,
handle arbitrary system topology and work in heterogeneous systems. On the other hand,
the conventional CFT method takes only the primary diagnostic inferences of symmetric
invalidation, therefore its performance cannot be improved in less restricted invalidation
models.

In the following we present several lemmas and theorems which prove the correctness
of the LMIM, LTC, and DIL inference propagation algorithms, confirm the validity of the
values related to the propagated diagnostic information as included in Table 2.1, and provide

insightful analysis of the operation of the developed diagnostic methods.

Lemma 2.2.1. The transitively propagated implication set computed by the LMIM algorithm

in the k-th iteration step contains every implication chain of at most 28-step length or less.

Proof. Let a and b be two non-negative numbers. Define the binary mapping of a to b,

b 1 ifa>1,
] 0 otherwise.

Define the binary mapping of two n X m matrices A to B as the binary mapping of the

denoted by a LN b, as

corresponding elements: Vi, j : a;; RN b;j. Consider the adjacency matrix A of the inference

graph belonging to the diagnosed system, arranged in the following way

(

1if)= f) and 4,7=1,2,...,n

if f?—)fjl_n and t=1,2,...,n;j=n+1,n+2,...,2n
if filfn_)fjo and it=n+1,n+2,...,2n;5=1,2,...,n
if fz‘l—n _>fj1—n and 4,j=n+1,n+2,...,2n

otherwise.

Ajj =

O = =

2.2. ALGORITHM PROPERTIES 55

It is easy to see, that the M inference matrix is the binary mapping of the A+1I matrix (where
I is the identity matrix). Since the algebraic operations involved in matrix multiplication
and inference propagation do not change the binary mapping relation, the relationship of
the inference matrix and the modified adjacency matrix remains the same for any common
powers of M and A + I. Therefore, (A + I)* s MF*. The k-th power of the adjacency
(k) (k)

;;] contains in its a;;° element the number of the implication chains of

exactly k length from f to ij [81]. Consequently, the k-th power of the adjacency matrix

matrix A*¥ = [a

(A +I)* contains in its elements the number of the implication chains of at most k length
[33]. Since the LMIM algorithm in the k-th iteration step computes the 2k_th power of
the M inference matrix, and (A + 1)2]c o M?2", the M2* matrix contains 1 in its mgk)
element if there is at least one implication chain starting at f and ending at f;?', and 0

otherwise. O

Theorem 2.2.2. The LMIM algorithm, if it is run in an adequate number of iterations,

generates the transitive closure of the M inference matriz.

Proof. The proof trivially follows from Lemma 2.2 and the fact that the diagnosed system
and therefore its inference graph is finite. An alternative proof can be found in [82]. It is
shown that the Boole AND and OR operators form a closed semiring over the {0,1} set, and
the authors prove using finite induction that the M*+1) < M®).M®*) = (A41)(*).(A4+T)*)

iteration eventually terminates resulting the transitive closure of M. U

Lemma 2.2.3. The transitively propagated implication set computed by the LTC algorithm
in the k-th iteration step contains every implication chain of at most 2k + 1-step length or

less.

Proof. The LTC algorithm constructs for each u; € U unit the My (u;) inference matrix of
the G x(u;) = (Vi(us), Ex(u;)) is a reduced inference graph composed of the Vi, (u;) vertices
representing the u; € Ny (u;) k-neighbor units of u; and the Ej(u;) = {p;i; : pij € P; Uz, uy €
Ny (u;)} one-step implications between them. Then, it computes the transitive closure of the
M, (u;) matrix identically to the LMIM algorithm. As a consequence, the resulting My, (u;)
matrix contains every implication chain of at most 2k + 1-step length or less. It may contain
even longer implication chains up to the 2% 4+ 1-step length, however, the minimum distance
of the two farthest nodes of G x(u;) is 2k + 1. If there is an implication chain between these
nodes, the transitive closure is guaranteed to contain it. For each u; € U unit the resulting
transitively closed implication sets are unified with the global M®*) matrix.

Now suppose, that there exists a [f7,..., ij] implication chain of at most 2k + 1-step
length which is not included in M®*). As |[f2,... ,f]y] | < 2k there is a u, unit for which

[Rl S BN fs - F7I < K

Consequently, u;,u; € Ni(uy,) and therefore the M, (u;) matrix contains the hypothet-
ical [f7,..., f]y] implication chain. Now, the global M®*) matrix would not include this

implication chain only if u,, ¢ U which is a contradiction. U

Theorem 2.2.4. The LTC algorithm, if it is run in an adequate number of iterations,

generates the transitive closure of the M inference matriz.

56 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

Proof. Similarly to Theorem 2.2.2 the proof trivially follows from Lemma 2.2.3 and the fact
that the diagnosed system and therefore its inference graph is finite. O

Lemma 2.2.5. The transitively propagated implication set computed by the DIL algorithm
in the k-th iteration step does not contain implication chains consisting of more than k+ 1-

step implications.

z
ise-

more than k + 1-step length which is included in M®*). This can only happen if in each step

Proof. (By contradiction.) Suppose, that there exists an | . ny] implication chain of
of the computation the length of this implication chains grow by at least one implication,
and at a certain step (let it be the [-th) the length grows by at least two implications. Due
to the mechanism of the DIL algorithm this implies, that at one of the u, € N(u;) neighbor
units of u; the length of computed implication chains has grown by at least two implications
in the (I — 1)-th iteration step. This further implies that at one of the u, € N(up) units the
length computed implication chains has grown by at least two implications in the (I — 2)-th
iteration step, and so on. Consequently, there exists a us; € N;(u;) unit among the [-th
neighbors of u; at which the length computed implication chains has grown by at least two
implications in the first step. However, the initial M inference matrix initialized to include
only the one-step implications derived from the syndrome, therefore in the first step only

one-step implications are propagated, which contradicts our primary assumption. O

Lemma 2.2.6. The transitively propagated implication set computed by the DIL algorithm
in the k-th iteration step contains every implication chain of at most k + 1-step length or

less.

Proof. (By finite induction.) The k = 0 case trivially holds due to the initialization of the
M inference matrix. It is also easy to see that the Lemma holds in the k = 1 case, because
the one-step implications at every u; unit are extended by the one-step implications of each
Um € N(u;) neighbor unit, thus there is no f — f7, — f]‘y valid implication chain which is
not generated.

Assume that the Lemma holds for a certain k, but it does not hold for &k + 1. This

R ij] implication chain which was not computed by the

means that there exists a [f7,..

algorithm in the k + 1-th step. The length of this implication chain must be exactly k + 2,

otherwise if | [ff,..., f{]| < k+ 1 then the implication chain would have been computed
in the k-th step. Cut the examined implication chain into two parts at any u,, unit in a
way that [fZ,..., ny] | = k+1is a k + 1-length implication chain and f7 — f7, is a one
step implication. It follows, that the [f7,..., f]y] implication chain is not generated in the

k + 1-th step iff either the [fZ,..., f]y | implication chain was not computed in the k-th step
(which contradicts the induction condition) or u,, ¢ N(u;) (which contradicts the definition

of the inference graph). O

Remark. The DIL algorithm selects the one-step implications for transitive propagation in
the k-th iteration step identically to a breath-first search algorithm.

Theorem 2.2.7. The DIL algorithm, if it is run in an adequate number of iterations,

generates the transitive closure of the M inference matriz.

2.2. ALGORITHM PROPERTIES 57

Proof. Similarly to Theorem 2.2.2 the proof trivially follows from Lemma 2.2.6 and the fact
that the diagnosed system and therefore its inference graph is finite. O

Lemma 2.2.8. The implication counters X°[i] and X'[i] computed by the CIP-2 algorithm
in the k-th iteration step contain the exact number of one-step implications constituting im-
plication chains of at most k-step length ending in the respective in and fil fault hypotheses,
provided that the inference graph of the system is circuit-free and the W weight function

specifies uniform 1 weight for each implication rule.

Proof. (By finite induction, analogously to the proof of Lemma 2.2.6.) The k = 1 case
trivially holds, as the %%(0)[j] — %% (=1[j] increment value is 1 for each u; € T'—1(u;) pair
of units, due to the initialization of the X% D[{] and £%(9[i] counter values (where x,y €
{0,1}). Therefore, the k = 1 step adds up the number of f¥ — ij one-step implications in
the X¥(D[j] counters corresponding to the u; unit. It is also easy to see that the Lemma
holds in the k = 2 case, because the increment value in the second step is Zx’(l)[i], thus the
number of local one-step implications is supplemented by the sum of one-step implications
at the neighbors of the u; unit.

Assume that the Lemma holds for a certain k, but it does not hold for £ 4+ 1. The value
of %(*+1[5] and £*(*)[§] is computed by the CIP algorithm as

Zz’(k+1)[j] _ Ez’(k)[j]—{— Z W(pij).(Ew,(k)[qj]_zy,(kfl)[i]) (2.1)
pij EP(A)
Zz’(k)[j] _ EZ’(k_l)[j]-l- Z W(p,'j)-(Ez’(k_l)[i]—Ey’(k_Z)[i]) (2.2)
pij EP(A)

Substituting the expression of X#()[j] into the expression of %%(*+1[j] and taking into
consideration that Vp;; € P(A) : W (p;;) = 1 we get

w2 kED[5] = B5F)[4] + Z (z=®[i] — mvtE-2[)
Pij €P(A)

(The reduction of summation addends is possible since the set of p;; one-step implications is
the same in both expressions and the addends also correspond to each other.) Now, we can
further substitute the expression of %%(k—1) [7] into the above equation, then subsequently

substitute the expression of %%(*~2) [7], and so on. After k substitutions we get

w2k = 5505 + Z (205 — 2¥O[3) = Sigma®V[j] + Z sk]
pij€P(A) pi; EP(A)

Which can be interpreted as: “The number of implications in the at most k + 1-step
length implication chains ending in the ff fault hypotheses of unit u; equals to the number
of implications in the at most k-step length implication chains ending in the f;* and fault
hypotheses of unit u; plus the number of f* — f7 one-step implications.” The value of
»#(k+1)[4] can only be incorrect if either £%(1[j] is incorrect (but that was proven to be
correct in the first step) or X% (¥)[i] is incorrect (which contradicts the induction condition).

O

58 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

Theorem 2.2.9. Let M be a transitively closed inference matriz of a certain system. Surely
classable units (based on the contradictions to be found in the closed matriz) are eventually
correctly identified by the CIP-2 algorithm, regardless of the W weight function provided

that the inference graph of the system is circuit-free.

Proof. (By contradiction.) Assume that there exists a u; unit surely classified on the basis
of the transitive closure. This means that there is an implication chain from f to f;™*
(i.e., the fault state of u; is surely f;**). Let this implication chain be composed of [steps
|[f#,...,f7%]| =1 > 0. Suppose that in the k-th iteration step £%*)[§] = B®¢+D[] = m
is the total number of the implications ending in f; computed by the CIP-2 algorithm, but
»&(k=1[i] < m (i.e., the correct value of the total implication number was generated in the

k-th step). Using the proof of Lemma 2.2.8 we can deduce that
s#oE0E) > 52 W) + | (7, 177 = =2 E06) +1

It follows that running the CIP-2 algorithm in at least (k + [)-th steps D#®(F+0[] >
»2:(k+D[j] thus the fault state of u; will be correctly identified as f;*®. O

Theorem 2.2.10 gives sufficient conditions for correct diagnosis with the developed LID
probabilistic diagnostic algorithms. Although the conditions only have theoretical signifi-
cance, they highlight the methodology and the problems of the analytical study of diagnos-

ability in probabilistic methods utilizing general test invalidation.

Theorem 2.2.10. The following (sufficient but not necessary) conditions guarantee that
the all of three developed fault classification heuristics correctly identify the fault state of
the u; unit under diagnosis (UUD), based on a partially closed inference matriz describing a
transitively propagated implication set of a certain system as generated by the DIL algorithm

in its k-th iteration step:

1. \U£k| > |Ui1’k|, where the ng and Uil,k are the set of fault-free and faulty k-neighbor
units (reachable from w; via undirected paths of k or less length), that is ng = {uy :
Uy € Ng(ui) Aug € (U —F)} and U-l,,c = {uy : uy € Np(u;) Auy € F},

2

2. G’gk digraph is strongly connected, where G?,k = (Vi?k,Eg i) 1s a directed graph com-
posed of the Vz?k vertices corresponding to the ug € Ui?k fault-free k-neighbor nodes and
the E'?’k = {Pay : Uz, Uy € ng} implications between these nodes.

Proof. Assume that the u; unit under diagnosis is fault-free. According to condition (1) the
u; unit will be tested by at least one fault-free tester unit. Fault-free units always test each
other with a 0 test result, thus there can exist only two types of implication chains between
two fault-free units up,us € Ui?k in every test invalidation model: either [fJ, f7,..., f?] or
[f;, 1 ..., f}. Due to Lemma 2.2.6 the implication set generated by the DIL algorithm
in its k-th iteration step contains every | f]y y -, f{¥] implication chains, where u; € Ny(u;).
According to condition (2) Vu; € ng : uj € Np(u;). As a consequence, the value of
¥0[i] > vy /2, because the f](-) fault-free state of each u; € Uz-?k implies f?.

Since there is no | fl?, ..., f}] implication chain between a fault-free unit u, € Uz-(fk and u;

unit under diagnosis, the value of X'[i] comes from [f?, ..., f}] implication chains between

2.2. ALGORITHM PROPERTIES 59

faulty u, € Uz-l,k units and the UUD. The number of faulty units is |Uzl,k| < v /2 due
to condition (1), therefore the X°[{] < X![i] condition of incorrect diagnosis can not be
satisfied. This directly proves the impossibility of misdiagnosis of the u; unit using the
Magjority heuristic.

In the case of the Election heuristic we prove that the u; unit under diagnosis will never
be selected by the election process. In the first step there exist at least one u; € Uil,k
faulty unit tested by at least one u, € ng fault-free unit u, € I'—1(u;). In each test
invalidation model the fg — fj1 implication (and possibly the fz()) — fj1 implication) exists
between u, and u;, but in none of the test invalidation models may the fz(a) — f](-) or the
fz} — fj(-) implication exist. Due to to condition (2) Vu, € ng cf0 — fz(,), and consequently

0
P

1[4§] > v1/2. The value of 3°[4] may come only from [. fjl] implication chains, where
unit u, is faulty. As a result, £°[5] < v4/2 which means £°[j] < £![;j] and so u; will have
a smaller LF[j] than u;. Therefore, u; cannot have a minimum LF[i] value and will not be
selected.

The previous result also implies that in the first election step only a faulty unit can be
selected. Suppose it was not u;. The elected unit is classified as faulty and the implications
starting at it are removed from the inference matrix. Let us examine how does this affect
the implication counters! For unit u; the value of %.°[i] does not change, while %![j] may
decrease. For unit u; the value of £°[5] may decrease, while £'[j] does not change. Con-
sequently, LF®)[i] > LF(M[i] and LF®[j] < LFM[j], that is u; cannot be selected in the
second election step. Continuing this reasoning it follows that u; will never have a minimum
LF[i] value during the election process.

For the Clique heuristic the proof procedure shows that the clique containing the di-
agnosed unit is always correctly selected as the Fault-Free Core. According to condition
(1) the w; unit is tested by at least one fault-free tester unit. Fault-free units are always
connected by [fz?’ O f) or [fz}, L ..., fl] implication chains. According to condition
(2) Yu; € ng : uj € Ng(u;) and so there is an [fy, f?] implication chain between any two
fault-free units u,, us € Ui(?k in every test invalidation model. Implications of type fZ-O — f]Q
or fJQ — f2 cannot exist if uj € Uilyk, because then either the u; or the u; would be surely
classified as faulty. Therefore, the cliques formed at the u, € ng units are identical, contain
all fault-free units (and only them) including unit u;. Due to condition (1) this clique is
the largest, since the u; € Uz'l,k: faulty units can create [f](-) , f9] implications chains only if
U € U}y, is also faulty. Since U] > |U},| the clique generated by fault-free units will be
correctly accepted as the Fault-Free Core.

The other part of the proof, showing that the w; unit under diagnosis cannot be incor-
rectly identified as fault-free when it is faulty, can be deduced completely analogously. We

omit this part of the proof for the sake of conciseness. O

It is easy to illustrate that Theorem 2.2.10 gives only sufficient conditions. Imagine
a system composed of units with homogeneous asymmetric invalidation with all of the
units but one being faulty. Assume that among the faulty tester units of the fault-free
processor there is at least one which obtains a passed test result. Due to the properties of

the asymmetric invalidation every unit which is tested successfully can be surely classified

60 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

as fault-free, therefore the correct identification of the fault-free unit in our example was
possible even if the conditions formulated by Theorem 2.2.10 obviously do not hold.

This example also highlights the problems of the mathematical analysis of the devel-
oped probabilistic diagnostic algorithms. Necessary and sufficient conditions can only be
derived separately for each of the nine possible invalidation models. Then, the separate
conditions must be unified to create some worst-case or typical diagnosability formulas for
heterogeneous systems. Theorem 2.2.10 also indicates that beside developing these formulas
one must also have a notion of the fault pattern structure. Such structural properties of
the patterns resulting at certain fault percentages and fault injection mechanisms can be

studied by a special branch of mathematical statistics called percolation theory [83].

2.3 Measurement conclusions

As suggested in Section 2.2, the analysis of probabilistic diagnostic algorithms is not straight-
forward. While the analytical study of the algorithm properties is feasible for homogeneous
systems with uniform test invalidation model in each unit, the evaluation of heterogeneous
testing situations is much more complex. Theoretical analysis of this kind exceeds the scope
of this document. However, providing information about the performance and applicabil-
ity of the developed LID algorithms and comparing them to existing methods known in
the literature is imperative. The other option for obtaining the necessary information is
simulation and measurement [4].

The experiments on the developed algorithms were performed in a dedicated simulation
environment, developed by the author for the purpose of evaluating centralized fault diag-
nostic algorithms. Planning and execution of the measurement activities are described in
detail in Appendix C. The appendix explains the selection of measured parameters and
examined parameter interactions, and presents the collected measurement results. This sec-
tion summarizes the conclusions of the experiences gained during the measurement activities
listed in Table 2.2.

The measurements confirmed the analytical properties presented in Section 2.2, but
also provided valuable observations the theoretical values do not reveal. For example, the
LTC algorithm has a better time complexity respective to the number of units than the
DIL algorithm, but in practical size systems the latter is much faster than the former.
(Extrapolation shows that in a machine having 128 x 128 processors the execution time of
the DIL algorithm is still one-third of the LTC algorithm.) In general, the developed LID
algorithms proved to provide better diagnostic accuracy than the probabilistic methods
taken from the literature. The difference in the diagnostic accuracy was even more obvious
in the non-symmetric and heterogeneous test invalidation situations, where the improvement
could be even in the one order of magnitude range. These results were achieved by running
the LID algorithms in only one iterations, and using general fault classification heuristics
without any optimization for particular test invalidation models.

The representation of the diagnostic information turned out to be determinative from
the accuracy viewpoint. Scalar methods gave better result than the existing methods, since

they are based on the generalized test invalidation model so they can detect and utilize

2.3. MEASUREMENT CONCLUSIONS 61

Table 2.2: Measurement activities

Measured Examined Varying parameters
characteristic interaction System Fault pattern Algorithm
Diagnostic System size System size
accuracy Fault set size Fault set size
Fault arrangement Group fault set
Custom fault set
Topology Topology
Connectivity
Invalidation Invalidation
Type of misdiagnosis Heuristic
Arrangement of misdiag- Custom fault set
nosed units
Diagnostic information Iteration
Algorithm System size System size
complexity Fault number Fault set size
Topology Topology
Connectivity
Diagnostic information Tteration

one-step sure implications, and are capable of iteratively extend their diagnostic knowl-
edge by considering the diagnostic inferences by non-adjacent units. Furthermore, inference
propagation based methods achieved still better results than scalar methods, because they
represent the complete set of implications so they can detect and utilize even multiple-step
sure implications, and count multiple-step implications rather than edges in implication
chains, therefore they can estimate more precisely the likelihood of a fault hypothesis. The
more complex the representation is, the more time-consuming the given method will be, this
rule was confirmed by the measurements. However, scalar algorithms have comparably low
delay as the existing probabilistic methods, while most of the inference propagation based
approaches are time efficient enough to be used in large computing systems.

The experiments also proved that the practical scattered and group fault situations can
be correctly diagnosed with high probability even if only a partial diagnostic information
is used. Diagnostic accuracy significantly improves in the first few inference propagation
iterations, but quickly approximates to a constant value. The LID algorithms have a linear
time complexity with respect to the number of iterations (except the LTC method), therefore
the extension of the diagnostic knowledge does not significantly increase the duration of the
diagnostic process.

During measurements we took extra care to ensure the correct implementation of the
examined algorithms. Therefore, the inference extraction and propagation methods were
implemented in multiple conceptually distinct instances, and the operation of the instances
was compared to see if there are any deviations. Also, the implication sets generated by
the LMIM, DIL, and LTC methods was executed in an appropriate number of iterations
and then compared. The statistical functions of the simulation environment were tested by

exporting the computed statistical data into a commercial statistical package and checking

62 CHAPTER 2. CENTRALIZED FAULT DIAGNOSIS

its correctness. And, of course traditional debugging techniques were also employed to verify
the correct operation of the created program code.

2.4 Application of local information diagnosis

The traditional application environment of centralized probabilistic diagnostic algorithms
are the (massively) parallel computing systems having a regular interconnection topology.
The local information diagnosis approach and the corresponding probabilistic methods pre-
sented in this document are quite flexible regarding the testing assignment: they can em-
ployed in any arbitrary topology. The LMIM algorithm is advantageous in testing graphs
having a large degree of connectivity, since it always tries to propagate implications in every
possible pair-wise combinations of units. The effectiveness of the DIL and CIP methods
increases in constant, low-degree regular interconnection topologies, yet they also are ca-
pable of operating in any system topology. The LTC algorithm is the most sensitive to
the system topology as its time complexity is O(v3) with regard to the connectivity of the
testing graph.

Although the probability of fault occurrence in massively parallel computers is signifi-
cant, it is reasonable to assume that the percentage of faulty units even in a large parallel
computer does not exceed 10 percent. The LID methodology provides very high diagnostic
accuracy in the practically relevant 0-10 fault percent range: less than 0.1 percent of the
system units (that is less than 1 percent of the faulty units) is misdiagnosed. Therefore,
in this application range the LID algorithms can also be used as stand-alone diagnostic
methods. This is especially true for the Clique fault classification heuristic, which does not
make diagnostic mistakes at all in this range.

For larger fault probabilities the percentage of misdiagnosed units may become unaccept-
able. In this case two main application areas offer themselves for the LID diagnostic algo-
rithms. The first option is the utilization of the developed methods in a sequential diagnostic
strategy. In the sequential approach fault classification is followed by maintenance actions:
repair or replacement. Although probabilistic algorithms may produce diagnostic mistakes,
the majority of located faulty units will be really physically faulty. The thesis demonstrates,
that local information diagnosis correctly identifies isolated faults and fault group borders.
Due to the maintenance procedure the found faulty units are repaired/replaced, thus new
tester processors become available again. Since some of the faults could have remained hid-
den, maintenance is followed by a new testing and diagnostic session. The diagnostic and
maintenance cycle is repeated until there are no more faulty units revealed by the executed
tests. During this iterative process the LID diagnostic technique reveals scattered individ-
ual faults in the first step, while group fault sets are uncovered gradually, advancing from
the border towards the core of the group. It is known from the literature, that sequential
diagnosis guarantees to bring the system into a fault-free state in finite number of cycles,
provided the fault rate is low [55].

As a second option, the developed probabilistic algorithms can be employed to fulfill a
“filtering” function. They can be used to generate a quick approximate diagnostic image,

which designates those system areas that have been affected by the occurred faults. This

2.4. APPLICATION OF LOCAL INFORMATION DIAGNOSIS 63

primary image can be further refined by more sophisticated (and more time-consuming)
deterministic fault classification methods. The secondary deterministic algorithms do not
need to process the whole syndrome: they can only concentrate on the problematic areas
revealed by the primary analysis. Such a “hybrid” approach can guarantee the highest
achievable diagnostic accuracy while retaining its high execution speed.

An emerging new application area for system-level fault diagnosis is wafer-scale testing
during the manufacturing of VLSI electronic circuits. Multiple such integrated circuits are
built on a single silicon slice, which is later cut up into individual devices packaged separately.
Unfortunately, even in the current advanced manufacturing technology the yield of the
fabrication process is rather poor, many of the produced ICs are defective. The verification
of the manufacturing process is realized by a complicated external testing equipment. The
tester has special probes which connect to the I/O pins of the tested device. It is positioned
over each tested circuit, then drives the inputs by dedicated test patterns and samples the
signals on he outputs. When it finds a deviation in the test responses from the stored
reference responses, the tested circuit is declared to be faulty and is thrown away.

There are several shortcomings of using an external testing equipment. The in-circuit
tester device is very complex and expensive, therefore only one exists for each production
line. Consequently, the verification process is sequential. Furthermore, moving the testing
equipment into its exact position over the tested circuit requires high accuracy. This ac-
curacy cannot be achieved at high speeds, thus the positioning process is slow. Moreover,
the in-circuit test cannot be performed at full operational speed of the tested device, as the
testing equipment is not able to drive and sample the I/O pins fast enough.

Most of the modern VLSI devices are programmable, and they are arranged on the silicon
wafer in a regular pattern. This gives an opportunity to adapt the system-level diagnosis
theory to wafer-scale testing. Rather than probing the ICs individually by means of a test
machine, the ICs themselves can perform mutual tests, just as in parallel computers. To
perform the tests, ICs can be assigned the same job (in principle this implies that they receive
a common data and instruction input sequence), and the output sequences of adjacent
circuits can be compared. The comparison outputs are collected by dedicated registers
and are obtained by a central computer performing the analysis of the test results. The
centralized fault diagnostic algorithm running in the central computer identifies the location
of faulty ICs. The technique requires the integration of additional redundant electronic
components (comparators, registers, interconnection lines, etc.) on the wafer, which can be
done easily and at no significant added cost or time. The redundant components are later
simply cut off and disposed of.

Compared to the traditional test strategy the new methodology offers several advantages.
The testing of all ICs is carried out in parallel, thus greatly accelerating the verification
process. Furthermore, the test programs can be executed at full operational speed of the
checked circuits. This further reduces verification time, but more importantly, high-speed
inspection may uncover design and manufacturing faults that do not expose themselves at
lower clock frequencies. Also the costs are significantly lowered, since the expensive testing

equipment can be replaced by a commonplace industrial computer.

Chapter 3
Distributed fault diagnosis

The previous chapter presented centralized diagnostic algorithms designed for large comput-
ing environments. However, a large part of massively parallel systems are fully distributed
in order to maintain scalability, and does not fulfill the conditions of centralized diagno-
sis. For these machines an alternative approach: distributed fault diagnosis was created
by Kuhl and Reddy [31]. This chapter presents the Parsytec GCel distributed parallel
computer, and an event-driven distributed diagnostic algorithm developed specially for this
machine. The implementation details (software structure, communication protocols) are
also explained. Finally, we consider the problem of adapting the developed LID algorithms

to the distributed application environment.

3.1 [Illustrative system: the Parsytec GCel parallel computer

The Parsytec GCel is a massively parallel, distributed multiprocessor system. It was pro-
duced by the Parsytec Computer GmbH, located in Germany. The machine was a predeces-
sor to the GC series of Parsytec multiprocessors. The GC parallel computers were designed
to use the long awaited T9000 transputer from INMOS. When the T9000 project has been
canceled, the company switched over to the PowerPC 601 processor of IBM, and created the
Parsytec Power Xplorer series. GCel and Power Xplorer machines are used world-wide in
many universities and scientific institutions. Their application includes many topics ranging
from image processing to fluid dynamics.

The Parsytec GCel system is based on MIMD parallelism. The processing elements of
the system are functionally identical, but they operate independently, have a dedicated local
memory and execute separate tasks. Two main functional groups can be distinguished in the
architecture. The first functional group is the network of processing elements running the
user applications. This network is fully distributed to fulfill the requirements of massively
parallel computing. It has a vertically organized three-level system hierarchy, in order to
make the system complexity manageable. On the lowest level there are the processing ele-
ments, composed of a transputer, the local memory and some additional logic implemented
in a special system ASIC. The next hierarchy level is formed by clusters, incorporating sev-
eral application processors and routing chips. GigaCubes constitute the highest hierarchy

level, composed of four clusters with additional communication facilities, power supply, and

65

66 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

cooling devices.

The second functional group is the front-end computer providing both a user interface
to the multiprocessor network, and access to external peripherals (like the display, storage
medium, etc.) for the processing elements. The front-end or host computer is essentially
an intelligent terminal facilitating management, control, and monitoring of the Parsytec
GCel system. The two-way connection between the host and the multiprocessor network is
handled by an interface program running on the host called the server. The server program is
liable for booting the multiprocessor by downloading the user program to the PEs, collecting
the results of monitoring tasks, and conduct the PE access to the global peripheral devices.

The processing elements employed in the Parsytec GCel massively parallel system are IN-
MOS T805 transputers. Transputers are specifically designed for distributed multiprocessing
applications. They include every functional unit necessary for independent operation, for
this reason they are also called “single-chip microcomputers.” Transputers integrate a 32-bit
integer processor (CPU), a 64-bit floating point coprocessor, a programmable memory inter-
face (PMI), 4 KBytes of on-chip cache memory, and a communication subsystem with four
high-bandwidth serial communication links. Although the use of transputers in massively
parallel systems has by now practically diminished, they are still quite popular components
of embedded systems.

The integer CPU has a simplified instruction set, designed for efficient execution of
compiled assembly code generated by high-level language compilers. The CPU is able to
execute one instruction in each clock-cycle, supported by a three-stage pipeline architecture.
It can be switched into a protected mode, enabling memory access protection and automatic
address translation to prevent the execution of privileged instructions. A hardware kernel
for scheduling processes and performing communication is also included, offering very fast
interrupt response and context switch times. These operations are directly supported by the
instruction set. A 4 KByte unified on-chip cache helps to achieve single cycle instruction
execution and data access. The cache memory provides fast, multi-port access to program
data, reducing the number of external memory operations. The built-in interface to the
external memory is highly programmable, allowing the construction of flexible configurations
of various memory devices using little or no additional logic. The PMI device handles DRAM
memories including multiplexed row/column addresses, refresh and page mode addresses.
Furthermore, other devices such as SRAM, ROM or memory mapped peripheral controllers
are also supported.

The transputer architecture has always been distinguished by its communication fea-
tures. A complete communication subsystem is integrated on the chip to perform high
transfer rate inter-processor data exchange of more than 2 Mbytes/s. Due to the low-level
hardware support both internal and external data transfers are handled identically, using
the same set of machine instructions. The transputer includes four full-duplex serial com-
munication links, each equipped with a pair of local direct memory access (DMA) channels.
A communication coprocessor supervises all link activities. This coprocessor operates con-
currently with the CPU so data transfers do not have any effect on the execution speed of
the applications.

Much of the functionality of a Parsytec GCel processing node was implemented in a

3.1. ILLUSTRATIVE SYSTEM: THE PARSYTEC GCEL PARALLEL COMPUTER 67

C Links D Links CASSI Bus
Data
Processor | N\ 1 System Control DRAM
T805 — ASIC 1
Control
Data
Address

Figure 3.1: The structure of a Parsytec GC processing node

special system Application-Specific Integrated Circuit (ASIC). This device supplements the
features of the transputer with error detection and correction for dynamic random-access
memory (DRAM) accesses and includes many other features to make the processing ele-
ments efficient and reliable. The size of the local DRAM memory can be either 4 or 8
MBytes per node, the memory interface is 32 bits wide. Memory contents are protected
from soft transient errors by an error detection and correction (EDAC) functional unit. For
optimization of the inter-processor communication network and the cache usage of parallel
applications, each processing node contains link activity and external memory usage moni-
toring hardware. The link monitor counts the number of data bytes transmitted over each
link and the maximum possible byte transfer rate. These two values can be acquired by
the user programs. The memory monitor has an equivalent function for DRAM accesses.
Each Parsytec GCel processing node is equipped with various test functions to verify their
correct operation. These test functions make possible the checking of system units with a
special test software to detect hardware failures.

The next hierarchy level, and the smallest autonomously operating element of the
Parsytec GCel system is a cluster. A GCel cluster incorporates 17 application process-
ing nodes and 4 INMOS C004 routing chips. Only 16 of the PEs are active, the remaining
one is a reserve processor. The active processors run the operating system kernel and
the applications. The redundant processor is needed for fail-safe operation: in case of a
hardware failure it is invoked to replace the defective node. Fach cluster can be seen as
a high-performance fault-tolerant computing node, the probability of a failure occurrence
in a cluster is less than in a single transputer [84]. The interconnection topology within
a cluster is a fully connected graph. The transputers are connected via crossbar routing
devices (illustrated in Figure 3.2).

The physical construction of a cluster is distributed into three printed circuit boards.
Eight processors are placed on a so called processor board, and two such boards are plugged
into a common backplane, housing all connections between the two processor boards. The
spare PE is placed on a redundant module on the control board, which contains the standby
processors from all the four clusters of a GigaCube.

GigaCubes constitute the highest hierarchy level. They are the basic building blocks

68 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

+Y i +Z

Processing nodes
PE 1
805 Crossbar link switches
s
PE 2 co04 ——
T805 —
—
€004)
j(—EE 165+ 1 K H -‘—4—{
: —
C004)
=
—
PE 16 cooa ——————
T805 —
PE 17
T805
-Z -Y

Figure 3.2: A Parsytec GC cluster

of the Parsytec GC series (even partly equipped GigaCubes, containing only one or two
clusters, are available). GigaCubes are composed of four clusters with additional communi-
cation facilities, power supply, and cooling devices. They contain 4 x 4 x 4 = 64 application
processors logically organized in a three-dimensional mesh interconnection topology. The
four clusters are monitored by a common control processor. The purpose of the control
processor is to download the user programs to the transputers, to supervise the operation
of the application processors and to interact in case of a processor failure, to monitor the
power supply and the cooling system, and to perform administrative tasks. The I/O net-
work is also driven by the control processor. Several GigaCubes can be connected in all
the three spatial dimensions to produce a larger computing engine. The interconnection
network among the GigaCubes forms a three-dimensional grid structure and consists of 8
data and one control channels in all the six spatial directions. This unified structure makes
the connection of further GigaCubes into the system possible with minimal installation. A
maximum of 8 x 8 x 4 = 256 GigaCubes form the full configuration of the machine.

The Parsytec GCel system incorporates three different communication networks:

Data network (D-Network). The data network connects the processing elements to
transfer information between the cooperating tasks of a task force. The overall struc-
ture of the data network is a three-dimensional grid, although its physical realization

is different in the lower levels of hierarchy. Using this communication medium the

3.1.

ILLUSTRATIVE SYSTEM: THE PARSYTEC GCEL PARALLEL COMPUTER 69

CASSI Bus
A A A A A A
0oon 0ooon 000
v \4 v A4 v v
PE 1 PE 2 PE 8 PE 9 PE 10 PE 16 PE 17
T805 T805 """ T805 T805 T805 "' 1805 T805

Processing nodes

S

Crossbar link switches

temperature temperature
monitoring C004 C004 C004 C004 monitoring

0000 @
v \ 4

Network Links

Figure 3.3: The hardware layout a cluster

GCel system is capable to create virtual links between any two running processes.
Virtual links make the message transfer user-transparent: it possible to form any kind
of logical communication topology among processes without knowing their physical
disposition to processors. The data network has a fault-tolerant design. Failures in
connectors, lines, and routing chips do not affect the ability of communication, only

cause a reduced transfer bandwidth.

Input/Output network (I/O-Network): The input/output network provides the pro-

cessing elements with access to global devices, like the host computer and mass storage.

Control network (C-Network): The control network connects the control processors,

carrying diagnostic and administrative information among them. This network also
serves as the downloading channel of the user applications to the processing elements.
The control network has a central supervising instance: an operator terminal with
access to this network. The software running on control processors ensures that every
configuration and monitoring procedure can be initiated from the terminal. Since the
control network is parallel to the I/O links, the whole I/O subsystem is accessible over

the C-Network as well as from the processing nodes.

The interconnection structure of all three networks of the system is a three-dimensional

mesh grid in the Parsytec GC family of computers. However, the Parsytec GCel is a special

low-cost member of the GC family, and its communication networks have a two-dimensional

mesh grid topology.

The software environment for the Parsytec GCel series is called PARIX. PARIX is

a UNIX-based operating system with parallel extensions necessary for the multiprocessor

hardware. These extensions can be found on both the front-end system and the processing

elements of the multiprocessor network. As a distributed operating environment PARIX

70 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

GigaCube +Y A 7

Cluster 1 Cluster 2
s B +X
- Control >
-X . W,
A
Cluster 3 Cluster 4
I/O

4 YV

Figure 3.4: The logical organization of a GigaCube

combines software for system administration and configuration, application development,
execution and debugging. The four main components of PARIX and their purpose are the
following:

1. the User Development Environment incorporates all the services and tools of an ad-
vanced operating system, like program development tools, file server access, network

integration, variety of peripherals, and code management system.

2. the User Runtime Environment is a part of the operating system running on the
processing elements. The runtime environment includes a message passing kernel for

inter-process communication, numerical libraries and parallel programming models.

3. the Multiuser Administration uses the front-end UNIX workstation to connect the par-
allel machine with the user. It provides interactive operation, creating user partitions

in a multi-user environment, and operator access.

4. the Control Network Software runs on the control nodes of the clusters to ensure
reliable operation. This software is also responsible for the creation of user partitions,

downloading of applications, and control activities.

In the Parsytec GCel system an identical user program is downloaded to all the trans-
puters. The transputers can identify their spatial position in the network based on a global
data structure stored on each node (initiated during the boot process) and use conditional
statements to execute different tasks depending on the position. The applications can ob-
tain information about the physical and logical position of the processor they are running
on. Three type of information is available: the physical location of the processor in spatial
coordinates, the serial number of the processor (assigned to PEs in a sequential order), and
the dimensions of the network. This information can be used to enable different parts of

the identical main () program and thus creating different tasks on the various nodes.

3.1. ILLUSTRATIVE SYSTEM: THE PARSYTEC GCEL PARALLEL COMPUTER 71

Parsytec GC machines have a three-dimensional physical structure of the interconnection
network. However, any kind of communication topology can be created using the so-called
virtual links, in case of applications demand other arrangements for cooperation. Virtual
links can connect any two arbitrary processes independent on the physical links on the
software level. They are bidirectional, synchronized (non-buffered), dedicated point-to-
point communication channels. Virtual links hide the difference of the local and remote
communication providing a unified interface between processes running on the same and
on remote transputers. Predefined virtual topology libraries are also part of the PARIX
system offering calls for emulating grid, torus, pipe, tree and hypercube structures. In
addition to the predefined virtual topology libraries the programmer can create his own
virtual topologies in PARIX. Any number of virtual topologies can coexist on the same
processor without interfering with each other.

The set of available communication methods has significant importance in multiprocessor
systems, since message transfers are the basic forms of cooperation and mediation among

processing elements. Three classic communication models exist in the PARIX environment:

Synchronous link-bound communication. This is the fastest connection method, di-
rectly supported by the transputer hardware. Prior to the data transfer a virtual
link has to be created between the processes wanting to exchange information. The
cooperating processes are synchronized upon the transmission. The process initiat-
ing the communication is blocked until the other process also becomes ready for the
communication (receive/send). When the message transfer took place both processes
continue the normal execution simultaneously. Another possibility is to send mes-
sages by random-routing, when the information is transmitted directly to the selected

transputer without the need for a virtual link.

Asynchronous link-bound communication. This communication method allows to ini-
tiate data transfer in the background without having to wait for a handshake. Simi-
larly to the synchronous link-bound communication a virtual link is necessary for the
connection. After calling a data transfer function a separate communication thread is
created, and the initiating process can continue normal program execution. The thread
accomplishes the transmission and stores the result. Later the initiating process can
check the stored result by a system call. Asynchronous link-bound communication is
implemented using the synchronous message transfer functions, intermediate buffering

is supported at both the sender and receiver side.

Asynchronous mailbox communication. This is the most general form of data ex-
change. Neither process handshake nor link connection is required. The sending
process can immediately continue the execution after initiating a transmission, and
the receiving process can asynchronously query its local mailbox for pending mes-
sages or wait for the arrival of a new message. The communication statements have a
time-out feature (in the PARIX environment only the receive functions are equipped
with time-out). When the time-out limit was reached without the recipient process

accepting the message, the calling process is notified about the unsuccessful transfer.

72 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

Deadlock is avoided in the asynchronous communication model, since processes are
not blocked upon the message transmission.

External services like access to mass storage devices or networking facilities are realized
by Remote Procedure Calls. A process may execute an RPC by generating a message
and transmitting it to the external server program running on the host computer. Upon
receiving the request the server program performs the necessary actions, then sends back

the result to the calling process.

3.2 An event-driven distributed diagnostic algorithm

The author developed a distributed system-level diagnostic algorithm [13] and applied the
enhanced version of the algorithm to the Parsytec GCel massively parallel system [12, 11].

The application of the diagnostic algorithm requires the following conditions to be fulfilled:

Symmetric test invalidation. The algorithm treats the processing elements as “intelli-
gent units” performing tests on other units directly accessible via a communication
link. No assumption on the behavior of faulty processor is made, a test performed by a
faulty tester may result in an arbitrary outcome, thus the symmetric test invalidation

model is employed.

Link diagnosis. The communication subsystem including links but excluding the inter-
connection lines are part of the processor. The failure of the CPU makes the complete
device faulty regardless of the fault state of the communication subsystem, since a
faulty PE is unable to appropriately process or forward the incoming message even
if it was correctly received. In other words, the failure of the CPU or all the four
communication links are identical in diagnostic respect. The reverse condition does
not hold, i.e., the CPU may remain operation regardless of individual link or intercon-
nection line failures. The breakdown of less than four communication links is handled
by the algorithm. There are no link-specific tests, thus the fault of an interconnection
line cannot be distinguished from the failure of the two adjacent communication links

of the connected processors.

Diagnosability. The majority of the distributed diagnostic algorithms also employs the
diagnostic t-limit as its one-step diagnosability measure and fault classification mech-
anism. Recall, that the ¢-limit is the largest number of faults in any arbitrary fault set
for which a proper diagnosis is always assured. The ¢-limit is a worst-case diagnostic
measure (e.g., for the two-dimensional mesh it is as low as two faults). The reason
for its use is to guarantee that the generated diagnostic image will be identical in
every fault-free processor. This expectation coincides with the completeness property
of centralized diagnosis. However, as we will presently see, its practical significance is

arguable, and in most situations [73] it provides an over-pessimistic estimation [85].

Determining the message order. The arrival of diagnostic messages at a processor does

not always correspond to the order of their sending due to communication delays. The

3.2. AN EVENT-DRIVEN DISTRIBUTED DIAGNOSTIC ALGORITHM 73

change of the physical message order can lead to undesirable consequences, even to
an incorrect diagnostic result. Such a situation can occur for example in an event-
driven diagnostic algorithm when a PE becomes faulty during the testing process. To
avoid this, the logical order of messages must be maintained even if their physical
order becomes mixed. Therefore, time-stamps related to the time of test execution
must be attached to the diagnostic messages, and the correct message order must be

determined using a distributed event-ordering procedure like [86].

Tests are independently performed by each processor on its direct neighbors. Only
normal interconnection links can be used for testing purposes. In addition to the error
detection mechanisms of the link hardware, the authenticity and integrity of every message
is assumed to be protected by algorithmic methods such as a checksum or digital signature.
This authentication method serves as an additional test for both the sender processor and
the communication link connecting the recipient PE with the sender. Each message must be
acknowledged, and acknowledgement messages have the highest priority. Acknowledgements
can be either positive or negative. The positive acknowledgement simply notifies the sender
that the message was accepted. The negative acknowledgement requests the sender to repeat
the last message. A sender process may transmit only a finite amount of messages before they
would become acknowledged. If multiple messages were received from the same sender unit,
then they are acknowledged in a reverse, LIFO order, starting with the most recent message.
There is also a time-out for the acknowledgement. When the acknowledgement time-out
expires, the corresponding message is automatically repeated. Messages are identified by
their sender sequence number (SSN) to eliminate duplicate messages.

There is no explicit test request message, < I'm alive > or heartbeat messages are sent
periodically by all processors to all neighbors within a predefined time-out limit. The
< I’'m alive > message based verification is a time-domain testing scheme, therefore it must
be combined with a functional testing mechanism. For this purpose heartbeat messages
carry two pieces of testing data: functional test inputs and test results. Each processor
contains identical algorithmic testing procedures. They process the input data received from
a given neighbor in an < I'm alive > message, process it with the built-in testing procedure
and return the result in a subsequent < I'm alive > message sent to the respective neighbor
processor. On receiving a test result each processor compares the received result with
(saved or self-generated) local reference values. This combination of test result reporting
and heartbeat messages prevents the algorithm from the occurrence of a deadlock due to
lost messages and test requests [87], and reduces the number of required tests [88].

The developed diagnostic algorithm implements the distributed fault-tolerance concept
of Kuhl and Reddy [31]. That is, each fault-free processor generates a diagnostic image
of the whole system independently. The resulting diagnostic images are guaranteed to be
identical for all cooperating fault-free processors. The units indicated as faulty in this
diagnostic image are logically disconnected from the system. Fault-free processors achieve
the isolation of the erroneous devices by refusing any communication or cooperation with
them.

Data exchange takes place via a set of direct point-to-point links, therefore messages be-

tween non-neighboring processors must travel a path among processors and interconnection

74 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

lines. Faulty processors or communication links cannot be included in this path, because
they would possibly invalidate the flow of information. Therefore, a set of faulty processors
and links may divide the cooperating processors into isolated groups and cut the intercon-
nection graph into disjoint subgraphs. In this case the test results on the isolated units
cannot be obtained and the diagnostic image generated by the fault-free processors cannot
include every unit in the system, i.e., cannot be complete. Traditional distributed fault
classification methods incorporate the diagnostic ¢-limit or other requirement on the set of
possible fault pattern to still achieve a complete diagnosis. Due to the employed restrictions
they may safely assume that the isolated are fault-free.

However, these restrictions are not necessary, because the knowledge of the fault state
of units in the unreachable parts is not useful. Cooperation among processors participating
in a distributed computation, and system-level testing takes place via the communication
facilities. Therefore, only the reachable units can be considered as available resources.
Consider the G’ C G¢ graph composed of the U — F fault-free units and the interconnection
lines adjacent to fault-free units. Diagnosis of the whole system by every fault-free processor
is possible until G’ remains strongly connected. If a set of faulty processors and links cut
the interconnection graph into disjoint subgraphs, diagnosis is restricted to each group of
fault-free processors located in the same connected subgraph. Since subgraphs are isolated,
they do not have a common knowledge with the other subgraphs. The host computer usually
connects to the distributed multiprocessor system via a host link (as in the Parsytec GCel)
to a dedicated PE. In the case the host computer (and therefore the user) can access only
the PEs located in the connected subgraph containing the host link.

Following the above considerations, the developed distributed diagnostic algorithm does
not require the limitation of the number of faults. Rather, it includes in the generated
diagnostic image only the units located in the same connected subgraph of the system.
Unreachable processors are identified by detecting the isolating barriers made of faulty pro-
cessors. This barrier detection procedure must be executed each time a new unit failure
is detected to verify whether additional processors became unreachable. The fault state of
unreachable processors is classified as unknown. Another possible diagnostic event is a unit
repair. Repairing units not only must be restored in a consistent state, but they also must
be re-integrated in the distributed computation. Furthermore, when a faulty unit, formerly
being part of a barrier dividing two strongly connected regions is repaired or replaced, it
may open a “gate” through which the two isolated regions will join into one. In such case
the processors of the two previously separate parts maintain two different local diagnostic
images. These two images must be united in order to obtain a consistent diagnostic view in

each fault-free processor of the joined parts.

3.2.1 Structure of the distributed algorithm

The diagnostic process described below is identical for the different processors. The algo-
rithm consists of two stages: an initial and a working stage. Two observations motivated

the splitting of the algorithm:

Different failure rates. It is known, that the majority of faults occurs (or already exists)

3.2. AN EVENT-DRIVEN DISTRIBUTED DIAGNOSTIC ALGORITHM 75

during system switch-on/switch-off. This can be explained by the fact, that in the
initial boot-up process (as well during the shut-down process) certain physical param-
eters (e.g., the current drain) may exceed the nominal range for short transients, other
parameters (e.g., the device temperature) may require longer time to reach their nom-
inal value. Therefore, computing systems typically use power-on self-tests (POST)
for detection of initial permanent faults. At the end of the booting process the phys-
ical parameters of the system stabilize in their nominal range and the failure rate is

expected to be lower during further operation.

Lack of diagnostic knowledge. Processors do not have any information on the fault
state of other components in the initial stage of the diagnosis algorithm. All pro-
cessors have to be tested once to generate the initial diagnosis image. Later the
system fault state changes only gradually compared to the initial state due to lower
fault rate. For this reason, a considerable overhead in communication and adminis-
tration can be saved by calculating and distributing only the differences between the
actual (changed) fault state and the stored (previous) diagnostic image. This means
that diagnostic procedures are invoked only in the event of an error occurrence or

repair/replacement, i.e., the diagnostic algorithm is event-driven.

Initial stage

The aim of the initial diagnostic stage is to create a primary global diagnostic image. For
this purpose, on the startup every processor enters a testing phase. In the testing phase they
conduct tests on all of their adjacent neighbor processors using the previously mentioned
combination of dedicated functional and time-out tests. The so obtained local test results
are collected in a local test vector. When all tests have been carried out an inter-processor
communication phase starts. This communication phase implements a complete multicast
message transfer: each (fault-free) processor put its local test vector in a message and
forward this message to all of the processors in the system. Consequently, by the end of
the communication phase every (fault-free) processor gathers the local test vectors of all
the other (fault-free) processors, i.e., it obtains the complete syndrome. The details of the
communication protocol used in the initial stage are explained in Appendix D.

The syndrome is analyzed by a simple algorithm, shown in Algorithm 9. The fault
classification starts with the u; unit performing the distributed diagnosis. The unit initializes
its own fault state to be fault-free. Subsequent steps of the algorithm implement a breath-
first search of the testing graph starting from the u; unit. In the first step test results on
links adjacent to u; are examined. Passed and failed ¢;; test result between unit u; and its
neighbor u; indicate the fault-free or faulty state of the corresponding communication link
connecting u; and u;. The search continues by following the fault-free links adjacent to u;,
faulty links are ignored. The search terminates when every path made of only fault-free
links starting from the u; unit have been traversed. When the search algorithm terminates,
in a subsequent step those processors are classified as faulty which have only faulty adjacent
interconnection links, since the failure of a CPU or all of its communication links are identical

in diagnostic respect.

76 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

Algorithm 9 The fault classification algorithm of the initial stage
Require: A; set of test results collected by unit u;
Ensure: UO[i],U[i] set of units classified as fault-free and faulty, C*[i] set of faulty links
Uil <0
Clil <0
NODES; < u;
while NODES; # () do
Remove the next element u; from NODES;
U] < U%fi] U u;y
for all u; € N(u;) do
if uy = L vV Juy, € NODES; V Juy € U°[i] then
Skip uy, {non-existing or already processed neighbor}
end if
if u; € I‘_l(uk) Aajr, =0 then
NODES; < NODES; U uy
else if u; € I '(uy) A ajr =1 then
CHi] < CHi] U (uj, ugk) U (ug, uy)
end if

end for

end while
for all u; € U do
if Vup € N(u;) : I(uj, ux) € C'[i] then {classification}
U] < U] — u;
u; is classified as faulty, U'[i] < U[i] U u;
end if
end for

Working stage

After completing the initial stage a primary diagnostic view of the multiprocessor system
is created. This view helps to enumerate the available resources and determine the starting
system configuration. Based on the starting configuration the boot loader process can
assign the user tasks to PEs and download the executable code to the processors. When
the boot-up procedure is finished the application execution can begin. At the same time
the distributed diagnostic algorithm enters the working stage.

In the working stage the syndrome is acquired and processed differently from the initial
stage. During this stage all processors have at any point of time a consistent, up-to-date
system-level diagnostic image. Therefore they do not need to refresh the complete image
when they detect or get informed of a new diagnostic event (a unit failure or repair). Test
results can also be communicated to other processors in an event-oriented way. Test are
conducted periodically via < I'm alive > messages, as described previously. However, a
given processor broadcasts a certain test result only if it differs from the previous ones, i.e.,
its neighbor was previously fault-free and now suddenly the test on this neighbor fails or
vice versa. Since individual PEs are assumed to have high MTBF values, this mechanism

assures that test result reports are communicated rarely in the system.

When an u; processor detect a difference in the test results of its u; neighbor unit, it

3.2. AN EVENT-DRIVEN DISTRIBUTED DIAGNOSTIC ALGORITHM 77

Table 3.1: Fault classification in the distributed algorithm

Symptom Processor Links

All tests on the unit pass fault-free all fault-free
Some tests on the unit fail, some tests pass fault-free some faulty
All tests on the unit fail faulty all faulty
The unit is unreachable, no test result reports unknown all unknown

are received about the unit

immediately reports the new test result to all of the adjacent fault-free processors, then
starts the fault classification procedure described below to identify the state of u;. The
recipient processors of the test result report indicating a new diagnostic event are of two
kinds: either they are testers of u; or they are not. Non-tester units of u; simply forward
the test result to other units and they start the same fault classification procedure as well.
Tester units of u; re-test the u; neighbor unit to obtain a new test result, then they forward
both the received test result report and their new test result. This way each accessible tester
unit broadcasts a test result report (TRR) about the u; unit under diagnosis (UUD).

Test result reports are received by all fault-free units in the respective connected sub-
graph of the system. The so obtained syndrome is analyzed by the fault classification
algorithm defined by the state diagram in Figure 3.5. The figure describes the different
states of the classification of a certain UUD (in our case unit u;). An instance of this state
diagram is maintained in each wu; processor for each other unit in the system, the actual
status of the diagram indicates the fault classification of the respective unit at any point of
time. Four possible fault classifications are possible as shown in Table 3.1. The layout of
the state diagram in Figure 3.5 reflects the actual classification in its structure: the states
are organized in columns, and each column corresponds to a certain diagnostic result.

Transitions between states are indicated by directed arcs in the diagram. A transition
is activated by receiving a test result report about the UUD. There are six possible starting
states, depending on the diagnosis of the given UUD in the initial stage. State 1 represents
a fault-free unit without faulty interconnection links, while State 6 is a faulty unit with only
faulty interconnection links. State 0 denotes an unreachable and thus unknown processor.
State 3.4, State 4.3, and State 5.2 symbolize a fault-free UUD with 1, 2 or 3 link failures
(the diagram is adapted to the case of Parsytec GCel, different state diagrams belong to
other communication topologies).

We begin the description of the algorithm at State 1, assuming that the UUD is unit u;,
the diagnostic algorithm is executed by unit u;, and that unit u; was classified in the initial
stage as fault-free. Also note that the diagram is tailored to the transputer architecture,
i.e., a PE is equipped State 1 is located in the second column, implying that the UUD is
diagnosed as fault-free as well as all of its communication links. The fault classification
remains in State 1 until a test result is obtained by the < I'm alive > testing mechanism, or
a message containing a test result report about the UUD is received from one of the tester

processors. Local test results and test result report messages are processed differently:

Local test result. In this case the u; unit is a tester of the UUD, and it verified the state

78

CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

UUD unknown UUD fault-free UUD fault-free UUD fault-free UUD fault-free UUD faulty
All links unknown All links fault-free 1 link faulty 2 links faulty 3 links faulty All links faulty

Test

tq fail

tq fail

%\(A ta fa,ll
1

ta Pass

Figure 3.5: The fault classification algorithm of the working stage

of unit u; by a local < I'm alive > test. If the test passed, then the classification
does not change and the algorithm enters State 2.1. A failed test, however, indicates a
new diagnostic event. The u; tester unit prepares and broadcasts a test result report
message to let the other reachable fault-free processor know of the failed test, then it
moves to State 3.1. Note, that the failure of the UUD is not confirmed at this point,
therefore it is still assumed to be fault-free. However, the interconnection link between

u; and u; is classified as faulty.

result report message. When the diagnostic information about the UUD was ac-
quired in a test result report message, two different activities must be performed
depending on the topological relationship of the diagnosing PE and the UUD. If unit
u; is a tester of unit u;, then it first must check the relevance of the received message.

The message relevance rules are similar to the packet dominance rules of [78]. The

3.2. AN EVENT-DRIVEN DISTRIBUTED DIAGNOSTIC ALGORITHM 79

message is relevant, if it is either more recent than the last TRR started by w;, or
it is concurrent and the sending tester processor has a higher priority than u; (there
is a static priority among tester units). The message can also be relevant if it was
generated as a response to last TRR started by u;. Otherwise, the included TRR is
less recent or has a lower priority and so the message is declared to be irrelevant and

is simply discarded.

When a new, relevant test result report is received, it dominates over the old TRR of
the diagnosing PE, which is dropped. The tester u; unit prepares a response message
to the TRR by executing a new test on the UUD. Then the unit forwards both the
received TRR and the new response TRR message. This mechanism assures that each
processor eventually receives an up-to-date test result from all the testers of the UUD.

These activities are performed in State 2 and State 3.

If the PE is not one of the neighbors or the incoming message is a response to the last
TRR started by unit u;, then the classification is either in State 2.1 or in State 3.1.
In this case the unit only forwards the message and enters the next state: State 2.2,
State 3.2, or State 4.1, depending on the received test result.

Further test result reports from the other testers of the UUD are obtained and analyzed
from State 2.2 to State 6. The number of the subsequent states during analysis equals to
the number of neighboring (testing) processors (in the case of the Parsytec GCel it is 4).
Transitions are dependent on the received test results. The purpose of these states is to
obtain all information from the tester processors. As more and more TRRs are received the
classification of the UUD and its communication links is gradually refined.

If all of the tests on the diagnosed u; unit have passed, the state diagram traverses the
route: State 2 or State 2.1, State 2.2, State 2.2, and finally again State 1. During the whole
process the classification of the unit and the links remains fault-free. When at least one
of the tests on unit u; fails, then the state diagram enters the third (States 3.x), fourth
(States 4.x), and fifth (States 5.x) column, indicating one, two, or three communication
link failures. If every tester found the UUD to be faulty, then the unit and all of its is
communication links are classified as faulty (State 6). Processor failures and simultaneous
breakdown of all adjacent communication links are diagnostically equivalent as they produce
identical syndromes. Thus, at the end of the syndrome analysis process the state diagram
will be in one of the following five states: State 1, State 3.4, State 4.3, State 5.2, or State 6;
corresponding to a fault-free processor, one or more link failures, or a processor failure.

A time-out mechanism is used in receiving the test result report messages. Test result
reports not received within the time-out period (e.g., due to an extremely large commu-
nication delay or due to the inaccessibility of the sender unit) are assumed to be missing.
Missing TRR messages are taken into consideration during the diagnostic process as failed
test results. If the message was not lost but only delayed, this mechanism may cause a
diagnostic inconsistency (e.g., a fault-free communication link is temporarily classified as
faulty), however, the inconsistency is eliminated when the message eventually reaches its
destination. A distributed message ordering and message dominance scheme [86, 78] ensures

that the valid TRR order is maintained. If none of the test result report messages are re-

80 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

ceived within the time-out limit, or when the UUD is inaccessible, the classification remains
unknown (State 0). This classification remains valid until a test result report concerning
the UUD is received from one of its testers.

State 3.5, State 4.4, and State 5.3 provide the possibility of taking on-line repairs into
consideration. Here an extra diagnostic process is required to assure consistency between
the diagnostic images stored in processors belonging to different connected subgraphs. This
situation may arise if faulty links or processors previously isolating two or more connected
subgraphs have repaired, and so the separate subgraphs are joined. To avoid the potential
differences of the diagnostic knowledge in the processors a special broadcast procedure could
be performed. During this broadcast the various diagnostic knowledge of the nodes located
in previously isolated subgraphs could be merged into one. Such a knowledge unification
procedure would be both complex and message-intensive, therefore in our solution all of
the units simply return to the initial phase when they detect that the dividing barrier(s)
became traversable.

In the following an example is given to illustrate the diagnostic concept of the working
stage. The example, shown in Figure 3.6, presents three diagnostic events in a system
having 4 x 4 processors arranged in a two-dimensional (bordered) mesh topology. In the
upper row the testing graph of the system is drawn, including the actual fault set and
the syndrome. Not all of the tests are displayed, trivial test results and connections were
omitted for simplicity. In the lower row the diagnostic image, corresponding to the actual
fault situation and syndrome, can be seen. Units are numbered sequentially from left to
right, unit u, is located in the bottom-left corner. The diagnostic image was generated by
the last processor in the lowest row (unit u4), marked by a grey ring. Assume, that two
processors (units us and ug) were diagnosed as faulty during the initial stage. The example
lists three subsequent diagnostic events: (a) the failure of the ¢i17 communication link in
unit u11, (b) the failure of unit u;9, and (c) the repair of the ¢11,7 communication link.

The error in the ¢;1 7 communication link is detected independently by units ui; and
u7. Therefore, both of them start test result report messages stating that tests ¢11 7 and
t7,11 failed. Recall, that a test compares the values (results of self-test programs) received in
< I'm alive > messages from the neighbors with stored or processed local reference values.
Hence, an error is detected in three different ways: the heartbeat message does not arrive
within the predefined time interval, the TRR message contains incorrect checksum, or the
received functional test result value carried by the message does not match the local reference
value. Since both units w1 and wu; are fault-free, the TRRs are valid. Tester units of w11
(u10, w12, and uy5) as well as testers of uy (u3 and ug, but not the faulty ug) perform tests
on these units and all the tests pass. Since the communication graph of the fault-free units
is strongly connected, all of the fault-free processors will receive every test result report and
identify the the ci1,7 and ¢7,11 communication link as faulty. Although only the ci1 7 has a
physical fault, the failure of the two adjacent links cannot be distinguished, as they produce
identical syndrome.

Next, unit uio fails. This way a barrier is created, cutting up the system into two
separate parts. For this reason, the diagnosing u4 unit receives only the test result report

of unit ug. TRRs from units uqg, u15, and u1g cannot reach unit w4, and the result of

3.2. AN EVENT-DRIVEN DISTRIBUTED DIAGNOSTIC ALGORITHM 81

Ui

Fault sets and syndrome:

Diagnostic image:

(a) (b) (©)

Figure 3.6: Diagnostic example: (a) link failure, (b) additional unit failure, (c) link repair

these tests is considered as failed. Consequently, unit u12 is diagnosed as faulty, and the
classification of unit u;; is also changed from ‘1 link fault’ to ‘faulty unit’.

In th third step, the 11,7 communication link is repaired. Units ui; and uy (which
belong to different subgraphs) notice that again they receive correct < I'm alive > messages
from their neighbor. They both broadcast test result messages stating that tests ¢;17 and
t7,11 pass. Other fault-free processors receiving this TRR notice, that unit u1; (or from the
viewpoint of the other subgraph: unit u7) was part of a barrier and now is repaired. The
strong connectivity of the communication graph is restored. Therefore, they all immediately
return to the initial stage and start a complete diagnostic session. At the end of the initial
stage they correctly identify the us, ug, and uio units as faulty.

As it was obvious from the description of the algorithm, much time is spent by deter-
mining the node accessibility graph related to a given unit. The whole algorithm can be
made more efficient by improving this procedure. The objective of the barrier detection
mechanism is to speed up the execution of the diagnosis algorithm. The node accessibility
graph contains all the fault-free processing units connected with the considered node via a
path of fault-free processors and communication links. To generate this graph, the fault-free
neighboring nodes starting form a particular node have to be discovered recursively. For
large networks this is a time-consuming task.

The main idea behind barrier detection is to examine the faulty units in the system,
instead of the fault-free ones. Faulty processing units block some of the communication
paths and may form barriers dividing the system into separate parts. Without barriers
every fault-free processor can exchange information, so the search for unreachable regions

(i.e., the generation of the node accessibility graph) is unnecessary. That gives a possibility

82 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

Loop

Barrier

Figure 3.7: Barrier and loop

to accelerate the process by using a detection method to recognize whether or not the
fault pattern present in the system forms such obstacles. If no barrier was found, then
the communicating unit can expect test result report messages from all of the fault-free
processors, else the node accessibility graph has to be obtained to locate the unreachable
units. The applicability of the barrier detection procedure is based on the assumption that
the number of fault-free nodes in a real system is probably (much) higher than the number
of faults. Consequently, a depth-first graph search method operating on only faulty nodes
will be significantly faster than a depth-first graph search algorithm for the set of reachable
fault-free and faulty nodes.

Two kinds of obstacles may be formed by faulty processors: barriers and loops. They can
be distinguished by their different character (this difference is built in the barrier detection
process, so it can even classify the found obstacles). A continuous path of neighboring
faulty nodes extending from one border of the grid structure to another is considered to
be a barrier. The barrier cuts up the system into two separate parts. A circle formed
by neighboring faulty units is a loop. The loop isolates its inner region from the rest of
the system. Note, that barriers exist only in bordered topologies (such as the 2D mesh
topology of the Parsytec GCel or the 3D mesh topology of the Parsytec GC series), in
completely regular topologies (like the 3D toroidal mesh topology of APEmille) only loops
can be formed.

The detection procedure employs the following mechanism: the initial (faulty) processor
(which potentially belongs to a barrier) is placed in the NODES; buffer. Node data is
recorded in the following form: [ug,u,], where u, is the actually placed node, while u, is
its ancestor (i.e., u; was reached by extending u,). The node data elements stored in the
NODES; buffer are taken out sequentially one-by-one. The most recently removed node is
remembered in the B; set, then it is extended, that is all of the faulty neighbors of this node
are examined. If a certain neighbor does not exist (i.e., because in the given direction the
grid topology has a border), the ancestor node is marked in BORDER;. When the detection
procedure encounters a second border, then the set of faulty units in B; forms a barrier. If
the algorithm runs into the same faulty node two times from different directions (this is why
the ancestor node is necessary to remember), then the set of faulty units in B; is classified

as a loop.

3.2. AN EVENT-DRIVEN DISTRIBUTED DIAGNOSTIC ALGORITHM 83

The search process continues until no more faulty neighbors are found. In some cases,
when faults form a loop touching two borders of the processor network, the barrier detection
process started from certain nodes finds the fault pattern to be a loop, while from other
nodes a barrier is detected. However, despite of the difference in classification, the result
indicates that an separation exists, and that the node accessibility graph must be generated.

The pseudo-code of the barrier detection procedure is presented on Algorithm 10.

Algorithm 10 The barrier detection algorithm

Require: U'[i] set of units classified as faulty, u; € U'[i] starting node
Ensure: B; set of units forming a barrier or loop, or no barrier exist
B; <
NODES; < [u;, 1]
BORDER; <
while NODES; # 0 do
Remove the next element [u,,u,] from NODES;
B; < B;U [uz, Uy]
for all uj, € N(u,) do
if urp = 1 then
if BORDER,; #) then {second border}
exit Barrier was detected!
else
BORDER; <« uy, {first border}
end if
else if uy € U'[i] then
if (J[ug,u,] € NODES; V Jug,u,] € B;) A u, # u, then {already processed node}
exit Loop was detected!
end if
NODES; < NODES; U [ug, ue]
end if
end for
end while

exit No barrier containing unit u; was detected.

3.2.2 Implementation details

The realization of the working stage can be done in different ways, depending on how the
processing power is divided between the diagnostic process and the running application. In
the following the implementation of the algorithm will be described. Alternative approaches
to the testing mechanism of neighboring processors, termination rules, distribution of lo-
cal test results, and processing of diagnostic information are presented to show that the
algorithm can be adapted to several systems and requirements.

The main implementation structure of the working stage of the algorithm is shown in
Figure 3.8. If no fault event is detected, the algorithm periodically tests the neighboring
processors. Testing is accomplished by assigning independent process modules to each tested
neighbor unit. If the tests detect an error in the respective neighbor processor, exception

handling is invoked by issuing an error indication from the corresponding testing module

84 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

Test of Test of Termination of the
Neighbor 1 Neighbor 2 @ Application
Processor Processor
& & 5
‘£ Distribution of the
Local Diagnosis 15 = Local Test Results
Q
=
& g &
Test of Test of Processing of the
Neighbor 3 Neighbor 4 K~ Diagnostic
Processor Processor Information

Figure 3.8: Software modules of the distributed algorithm

to the local diagnosis module. The local diagnosis module gives control to the supervisor
module, which handles the exceptions caused by the detected error. The supervisor module
activates the modules responsible for terminating the current application, for distribution
of the local test results, and for processing of the diagnostic information. The purpose and

realization of the different software modules and their interaction is presented below:

Test of neighbor processors. Each testing module is comprised of three threads: one
for receiving local test results from the neighboring processors, one for sending such
messages (< I'm alive > message), and one for evaluating the result (i.e., verifying
whether the responses are delayed or incorrect), respectively. If the evaluation indi-
cates a faulty behavior of the neighboring processor, the thread sends an error message
to the local diagnosis module. This < I’'m alive > testing mechanism offers a possibil-
ity to control the testing related run-time overhead. On the one hand very precise and
thoroughgoing self-tests can be used resulting in a decreased application performance
due to the more intensive diagnosis process. Such self-tests can take two forms: either

realized in software or in hardware.

On the other hand, the use of < I'm alive > messages indicating the alive or dead
state of a processor reduces the requirements of processing capacity to a fraction, thus
yielding more computational power to the application. Although this kind of tests
is easy to process, it can only detect permanent processor and link faults, and more
post-processing is required later. However, since the application is quickly stopped
after error detection, there is a sufficient time remaining for more finely granulated

tests and post-processing in a subsequent separate testing stage.

Termination of the application. The function of this module is to interrupt the execu-
tion of the application on all of the PEs as soon as possible. This is necessary for
the prevention of error dissemination and to decrease the fault latency in the mul-
tiprocessor system. If the application is quickly suspended, the probability of error
propagation is reduced, because no further communication with the exception of di-

agnostic information transfer will take place.

The module initiates a fast broadcast for quick termination of the application. The

broadcast messages are received at every node by the local diagnosis module, which

3.3.

ADAPTING THE LID APPROACH TO DISTRIBUTED SYSTEMS 85

initiates immediately exception handling. No specific routing mechanism is required
for the implementation of the fast broadcast, as the existing routing mechanism of
the Parsytec GCel system extended with a high-level, fault-tolerant communication
protocol is fully sufficient. The broadcast is based on flooding the multiprocessor with
a so-called stop message indicating the occurrence of an error. Each processor sends
this message to all of its fault-free neighbors. The neighbors forward the message
to their neighbors (excluding the sender), continuing this process until the message
arrives at every accessible fault-free node. The advantage of using flooding is its easy
algorithm and its inherent fault-tolerant behavior; all fault-free processors within a

connected subgraph are reached.

Distribution of the local test results. The module for distribution of the local test re-

sults is activated after terminating the application. At first, only the neighboring
processors of the faulty processor start a separate testing stage, executing fault local-
ization tests. The assumed causes are faulty links and faulty processor components.
These additional tests even assure the classification of faults as temporary or perma-
nent. The outcome of these tests as well as the tests results obtained by the error

detection mechanism constitute the local test results.

The distribution module transfers the local test results to the supervisor module of
each processor using the fault-tolerant broadcast. Different criteria can be used for
terminating the distribution stage. Our first implemented criterion was to wait until
all the local test results from each tester of the faulty node have been received, but
we found that this method is not robust against errors during the diagnosis (e.g., lost
messages due to node failure). A time-out criterion is used for elimination of this lack
of robustness. The distribution process waits for a certain time interval, in which all
of the local test results must be received. The main advantages of this method are its
safety and simplicity, but the optimal time-out limit must be estimated in the design

stage.

Processing of the diagnostic information. Syndrome decoding is invoked by the su-

pervisor module on receiving a new local test result. This way the test result report
distribution and the fault localization modules are executed alternatively. Therefore,
the processor will not be idle even if the time-out limit used in the distribution process

is not optimal.

3.3 Adapting the LID approach to distributed systems

The previous sections described an event-driven distributed diagnostic algorithm developed

by the author for application in the Parsytec GCel system. It could be seen that the task

of distributed diagnosis is not limited only to syndrome analysis, but includes additional

problems like the reliable dissemination of test result reports, determination of the real

message order, deadlock-free communication in spite of faults, etc. Even the distributed

syndrome analysis process itself differs in many aspects from its centralized counterpart.

Each unit performs diagnosis using both first-hand knowledge (locally performed tests)

86 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

which it assumes to be reliable, and second hand knowledge (collected test result reports).
The fault classification task is executed by all processors in parallel, independently from
others.

Communication with the detected faulty units is forbidden. Therefore, in the presence
of faulty units the local syndrome is only partial. The results of tests performed by failed
processors is not included in the diagnostic information analyzed in the fault classifica-
tion procedure. This can be interpreted as the methodology of distributed fault tolerance
employs a safe but minimalist PMC-like model (yet disregarding even some implications
present in symmetric test invalidation). The diagnostic process employs a bootstrap-like
approach. The set a fault-free units is gradually extended starting from the diagnosing unit
and accepting neighbors with a passed test result by an already reached fault-free tester
processor.

The question arises if the generalized test invalidation model and all its consequences
can be applied in a distributed system. With relevance to the topic of this document,
we are interested in how the concept of local information diagnosis could be employed in
distributed environments, and particularly, the Parsytec GCel machine. The first problem to
be considered is the dissemination of the testing information. In the framework of centralized
diagnosis it is assumed that the central syndrome analyzer device receives all of the system-
level test results reliably from each processor, and the ways of achieving this are outside the
scope of centralized methods. However, this problem is not to be pushed aside in the case
of distributed diagnosis.

To remain on the safe side, we assume that faulty units are unreliable from the commu-
nication viewpoint in all failure modes. Thus, messages sent by faulty units are potentially
invalidated and cannot be accepted. To extend the set of available testing information the
test job must be made independent from the application processors and delegated to exter-
nal tester coprocessor devices. Of course, the tester devices need also to be tested by the
adjacent processors, and these test results must also be considered during the diagnosis. The
processors must be able to access the tester coprocessors of the adjacent units independently
and reliably. Assuming, that the tester coprocessors are not capable of communication, the
test results of units isolated by faulty processors are still not obtainable. Nevertheless, the
test results of processors adjacent to fault-free units became available, which means in gen-
eral a significant improvement. In any case the diagnostic information available for fault
classification will be constrained.

However, the amount of diagnostic information used in diagnostic can also be constrained
on purpose. The basic idea of local information diagnosis is to use a reduced inference
amount in the syndrome analysis process. In many applications the interdependence of
the distributed tasks is low, i.e., the processing elements are cooperating only with other
PEs located near to them, and are completely ignorant of far PEs. In this case only the
small environment of the given unit must be reliably identified. This gives a possibility
for reducing the volume of disseminated testing messages by assigning scope (that is, a
maximum travel distance) to the messages. Units receiving the message farther than the
specified maximum distance refuse to forward it, thus the message will not reach processors

outside of its scope. This creates a communication model where units gather testing data

3.3. ADAPTING THE LID APPROACH TO DISTRIBUTED SYSTEMS 87

~
~

(&) (<2}
tf
(&) (<2}

g -
= =]
< =
@ <
= 2
@ s S
:95 4 TR Henmeee] :: 4+
3 &
(]
:5 3r T3t
b 1%
» o
e)
5 2r &2r
@ 5
k] 2
Q2 =
=1 1
e g
0 = A s - - 0 - - s - ——
0 50 100 150 200 250 300 0 50 100 150 200 250 300
System size System size
’ CIP-2 —&— Majority v Clique --#-- ’ CIP-2 —&— Majority v Clique --#--
CIP-4 —-->¢--- Election -3 CIP-4 —-->¢--- Election -1
(a) Average misdiagnosed fault-free units (b) Average misdiagnosed faulty units

Figure 3.9: Average misdiagnosed units in a bordered two-dimensional mesh

only from their k-neighbors (where k is the maximum distance defined by the scope).

Suppose that we employ one of the developed probabilistic LID diagnostic algorithms and
use implication chains of [-step length. In this case units which are reachable in less than m
interconnection links and [4+m < k will be diagnosed using the whole considered implication
set. These units will be classified as if they were located in an infinitely large system and a
centralized diagnostic algorithm were used. But what happens to the diagnosis of those units
for which [+m > k? A good analogy can be found in bordered topologies. The peripheral
processors of a bordered two-dimensional mesh topology have similarly incomplete testing
information as the distant units in the constrained communication model. To illustrate the
influence of the topology border, Figure 3.3 presents measurement results performed in a
12 x 12 two-dimensional bordered mesh topology. As it can be seen, opposite to the toroidal
topologies the lower system sizes induce less accurate diagnosis, and the values approximate
the lower limit from above. This tendency is caused by the incomplete diagnostic information
at the borders information. In a larger system relatively less units belong to the border are,
therefore their effect becomes weaker.

To integrate the developed probabilistic LID diagnostic algorithms in the Parsytec GCel
system the problem of link diagnosis must be solved. For this purpose we need to derive
a test invalidation model that takes into account also the interconnection links. Consider
two adjacent processors called CPU; and CPU, connected by the L1 and L3 communication
links, as illustrated in Figure 3.3. Suppose that the processors test each other complying
to the symmetric invalidation model, and that the failure of the communication links is
always perceptible. These assumptions result the comprehensive test invalidation model
described by Table 3.3(a). Unfortunately, this table is not appropriate for diagnostic use,
as the methodology of generalized test invalidation can handle only two interacting units.
Studying the component interdependences pair-wise, several two unit “projection models”

can be created. As an example, Table 3.3(a) shows the relationship of the CPU; processor

88 CHAPTER 3. DISTRIBUTED FAULT DIAGNOSIS

and the L} interconnection link, obtained by omitting the rows and columns of Table 3.3(a)
related to CPUs andL3.

2 2
L3 L>
Li CPU,4 L = - Lg CPU, Ly
4 4
I‘l L2

Figure 3.10: Parsytec GCel communication scheme

Table 3.2: Test invalidation including interconnection links

CPU: CPU, LI L} | ae
0 0 0 0 0 CPU; L! | Result
0 1 0 0 1 0 0 0
1 0 0 0| X 0 1 1
1 1 0 0| X 1 0 X
X X 1 X |1 1 1 1
X X X 1 1

(b) The relationship of CPU; and L1
(a) Complete test invalidation scheme

Note, that the relationship of the CPU; and L! is essentially the asymmetric test in-
validation model. The same procedure can be carried out to examine the other pair-wise
combinations of the CPU;, CPUs, L1, and L3 devices. Then, the partial testing models
can be combined to form a comprehensive test invalidation model, as seen on Figure 3.3.
The ellipse around the three logical test connections between CPU; and the adjacent de-
vices indicate that they all correspond to the same t12 physical test connection. Therefore,
when extracting one-step implications from the syndrome for all of the three logical test
connections the same a5 test result must be substituted in the parameterized inference
rules.

Before the created comprehensive test invalidation model could be used for diagnostic
purposes, the meaning of the one-step implications must be studied in the new model.
From an a1o = 0 test result we can infer that “if CPU; is fault-free, then CPUsy is also
fault-free” (due to the symmetric invalidation between the processors), and that “the L1
and L3 interconnection links are both surely fault-free” (due to the asymmetric invalidation
between processors and links). However, the interpretation of the a;2 = 1 test result is more
intricate. It implies, that “if CPUj is fault-free, then either the CPUs or any of the L and
L3 interconnection links are faulty.”

It is important to notice, that the above OR connection of the fault hypotheses is not
handled by the presented local information diagnostic algorithms. The inference mecha-
nism of these algorithms is proposition calculus or zeroth-order predicate calculus, where

the consequences of the implications are in AND connection and are fulfilled simultane-

3.3. ADAPTING THE LID APPROACH TO DISTRIBUTED SYSTEMS 89

t12
/JA PMC
() BGM
BGM
) B
CPU, L! L3 CPU,
Q BGM
BGM [
PMC L]

to1

Figure 3.11: Comprehensive test invalidation model of the Parsytec GCel

ously. The matrix multiplication and DIL techniques used for transitive propagation of
implications conform to the proposition calculus and cannot be adapted to handle alterna-
tive consequences. Therefore, other inference propagation and fault classification techniques
must be used. One such opportunity is to use the AND-OR graph representation known
in the literature of artificial intelligence research are [89], instead of the inference graph.
The inference propagation and fault classification in the AND-OR graph representation can
be for example solved by the A0* algorithm, which is a heuristic graph-searching method
capable of dealing with alternatives. Yet, the whole diagnostic problem must completely
be re-formulated within the new framework, therefore this approach exceeds the scope of
our document. Another possible solution is provided by the theory of constraint-based

diagnosis, which is outlined in Section 4.6.

Chapter 4

Fault tolerant architecture of large

computing systems

Even in high-performance computing environments the amount of computation involved in
solving the targeted scientific problems may require several days or weeks of continuous,
uninterrupted operation. The complex structure and large number of devices constituting
these systems makes them error-prone, despite the excellent quality of the components used.
Therefore, without built-in fault tolerance one may expect multiple fault occurrences during
a single job execution. System engineers realized the consequences of this fact and the recent
parallel supercomputers are all equipped with built-in support for fault-tolerance in order
to increase the availability of the system.

This chapter introduces a typical example of number-crunching multiprocessor machines,
the APEmille parallel computer, and describes the design of a backward error recovery
scheme developed for APEmille. In the introductory part we present the hardware archi-
tecture, then the built-in hardware support for diagnosis and the fault diagnostic procedure
are described. The selection of the appropriate error recovery mechanisms required the
derivation of a failure model of the APEmille components. The failure model and the as-
sumptions on the failure semantics of different system components are explained. Based on
the component failure semantics a recovery strategy for each component is outlined, giving
alternatives for tolerating single or multiple component faults. The problem of providing a
reliable storage to record the recovery information is also considered. The closing part of
the chapter examines the possible methods of integrating the developed LID fault diagnostic

algorithms in the created fault tolerance scheme of APEmille.

4.1 Illustrative system: the APEmille parallel computer

APEmille is the latest generation of the APE family of supercomputers. The APEmille
project is a joint effort of several European research institutes to develop a number crunching
machine optimized for applications in particle physics, particularly Lattice Gauge Theory
simulations. The machine is an evolution of APE100 computer, which was commercially
available from the Quadrics Supercomputers World Ltd., situated in Italy. APE100 is a

versatile parallel processor capable of delivering 100 GFlops peak performance in a 2048-

91

92 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

node configuration. The new machine has roughly one order of magnitude higher peak
computational performance than the preceding generation (scalable from 4 GFlops to 1
TFlops). It also incorporates many architectural enhancements: local addressing capability
at each processing element, broadcast and soft routing methods providing data exchange
between two arbitrary nodes, and independent partitioning of the system to concurrently
run different user programs [90]. The APEmille computer is now next to the assembly and
test stage before the final release; and its controlling software, the APEQOS operating system,
is also under extensive development.

From the user’s point of view APEmille is a parallel computer consisting of processing el-
ements optimized for floating-point arithmetic. The PEs are arranged in a three-dimensional
mesh topology with toroidal wrapped-around interconnections in all the six spatial direc-
tions. They have private memory banks, thus different PEs can independently work on their
own specific data. The machine has a Single Instruction Multiple Data (SIMD) architecture,
i.e., every processor executes exactly the same instruction in each step of the computation.

The APEmille hardware architecture is built up of three hierarchically structured levels.
On the lowest level there is the so-called Processing Board (PB) or cluster, the smallest

independent functional unit of the machine. It is built up of three basic components:
1. application processors called Jmille, executing the user programs,

2. control processors called Tmille, performing mainly the program-flow control, global

address generation for each Jmille, signal handling, and common integer operations,

3. communication processors or commuters called Cmille, managing the data exchange

and providing hardware diagnostic support.

These devices are realized as custom designed integrated circuits. A cluster contains eight
Jmille processors, one Tmille control processor, and one Cmille commuter. The eight Jmille
processors are logically placed in the vertices of a cube. Boards can be wrapped by setting an
appropriate Cmille register. A wrapped board is logically disconnected from other boards
of the system, and behaves as if it were a small 3-degree binary hypercube. This feature
is utilized during the system-level diagnosis of the Jmille units (see Section 4.2). The
components and arrangement of a Processing Board are shown in Figure 4.1.

Jmille supports arithmetic operations on both integer and floating point data words.
Floating point data can be of scalar and complex type, and of single and double precision.
Two floating point operations (a so-called normal operation: a X b+ c), or an integer in-
struction can be carried out at each clock cycle. The pipeline structure of the processor
is relatively long. The operands and/or the result are stored in a large register file (RF)
composed of 512 registers. This register file provides a fast temporary storage, achieving
better performance in classes of scientific computations that require frequent access to all
elements of a large data set than the traditional cache-based organization [91]. Each Jmille
node has a local memory for its own exclusive use. Memory addresses can be global, gen-
erated by the Tmille processor and sent to every Jmille on the same PB. Global addresses
can furthermore be modified with a value local to the nodes, giving additional flexibility to

support a wider range of applications.

4.1. ILLUSTRATIVE SYSTEM: THE APEMILLE PARALLEL COMPUTER 93

J
@
J Tmille
Jmille (Control Processor) (Local Host)

Processing Node)

(J

Cmille
(Commuter)

Figure 4.1: The logical structure of a Processing Board

Tmille also has its own data memory, an integer Arithmetic and Logic Unit (ALU), and
an Address Generation Unit (AGU). The processor has a short pipeline and a very long
instruction word, which can specify the operation of several independent devices. Tmille is
also equipped with a register file having 128 registers, that is able to feed data to at most four
different devices at each clock cycle. In each clock cycle Tmille fetches the next instruction
from its own memory and broadcasts it to the eight Jmille nodes. If necessary, it also
generates a global address for accessing the operands of the instruction, and broadcasts it
similarly. Finally, Jmille fetches the operands from the register file or the memory using the
address received from Tmille, and performs the instruction. All Tmille processors belonging
to the same partition execute the same instruction stream and are initialized with a common
set of values.

The Cmille commuter has both a simple topological structure and a restricted set of
capabilities. Each Cmille is connected to the eight Jmille units and the Tmille of its cluster.
Additionally, it is connected to the six nearest neighbor commuters of the adjacent Pro-
cessing Boards. The Cmille circuitry is actually partitioned into four slices. The slices are
identical and perform the same operations of different data sections. Every message packet
sent by a Jmille is divided up into four distinct parts, and each Cmille slice implements the
routing for one part of the packet.

The next hierarchy level over the Processing Boards is called the APE Unit. APE Units
are built of four clusters connected to an external, stand-alone computer called the Local
Host (LH). The Local Host computers act as supervisors over the attached boards and
provide disk storage services. The four boards and the Local Host are hosted by a custom
backplane, which is implemented according to the Compact PCI standard. A Processing
Board is integrated in a single plug-in card, while the Local Host is situated on another card.
Figure 4.2 illustrates the hardware layout of an APEmille PB with its supervising Host
computer. Each PB is interfaced to the corresponding LH by a dedicated PCI bus. Using
this bus the hosts can read and modify the memory and registers of the attached Jmille,
Tmille, and Cmille processors. On the other hand, Tmille units can trigger interrupts to
signify exceptions, service requests, or local conditions. These signals are handled by the
Root Board built in the LH. The host computers have a PC-compatible architecture, and

incorporate a local disk unit on which they store the local portion of the operating system

94 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

APEmille PB
Tmille H
. =
IN ouT I comparators Jmille I
FIFO | |FIFO r @Y@
@ ﬁ =< Imille
(s

Local Host ‘ PCI controller ‘ Jmille}—» slices A—{R@

0000 0ooo 000ooo

@ @ X, Y, Z directions

Compact PCI bus backplane

Figure 4.2: Hardware layout of a Processing Board

and application-specific data.

A configuration of four APE Units housed in a standard rack is called a crate (see
Figure 4.3). A rack contains the custom Compact PCI backplane with 16 APEmille Pro-
cessing Boards on one side, and 4 Local Host Boards with supplemental Service Boards
(Control Network controller cards, SCSI controllers, Fast Ethernet cards) on the other side.
The hosts of different APE Units are cooperating over a general-purpose, high-performance
Control Network. Also attached to this network is a special computer acting as the Global
Host of the entire APEmille machine. This central host computer manages the global disk
storage and collects the global signals like halt requests, exceptions, if conditions, etc.
Global signals are received from all parts of the machine by the Root Board plugged in the
Global Host. Several crates can be stacked on top each other until the system reaches its
maximum configuration of 4096 (64 x 8 x 8) processing elements. A large APEmille machine
can be split up into logically independent partitions, making it possible for multiple users
to simultaneously run separate programs.

The interconnection between Processing Boards is routed via a synchronous network
managed by the commuters on the boards. The interconnection network is optimized for
low latency communication between the neighboring units [92]. There are three main groups

of routing capabilities:

1. The basic routing method is called rigid routing. In this case a single destination
address is specified in the form of a 3-tuple: (Az, Ay, Az), indicating the offsets of
the destination nodes relative to the source nodes. That is, the network of PEs is

translated rigidly by a given vector.

2. An enhanced routing method is the broadcast. It can be either one-, two-, or three-

4.1. ILLUSTRATIVE SYSTEM: THE APEMILLE PARALLEL COMPUTER 95

—|PB||_—PB|| —PB|| —PB
Synchronous
Inter-PB Network
— PB — PB — PB — PB (~250 MByte/s)
~—1PB —PB —PB —PB
PCI Bus 1 PB ~—PB ~— PB —PB
(~133 MByte/s)

Local Host
Network
(~100 MByte/s)

Control Network

Global
Host

Mass storage

Figure 4.3: The APEmille crate

dimensional. In case of a 3D broadcast, one PE acts as the source, denoted as the
broadcaster node. Data from the broadcaster is delivered to each other PE in the ma-
chine. In two-dimensional mode, the inter-processor network is divided geometrically
into planes, with each plane having its own broadcaster. The one-dimensional mode

is analogous to the previous ones.

3. Under development is the most advanced communication form realized by soft routing,
where each sender node provides a destination for its own data block. This commu-
nication mode is useful to handle data arranged in less regular structures, but due
to the more complicated routing mechanism involved, it has a lower bandwidth and
higher latency.

The communication between two Jmille processors takes place in three phases. At first,
each sender Jmille transmits its data block to the associated Cmille commuter. Then, all
Cmille units route data to the specified destination. In the third step, data arriving to the
Cmille connected with the destination Jmille nodes are passed to the receiving processors.
There is an apparent contradiction between the fact that data blocks may take different
time to distant recipients and the strict synchronism of the instruction execution of PEs.
This problem is solved by delivering data packets only when all of them have arrived. In
practice, the network of Cmille units produces a kill signal that stops machine operation

until data are ready to be loaded.

96 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

4.2 Built-in support for fault-tolerance in APEmille

A novel feature of the APEmille computer is that low-level diagnostics support is integrated
in the system. The testing of the Jmille, Tmille, and Cmille units is done transparently on
the hardware level. The main testing mechanism employed is comparison. For this pur-
pose self-checking comparators are integrated in the circuitry of the Cmille communication
processor. The comparators have self-checking design which detects single stuck-at faults.
All comparators are composed of four identically structured slices, each of them comparing
1/4*" of the packet data provided by the same pair of adjacent Jmille nodes. The executed
comparisons are OR-ed in sequence in Cmille registers. The slices can interchange data
parts by executing shift operations. This technique ensures that a a single faulty commuter

slice cannot mask Jmille faults.

The three basic components (Jmille, Tmille, Cmille) of the Processing Boards are tested
separately. Pairs of Tmille processors or pairs of Cmille commuters can be tested by compar-
ing the output sequences they write on the bus. These units are controlled in a uniform way
and perform the same sequence of instructions. They operate on the global variables and
the instruction flow process identical data, which are identical due to the SIMD execution
model. For this reason, the testing of the Tmille and Cmille units can proceed concurrently

with the computation assigned to the machine.

The test of Tmille processors consists of the comparison of checksums. The checksums
are generated independently at each Tmille during the fetching of the next instruction. They
are computed by the double-rail encoding of the instruction code parity. The checksums of
a pair of Tmille processors T, and Ty are compared by a pair comparators K;, and K,
residing respectively on processing boards PB; and PB,. The output of the comparisons
is accumulated in a special Cmille register. The number of mismatches is counted, and if
the value of this counter exceeds a predefined threshold an exception is generated. Since
the comparisons are performed concurrently with normal computation and their results are
collected over a long time period, it is reasonable to assume that there will be at least one
mismatch between a faulty and fault-free Tmille processor, and the error does not remain

undetected.

The Cmille commuters are tested quite similarly, however, the checksums are generated
in a different way. The sender Cmille unit C, computes a double error detecting, single error
correcting code, and adds it to every data block to be transmitted. The receiving Cmille unit
Cy contains a decoding device Hy, that verifies the incoming data block using the attached
checksum. Similarly, there is a decoder Hyy in C; to detect errors in transmissions from
Cy. The decoder outputs are encoded in double-rail code and are accumulated in special
registers. Although single bit errors are corrected on-the-fly, their number is counted and
exceeding a predefined threshold raises an exception. Double bit errors are detected but
cannot be corrected, so double bit error detection causes an immediate exception.

The Tmille and Cmille units are diagnosed periodically, based on the comparison syn-
drome obtained during job execution in run mode. If the diagnosis identifies at least one
faulty component, the machine is switched into equal mode and a special diagnostic session

is started to check the Jmille units as well. The diagnostic session is also activated following

4.2. BUILT-IN SUPPORT FOR FAULT-TOLERANCE IN APEMILLE 97

Figure 4.4: Testing the components of Processing Boards

the successful completion of a job.

Although the Jmille units also execute identical instructions, they normally work with
local data that varies for each node. To make the test-by-comparison approach also ap-
plicable to the Jmille units, each Jmille is assigned with the same job and initialized with
the same values in a special diagnostic session. The testing of Jmille processors is carried
out in the so-called equal mode. Equal mode is composed of two phases, called the Local
Equal and the Remote Equal phase, correspondingly. The first, Local Equal phase creates
a preliminary, board-level diagnostic image. The second, Remote Equal phase refines and
extends this image to the system-level by unifying the diagnostic information collected at

each PB. The following steps are performed after entering in equal mode:

Local Equal. In this phase an intra-cluster diagnosis is performed: each board is wrapped
and a logical ring is formed among the Jmille units of the PB (Figure 4.4). Then,
Jmilles are loaded with the same set of instruction and memory values. When the test
program is executed, Jmille units read/write synchronously the same data, to/from
their respective memories. Every memory access and instruction fetch operation is
routed through Cmille. Therefore, on a Jmille memory operation each Cmille slice
receives a data part and performs eight comparisons in parallel by means of self-
checking comparators. In this way, Jmille processors are pair-wise compared along
the logical ring. The comparison outcomes are OR-ed in sequence in a Cmille register,

providing a single-bit comparison result at the end of the diagnostic session.

The comparison results are processed by a system-level diagnosis algorithm [93]. The
local test results give a preliminary classification of the fault state of each PE. Jmille
processors are ranked into three classes: zero (Z) units, dual (D) units, and faulty (F)

units. Z units are pairs of PEs that have identical fault states: both of them are either

98 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

fault-free or faulty. D units are pairs of PEs with at least one of them being faulty,
but at this stage of diagnosis it is impossible to differentiate between them. F units
are surely faulty. To uncover the fault states also of Z and D units it is necessary to
relate processors located in different Processing Boards to each other in the Remote

Equal phase.

Remote Equal. This is the inter-cluster diagnosis phase. For each pair of adjacent boards
PB, and PB, two Jmille processors Ji and J% are elected to be witnesses of PB, and
PB,, respectively. The two witness Jmille nodes are compared by a pair of comparators
Kéy and K{,z located in the Cmille commuters of the corresponding boards. The
so obtained global comparison syndrome is further analyzed by the level diagnosis
algorithm and every Processing Board is labeled as fault-free, faulty (or partly faulty
with respect to certain directions), or suspected (when the diagnosis is incomplete and

the state of some Processing Boards cannot be decided).

4.3 Failure model of AP Emille

APEmille has a peculiar two-fold nature [91]. On one hand, it contains a computational
engine with its uncommon structure of Tmille, Cmille and Jmille processors. Further on we
will refer to this part of the machine as the SIMD part. On the other hand, it employs a
network of host computers for delivering services and controlling and monitoring the SIMD
part. These networked machines can be viewed as a special case of the Multiple Instruction
Multiple Data (MIMD) class of parallel systems, hence we will refer to them as the MIMD
part of APEmille. The two-fold nature is also reflected in the operating modes: during run
mode the SIMD part is active and executes the user applications, while in system mode it
is frozen and the MIMD part delivers the requested services and supervises the machine.

Reasoning about recovery techniques is possible only if a well-defined model of the failure
behavior of system components is available. Given this model, the most suitable methods of
error recovery can be selected, their applicability and characteristics can be verified. This
section presents an component-level failure model of APEmille, which grabs specifically
those aspects that need to be taken account in planning the recovery actions. The model
only serves as a basis for selecting the fault tolerance mechanisms. It was developed by the
author from the system specification by purely theoretical methods, therefore it needs to be
refined when practical experience and measurement data will be available at a future stage
of the APEmille project. The modeling methodology is inherited from Lampson [94]. The
main classes of components considered are processors, memory devices, disk storage, and
the communication network. The derived failure model is summarized in Table 4.1.

Based upon the Lampson model, first we account for the failure characteristics of the
components in the SIMD part. Jmille and Tmille processors conform to the general pro-
cessor model with the restriction that they execute only a single task. Therefore, these
processors can be modeled as a deterministic finite state automaton (FSA). We do not con-
sider arbitrary or Byzantine failure semantics for these processors; such failure behavior

is quite improbable and hard to handle due to the special architecture. Halting, omission

4.3. FAILURE MODEL OF APEMILLE 99

Table 4.1: Failure model of APEmille components

run mode
Component Testing method Failure semantics Undetected Recovery
Jmille processor comparator value common-mode checkpoint
run-time transient
Tmille processor comparator value common-mode checkpoint
Cmille commuter comparator omission/value common-mode checkpoint
memory EDAC omission/value n-bit (n > 2) overwrite
(inter-PB) network EDAC performance n-bit (n > 2) retransmission
system mode
Component Test method Failure semantics Undetected Recovery
(Host) processor watchdog timer crash (fail-stop) value message logging
(Host) memory parity omission/value n-bit (n > 1) overwrite
(Host) disk EDAC omission multiple bit duplication
(Control) network checksum performance value retransmission

and performance failure behavior implies that the processor does not drive the bus in time,
leaving the bus signals in an arbitrary state. Due to the asynchronous interface the exter-
nal observer sees it as a value failure. We assume that all of the permanent value failures
are detected by the mutual comparison testing of the processors. Common-mode failures
remain undetected after testing, but they are uncovered at a later stage by the diagnostic
algorithm. Transient value failures of Jmille units, however, cannot be detected during run

mode.

On investigating processor interactions, we assume that a Jmille processor cannot make
another Jmille to fail (in the physical sense), since there is no direct connection between
them. The communication is memory mapped: a special address signifies a remote access
to the memory of another Jmille processor. A value failure during a memory write opera-
tion can corrupt the local or the remote Jmille memory contents, causing cumulative errors.
There are three possible erroneous memory write operations respective to the failure affect-
ing the address and/or the value of the written data. Of these three, we model the ’invalid
data to right address’ action as a bad write error, the 'valid/invalid data to wrong address’
actions as the combination of a bad write (to the good address) and a spontaneous decay

(at the wrong address) errors.

Tmille processors are also indirectly connected, so they cannot make each other to fail
similarly to Jmilles. There is also a very low probability of them causing cumulative errors
in Jmille processors by sending wrong instruction codes/invalid global addresses, because
apart from common-mode faults these are detected by comparison testing. The memory of
a Tmille processor contains only programs. By ruling out self-modifying programs we can
assure that this memory will never be written. Thus, ‘bad write’ errors become impossible,

leaving ‘decays’ to be the sole source of Tmille memory errors.

The Cmille commuter is the interface among the Jmille and Tmille processors, and the
adjacent Processing Boards. Its value failures may produce cumulative errors similarly to
Tmille processors by delivering incorrect data/instructions to Jmilles. However, transmis-

sion value failures caused by transient or permanent faults in the interconnection network

100 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

are either covered by the employed error detecting and correcting (EDAC) code, or manifest
themselves as ‘bad write’ or ‘decay’ errors of the destination memory component. Further-
more, crash failures during remote communication are supposed to be detected by the other
involved Cmille commuter, which in this case raises an exception and—being unable to
deliver the data—creates an omission failure. We do not account for the fault in the com-
parators used for testing (although they are also a part of the Cmille circuitry), this duty
is left to the fault diagnosis algorithm.

The processors of the Global and Local Hosts fully comply with the general processor
model of Lampson. Additional considerations can be drawn from the fact that these comput-
ers employ a multitasking, multi-user operating system. The OS (with hardware support)
isolates different processes from each other, and prevents accessing the resources assigned
to other processes in an unauthorized way. It provides primitives for synchronization and
mutual exclusion to support the interaction of processes and sharing of resources. On this
basis, we assume that a failed process will eventually raise an exception (either due to an
undesired condition such as division-by-zero or a protection violation) and gets stopped, i.e.,
the hosts processes have a fail-stop failure semantics. During the crash, processes cannot
interfere with the local state of another process, but can (and probably will) make their
own resources inconsistent or corrupted. Processors are composed of a set of processes and
hence behave similarly: crash on error, and after a period of time become fail-silent. The
halted state can be detected using a hardware or software watchdog timer, and in the case
of communication by time-out on periodically sent diagnostic < I’m alive > messages.

The memory components in both the SIMD and MIMD part employ an EDAC code
to detect (and possibly correct) read errors. In the case of Jmille and Tmille memories a
modified Hamming code is used, capable of detecting all double-bit (and some triple-bit)
errors and correcting all single-bit errors. Corrected errors are transparent to the user and
so they cannot be considered as failures. Yet, the number of corrected errors is counted in a
special register, because frequent recurrence of single-bit errors might indicate an underlying
permanent or intermittent fault as the cause. The host computers add a single parity bit to
each word of memory, detecting all single-bit errors (and some multiple bit errors as well).
Detected but uncorrectable errors raise an exception and are noted by the operating system,
however, the memory contents are lost and cannot be recovered. Thus, the memory exhibits
omission failure semantics. Undetected read errors become walue failures.

The communication in the synchronous inter-PB network is also guarded by EDAC.
The asynchronous Control Network uses a commodity network protocol. The validity of
messages is controlled by various checksum schemes in several protocol layers. Lost or
incorrectly delivered messages of the SIMD part are transformed into ‘bad write’ or ‘memory
decay’ errors due to the memory mapped nature of the communication. In the Control
Network lost messages are assumed to be detected by the delivery control mechanisms
and retransmitted until it arrives successfully. Undetected value failures in the messages are
disasters. Consequently, both communication networks are modeled as having a performance
failure semantics.

Disk storage can be found only in the Global and Local Host computers. Its model is

quite similar to the model of the memory components. Additionally, on the basis of the

4.4. BACKWARD ERROR RECOVERY IN APEMILLE 101

advanced manufacturing technology and the combination of EDAC and checksums trans-
parently managed by modern hard disks, we assume that all value failures will be detected.
Moreover, a large part of them will be corrected transparently by the disk controller hard-
ware, notifying the OS to avoid the unreliable disk area by adapting its file allocation strat-
egy. Should this assumption fail, the user can substitute a redundant disk array (RAID) in
place of a single hard disk to make the assumption true. Detected but uncorrectable read

errors manifest themselves as omission failures.

4.4 Backward error recovery in APEmille

The typical duration of a computation running on APE machines ranges from several days
to several weeks. This surely remains true for the future even if APEmille is far more pow-
erful than the previous generations, since the targeted scientific problems are also getting
more and more complex. Considering the large number of components built into a typ-
ical APEmille configuration, without fault tolerance the expected Mean Time To Failure
(MTTF) duration falls into the same time range. Thus, the user could suspect that his
valuable, long-running computation has been invalidated by a system failure, and he could
never be completely sure that the results of a seemingly successful computation have not
been affected by an undetected hardware fault. Finally, the necessity would drive him into
implementing intermediate state saving and acceptance testing routines, just as it was the
practice in the case of APE100.

It is easy to see that the characteristics of the error compensation based fault tolerance
approach do not coincide with the aims of the APEmille project. Therefore, the developers of
APEmille decided to base their fault tolerance concept on error recovery. The requirements
of system-level fault diagnosis have been taken into consideration from the initial design
phases, since the formulation of the APEmille self-diagnosis theory and the planning of its
hardware support started in parallel. As a result the APEmille fault diagnostic scheme is
already mature, well formulated, and tested both by simulation and in practice [80, 95, 96].
On the other hand, the error recovery part of the fault tolerance concept has not yet been
elaborately studied. The author was given the opportunity to contribute to the APEmille
project by forming a comprehensive recovery concept for the machine [15, 17]. The problem
was complicated by the fact that unlike diagnosis, the hardware support for error recovery
was not present, and at the actual state of the project the extension of the completed
hardware plans was unworkable. Consequently, the error recovery mechanism of APEmille
had to be formed using only the existing system components [14, 16].

An erroneous system state can be transformed into a valid state in two directions. Back-
ward error recovery chooses a known valid state from the system’s past. This is accomplished
by periodically saving the complete or partial system state to a reliable medium (called the
stable storage) during the failure-free execution. Then, after an error occurrence the tasks
are rolled back to the previous valid state using the information stored on the stable storage.
Forward error recovery obtains a new valid state that is not included in the history of the
system. This approach is more efficient than backward error recovery, because a history

of the valid system states is not needed, and the recovery process performs valuable work

102 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

while creating the new consistent system state. Unfortunately, forward error recovery is
also quite application-specific, and since APEmille is a general purpose computer, rollback
recovery remains as the only useful alternative.

Backward error recovery attempts to maintain the consistency of a computation by
returning the system to a previous state upon an error occurrence. Two basic services are
used in this process [97]: state recording, which stores global system states to a reliable
medium, and state restoration, which assembles the stored information and recreates a
consistent global restored state. These services can be either semi-automatic if they are
executed upon the invocation of the application programmer, or user-transparent if the
necessary actions are carried out automatically, without any user interaction. Recovery
techniques can be classified in three major classes according to the characteristics of the

above two services:

Checkpointing. Checkpointing saves a copy of the application state (and optionally the
state of the communication channels). Upon a failure, the checkpoint can be used
to restore a previous, failure-free state of a failed process. Independent checkpointing
methods take the checkpoints process-wise. In this case, there is no guarantee that
a consistent global state can be restored from the stored set of process states. The
state restoration service must be able to determine which the most recent recovery
line (also called as mazimum recoverable global state) included among the set of stored
local checkpoints. This makes the recovery process more complicated, and there is the
possibility of domino effect. Consistent checkpointing methods avoid these disadvan-
tages by coordinating the checkpointing actions among the processes to guarantee that

the stored set of local checkpoints is always a recovery line.

Message logging. Message logging records the changes in the local process states rather
than saving the complete global state of the system. State changes are called events.
They are of two main types: external (such as the interactions between processes),
and internal (like the branches of a computation). Events drive the transition of a
process from one state to another, thus determining the course of computation. In a
piece-wise deterministic system the range of external events is limited to the sending
and receiving of messages. Recording of the relevant information about messages is
called logging. The recovery protocol must recreate the exact order and content of each
message transmitted before the failure occurred. Storing the contents of messages in
the log speeds up the recovery process. Yet, it is not strictly necessary for a successful
rollback, since the messages can be regenerated together with the other constituents
of the distributed computation.

Hybrid techniques. Although it is possible to implement backward error recovery solely
based on message logging, the stored log data could grow unacceptably large over
a long time span. Therefore, it is customary to combine logging with checkpointing:
when a global state becomes stable among the recorded checkpoints, log entries related

to messages preceding the global state are no longer meaningful, thus can be discarded.

The maintenance policy of the computer is also significant in the process of selecting the

4.4. BACKWARD ERROR RECOVERY IN APEMILLE 103

Table 4.2: Component-level fault tolerance techniques for APEmille

Number of faulty components
Component One (k=1) Some (1 < k € n) (Nearly) all (k ~ n)

Jmille processor | parity checkpointing EDAC checkpointing complete state saving
Tmille processor checkpointing

Cmille commuter checkpointing

(host) processor | sender-based logging family-based logging

(host) disk available copy replication —

most suitable approach for fault tolerance. Two different strategies can be followed: system
repair and reconfiguration. Backward error recovery fits into either framework. The first
strategy involves bringing the system in a consistent state and (partially) shutting it down,
substituting the faulty replaceable units with spare components, restoring the valid system
state, and continuing the computation. This is an obvious maintenance policy, and putting
it into practice is made easier by the vast amount of experience accumulated over the years.
Note, however, that system repair cannot be fully automated, its use requires continuous
support by trained personnel.

System repair was more or less the policy used in the case of the APE100 series of
supercomputers, in a large extent because the APE100 architecture (like the majority of
SIMD machines) is not suitable for reconfiguration. APEmille includes several additions to
the traditional SIMD design (like local addressing, flexible message routing, etc.) that make
reconfiguration theoretically feasible. The following main steps constitute reconfiguration:
(1) isolation (and possibly shutdown) of the failed replaceable units, (2) identification of the
available resources, (3) redistribution of the tasks to fault-free processors (preferably comple-
mented with load balancing), (4) updating the configuration databases (like routing tables,
location-specific data, etc.), (5) restoring the system state preceding the error, and (6) re-
suming the computation. The replaceable units of the APEmille system are the Processing
Boards, the Local Host Boards, and the Service Boards. The advantages of reconfiguration
over system repair are its automated nature, significantly less down-time, ability to provide
uninterrupted (albeit degraded) service without continuous human support. Still, reconfig-
uration in APEmille is so intricate and requires low-level operation system support in such
an extent, that it is unlikely to be implemented.

The fault tolerance techniques proposed for the implementation of backward error re-
covery in the APEmille computer are summarized in Table 4.2. For each main component
class of APEmille the table lists the cases when a single, multiple, or all components in the
class fail, and suggests the most appropriate method accordingly. The chosen methods are
explained and briefly described in the following sections (for more information on recovery
techniques see [98]).

4.4.1 Recovery of APEmille processors

For the processors in the SIMD part the most suitable recovery mechanism is checkpointing.

This choice is supported by the following arguments:

104 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

e [t is difficult to implement message logging for the processing elements. The commu-
nication among the PEs is memory mapped. The PE initiating the transfer knows
when a remote access takes place, but the other participant of the communication is
the remote memory, and the owner processor is not notified explicitly of the read or
write operation that affected his memory. For this reason, it would be complicated to
realize the acknowledgement and bookkeeping schemes most message logging protocols

require from the recipient processor.

e The state of the PEs changes quickly, and in a large extent. The applications are as-
sumed to frequently access all elements of large data sets. There are many operations
that affect the local and remote states; most of them are not (and cannot be) imple-
mented as atomic transactions. Therefore, message logs would be updated often and
would grow quite huge. The applications would be suspended frequently during the
writing the message logs to stable storage (even if optimistic or causal message logging
is used). The local and remote states are expected to have a complex interdependence,

making it even more cumbersome to maintain the message logs.

e Since there is only a single process running on the PEs, logging the messages user-
transparently is only possible by compiler-assisted inserting of the bookkeeping code
in the user programs. This would make the executable parts of the applications grow

larger.

The implementation of checkpointing is straightforward. The checkpointing or recov-
ery procedures are invoked after the diagnostic session, when machine operation has been
switched into system mode. Due to the transition to system mode, there is no ongoing
computation or communication in the SIMD part, and the host computers have complete
control over the memory and register-file areas of the APEmille processors. There is no
need for checkpoint coordination and it is sufficient to store the state of the application
without the state of the communication channels, since all data transfers have been carried
out before the checkpointing procedure was invoked.

The checkpoint must contain the value of all variables and data structures that describe
the actual state of the application process. Hence, it is up to the system or application
programmer to decide what must be included in the set of stored status information. The
most simple implementation of checkpointing saves the whole address space that belongs to
the given process. Note, that this implies a huge amount of data in the case of APEmille:
all of the local memories belonging the the 8 x 4 Jmille nodes of an APE Unit must be stored
on the disk of the supervising Local Host computer. Starting from an full initial checkpoint
there are methods that reduce the extent of later checkpoints, provided the state of the
process changes “moderately.” The techniques we propose are based on coding techniques.
In the following we describe mention methods which store a reduced checkpoint generated
by error detection and correction (EDAC) encoding of the data, and exploit the additional
failure information provided by system-level diagnosis of the application processors.

Parity checkpointing uses n + 1 parity instead of a full replica to maintain the stored

global state [99, 100]. The mechanism of parity checkpointing is as follows: the respective

4.4. BACKWARD ERROR RECOVERY IN APEMILLE 105

memory locations (the memory bits in the same address and position) of the n parallel
processors are treated as an n-bit group. Every group of n memory bits is supplemented by
a single parity bit, and the resulting parity bit array is stored on a central reliable storage
medium. If a single-bit memory fault occurs, a new array parity is computed using the
actual state of the local processor memory contents, and the new array parity is compared
with the stored reference array parity. The difference pinpoints the location of the erroneous
bit, which can be corrected by a simple inversion.

A significant drawback of parity checkpointing is that it handles only a single node fail-
ure. The problem originates in protecting a group of n memory bits with only a single parity
bit. In the EDAC checkpointing scheme [15] the parity checkpointing scheme is combined
with the multiple-bit fault-tolerant P + @ Redundancy employed in RAID Level 6 [101].
The underlying idea is to assign an [-bit long, p-bit error detecting, ¢-bit error correcting
error detecting and correcting code to every group of n memory bits. The generated EDAC
code can be used to repair the corrupted memory contents of the failed processors, provided
that the number of processors to fail always remains below p. Based on the bit-wise EDAC
code the recovery algorithm can determine the quantity of the incorrect bits in a certain
memory area, and exploit the system-level diagnostic image to find the location of errors.
The memory contents can be recovered by simply inverting the corrupted bits. To consider
the space saving represented by this approach, suppose that the system has n processors
with local memories of w words, each having the size of b-bits. Using EDAC checkpointing,
a code of w x b x [bits is generated and stored in the stable storage, instead of the total state
saving which requires n x w X b bits. Clearly, the EDAC code saves a significant amount
of storage space until p < n/2. However, large amount of incorrect memory bits (caused
for example by an undetected transient value failure propagated to several Jmille units) can

only be tolerated by storing the complete global state.

4.4.2 Recovery of Global and Local Host computers

Unlike the processors in the SIMD part, the suggested recovery mechanism for the host
computers is message logging. The following arguments justify the preference of message

logging over checkpointing in this case:

e There are two kinds of actions that a host computer must perform: serving requests
and handling exceptions coming from the Processing Board, and executing remote pro-
cedure calls (RPC) of other hosts. These are a few, well-defined, complex operations.
Provided they are implemented to be atomic and/or restartable, and their execution
order/dependencies are recorded reliably, then it is possible to reset the computer (if

needed) and repeat or replay the failed operation(s).

e Since the host computers are devoted to mainly supervising and monitoring tasks, the
frequency of service and RPC requests is expected to be relatively low compared to
the execution speed of the PEs. Therefore, the size of the message logs will not grow

over a reasonable limit during a computation.

e The host computers offer a layered multitasking environment. The operating system

106 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

consists of many small processes. In the case of checkpointing the state of each process
should be recorded separately, while paying special attention not to violate the consis-
tency of the global state these individual process states are supposed to form. Message
logging may concentrate only on the interaction of processors via the communication

interface leaving the interaction of local processes out of consideration.

e The recovery procedure can be realized as an operating system layer, consisting of
a separate process (or a collection of processes). By placing the Recovery Layer low
enough in the layer hierarchy, it can capture every incoming service requests and ex-
ceptions signals. Then, it can perform the necessary logging and bookkeeping actions,
suspend or deliver the received messages; in other words, it has a complete control
over the communication interface. In this way, message logging can be implemented
user-transparently. Host computers may even utilize the idle time while the machine

is in run mode to write the volatile message logs to stable storage.

e The number of host computers is small relative to the number of PEs. Each host is
independent from the other, has its own power source and disk storage. Certain run-
time transient faults causing detected errors (parity error in memory, access protection
violation, etc.) may be handled at the OS level, preventing them to become failures.
For these reasons, the MIMD part is assumed to have a higher availability than the
SIMD part. Fault tolerance may take advantage of this, and we can employ techniques
that tolerate only a limited number of failed host computers, but run more efficiently

than worst-case solutions.

Message logging requires the operations working with system resources to be atomic, in
order to keep them always in a consistent state. An action is atomic if it has both of two basic
properties: it is unitary and serializable. Analogously, the notion of atomic transactions can
be introduced. The system guarantees that after a recovery from a crash either all of the
commands constituting an atomic transaction will have been successfully carried out, or
none of them will have been. Additionally, atomic transactions are indivisible with respect
to other transactions that may be executing concurrently; that is their execution is always
equivalent to some serial order. Furthermore, there is a third condition (independent on
atomicity) which denotes a transaction to be restartable if the transaction can be successfully
repeated during crash recovery even if it has been in progress when the crash occurred.

Like checkpoints, the message log must also be retrieved reliably, thus it is also stored on
stable storage. Log entries are smaller but more often updated than checkpoints, therefore
the frequent access to the slow stable storage can create a performance bottleneck. There is a
speed/reliability tradeoff between the two main classes of logging algorithms: the pessimistic
and optimistic approach. Pessimistic methods always synchronize message delivery and
logging by writing each log entry immediately to stable storage. They guarantee that
the logged information is always consistent. On the other hand, optimistic methods favor
performance to consistency. They assume that failures are rare, hence they try minimize
the logging overhead during normal computation. They record the log entries temporarily
in volatile memory, and handle the inconsistencies that may arise due to a failure during

recovery. Another design decision is to choose the units that perform the logging action.

4.5. INTEGRATION OF LOCAL INFORMATION DIAGNOSIS 107

With receiver-based logging, the processes participating in a distributed computation log
the messages upon receipt. When recovering from a failure, the failed process restarts
from scratch or a previous checkpoint and replays the messages in the log. In sender-based
logging, messages are stored at the sender process. If a process fails, the messages needed
for execution replay are resent by their originator.

Sender-based logging protocols have the favorable property of tolerating a single host
failure even in the optimistic setting, when the messages are stored in the volatile memory
of the sender process [102]. Due to its unbeatable performance and simple implementation
it is the method of choice when the failure rate is low, i.e., only a single Host computer is
expected to fail at a time. If multiple simultaneous host failures may occur, an extended
version of sender-based logging must be used. This approach known as the family-based
logging (FBL) protocol [103, 104].

The underlying idea of FBL logging is that a message is partially logged by the time is is
sent and it must be fully logged by the time it is relevant. FBL is an optimal message logging
protocol in the sense that it does not send any additional messages over those needed to
mask transient link failures. FBL protocols for f > 1 failures distribute the implementation
of the recovery procedure associated with a process to a larger degree than in the single
failure case. For this purpose they need to maintain and disseminate some dependency data
about partially logged messages. The dependency data contains a mixture of sender- and
receiver-based information. This means that a process must not only log the content of all
the messages it sends, but it may also be required to log the messages it receives and are
received by its ancestors (successors in the communication chain) up to a degree of f.

In the above discussion of rollback recovery techniques the problem of saving the check-
points and message logs to the stable storage was mentioned many times. In Appendix E we
explain the concept of a stable storage, and outline a practical approach to realizing such a

device based on the disk storage units of the APEmille Global and Local Host computers.

4.5 Integration of local information diagnosis

Integration of the developed LID probabilistic fault diagnostic algorithms into the fault
tolerance framework of the APEmille parallel computer is a straightforward process. The
architecture of APEmille is particularly suitable for the application of centralized algo-
rithms. The testing equipment is built in the Cmille processors in the form of self-checking
comparators, and the test results (the cumulative result of the comparisons) is stored in a
special register of Cmille. While the machine is in system mode, the Processing Boards are
frozen and the Local Host computers can access the whole memory and register are of the
Cmille processors. This way the host computers can reliably collect the partial syndrome
data from the supervised APE Unit, and they can communicate the collected test results
to the Global Host computer. Thus, the Global Host obtains the global syndrome and can
execute a centralized fault diagnostic algorithm to analyze it.

Therefore, the only remaining task is to develop a comprehensive test invalidation model,
which beside processors takes also the comparators used for verification into consideration.

This task can be performed completely analogously to the train of thought followed in

108 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

Section 3.3. The test assignment in APEmille is illustrated by Figure 4.4. Let us examine
two adjacent Jmille processors: Jmille] in the Processing Board PB; and Jmille? in PBs,.
According to our notation these units are compared by the K%g and K§1 comparators.
Assume that these comparators comply to the basic comparison testing model introduced in
Section Table 1.2. Table 4.3 describes both two unit “projection test invalidation models”
derived from the comparison testing model. As it can be seen, the relationship of two
processors follows the irreflexive (HK2) invalidation model, while the logical connection of
processor and comparator units can be expressed by the symmetric (PMC) invalidation

model.

Table 4.3: Test invalidation including interconnection links

Jmille! Jmille | Result Kig Jmille! | Result
0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 1 0 X
1 1 1 1 1 X

(a) The relationship of two Jmille processors (b) The relationship of comparator and Jmille

The partial testing models can be unified in the comprehensive test invalidation model
displayed in Figure 4.5. The ellipse around the three logical test connections between
Jmille} and Jmille} processors and the Kig comparator device indicates that these test
invalidation edges correspond to the single ¢;g physical test connection. The same problem
arises with this combined test invalidation model that was already studied in Section 3.3.
The interpretation of an ajg = 0 test result is that “either the Jmille] and J milleg processors
are both surely fault-free, or the K}g comparator is faulty”, the a1o = 1 test implies, that
“there is at least one faulty device among the Jmille, J milleg, and K}g units.” The inferences
that originate from the comprehensive model can again only be described by an AND-OR
graph representation, so the inference propagation and fault classification tasks need to be
fulfilled by the A0* algorithm or an equivalent method. A better option is to use constraint-
based diagnosis, which has even an stronger description power than the AND-OR graph
representation.

Yet, this situation is much simpler when self-checking comparators are used. If the
self-checking logic built in the comparator circuits provides sufficiently high error coverage,
the comparators can be designed to always give a failed test result in case of an internal
error. Consequently, the relationship of processors and comparators alike will obey the
HK2 invalidation model, that is the comparators can be modeled as if they were part of
the adjacent Jmille unit. This modification results a conventional testing graph of homoge-
neous irreflexive test invalidation without explicit comparators in the model. Therefore, the
methodology of local information diagnosis becomes applicable to the system without any
adaptation. One may argue that this simplification may cause that a given Jmille processor
is incorrectly accused of being faulty instead of an adjacent comparator. Note however,

that the aim of the diagnostic process in APEmille is to identify faulty Processing Boards

4.6. CONSTRAINT-BASED SYSTEM-LEVEL FAULT DIAGNOSIS 109

] 1 PMC

[
- KSl
PMC | | A PMC

Figure 4.5: Comprehensive test invalidation model of the Parsytec GCel

and not an accurate fault localization inside the PBs. The proposed modification of the
comprehensive testing model does not affect fault classification on the Processing Board

level.

4.6 Constraint-based system-level fault diagnosis

So far this document argued the advantages of the system-level diagnostic approach and
the methodology of local information diagnosis. However, Section 3.3 and Section 4.5 also
pointed out that for certain situations the generalized test invalidation model is not flexible
enough. The applicability of the presented methods can be restrained by the binary fault
model and the binary test outcomes. The inability of handling multiple units per test or
dealing with alternative consequences of implications are also limiting the possible applica-
tion area. The author participated in the development of a new diagnostic approach: the
application of the constraint satisfaction methods to solve diagnostic problems [50].

The novel modeling technique for system-level fault diagnosis in massive parallel multi-
processors was presented by Pataricza et al. [49], further enhancing the theoretical basis of
the Selényi algorithm. The authors re-formulated the problem of syndrome decoding to a
constraint satisfaction problem (CSP). The CSP-based approach is able to handle detailed
and heterogeneous functional fault models on a level similar to the Russel-Kime model
[36, 37]. Multiple-valued logic is used to describe system components having multiple fault
modes. The granularity of the model can be adjusted to the diagnostic resolution of the
target without altering the methodology.

Constraint satisfaction problems (CSP) deal with the derivation of single or all consistent
solutions of large-scale relation systems. Formally a CSP is a (X, D, C) tuple, where X =
Xq,...,X, is a set of variables defined over the set D = D,..., D, domains, and C =
Ci,...,Cy is a set of constraints. Constraints are relations between the variables. A solution
of a CSP is a vector [z1,...,z,] of values that satisfies all the constraints.

The ultimate goal of syndrome decoding and CSP is very similar: the algorithm must
classify the fault state of system components in a consistent way that conforms to the given

diagnostic model, test invalidation rules, and the actual test outcomes (syndrome elements).

110 CHAPTER 4. FAULT TOLERANT ARCHITECTURE OF LARGE COMPUTING SYSTEMS

These restrictions can be represented as binary relations between the fault state of the tester
and the tested units. The use of relations instead of logical functions supports the handling
of diagnostic uncertainty appearing in some test invalidation models. A diagnostic problem
can be very easily transformed to a constraint satisfaction problem. The variables of the
CSP represent the fault states of the system components. The constraints correspond to the
restrictions derived from the test invalidation model and the current syndrome elements,
thus the test invalidation rules determine a set of candidate relations, from which the actually
used one has to be selected, when knowing the actual test outcome.

Syndrome decoding is driven by implication rules, represented by constraints. They
originate from the system structure, the test invalidation model and the actual test out-
comes. All of the constraints are binary over the fault state of the tester and the tested
component, to achieve a greater simplicity: the test results (syndrome bits) are eliminated
from them as variables after receiving the test outcome. The generated constraint network
is then preprocessed. The applied simple consistency algorithms greatly reduce the amount
of computation required to solve the CSP problem. After the preprocessing phase the CSP
solver is executed. When all of the constraints are satisfied, the domains of the variables
corresponding to the system units contain the possible classifications for the units, in other
words, the transitive closure. If not all the components have a sure classification in the
transitive closure, the remaining ones are classified using further restrictions on the fault
model (limitation on maximal number of faults, exclusion of certain faults).

The diagnostic algorithm has the ability to create diagnosis “on-the-fly”, using only
partial syndrome information. In this case the diagnostic part is invoked several times at the
arrival of partial test results. Implications from new syndrome elements are added to this
dynamic constraint network during each call and a path-consistency based preprocessing
of the network is performed, successively restricting the solution domain. As a result,
the algorithm will extract all of the useful diagnostic information available in the partial
syndrome, and the diagnosis is improved at the arrival of each new test result.

If one-pass diagnosis is required, simply a static binary CSP is produced after performing
all tests. However, in the case of on-the-fly diagnosis, newly generated test results must be
processed immediately. Only a few syndrome elements are present at the beginning, so
the complete set of relations cannot be created at once. Every incoming test result adds
new relations to this set, while the previously constructed ones remain still valid. Thus the
solution space is gradually reduced, in other words a monotone dynamic CSP is produced.

We did not mention so far the main disadvantage of constraint-based fault diagnosis: its
time complexity. Decreasing the complexity of the CSP solution be achieved by preprocess-
ing the constraint network. The so-called consistency algorithms exclude locally inconsistent
value combinations from the domains of variables, since these values surely cannot appear in
a globally consistent solution. Unfortunately these methods work generally only on binary
CSPs, which can evaluate independently every variable. Despite the employed preprocessing
mechanisms the time complexity of constraint-based diagnosis remains significantly higher
than that of local information based probabilistic diagnosis, therefore in time critical appli-
cations where the modeling power of traditional generalized test invalidation is sufficient,

LID algorithms remain as the only option.

Chapter 5

Conclusions and future work

The work presented in this document encompasses different, but quite interdependent areas
of multiprocessor fault tolerance. Contributions are related to three main topics: centralized
fault diagnosis, distributed fault diagnosis, and backward error recovery of parallel computing
systems. The achieved results are mainly of theoretical nature, as most of the contributions
is related to general-purpose fault diagnostic algorithms. The developed methods and proce-
dures are not applicable only to the illustrative real-world multiprocessor systems included
in the document as examples, but they can be employed in any system conforming to the
requirements of system-level diagnosis. Despite the theoretical and general features, much
effort was put into creating practically relevant techniques which have appealing properties
to users and system engineers. For this purpose, efficiency and low resource usage were the
two main guidelines of the research. The presented concepts represent a kind of compromise:
in the literature many complex deterministic approaches can be found providing reliable di-
agnosis (although only in strictly restricted situations) or simple probabilistic approaches
exist offering high execution speed (but producing only mediocre diagnostic results). Our
work attempts to fill the gap between these approaches by combining their advantages.
The first part of the thesis deals with centralized probabilistic fault diagnosis of multi-
processor systems. We introduce a novel concept called local information diagnosis. The
LID concept bases the fault classification of each system unit on diagnostic information
gathered from the limited local environment of the unit. By exploiting the reduction of
processed data it was possible to decrease the typical O(n?) time complexity of determinis-
tic algorithms to O(n?) and furthermore even to linear complexity O(n) in the function of
system size. Similar reduction was possible in the space complexity of the working memory
used during data processing from O(n?) to a constant additionally required space O(1).
These complexity properties are competitive with the existing probabilistic methods,
yet, the developed algorithms use significantly more of the diagnostic information contained
in the syndrome. Due to their iterative mechanism the algorithms provide the possibility
for a performance/diagnostic accuracy trade-off: the more iterations they are run, the more
accurate the results will be, but of course the execution time increases accordingly as well.
We also demonstrated that in general fault situations the amount of information extracted
from the syndrome relatively soon reaches a saturation point (complying to the idea of the

LID concept). Further iterations do not significantly improve the diagnostic solution.

111

112 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

The developed diagnostic methods utilize the generalized model of test invalidation.
This makes the methods easily adaptable to the non-symmetrical invalidation situation
and even to heterogeneous systems. An important advantage of the underlying generalized
test invalidation model is the existence of sure fault classifications derived from detected
contradictions in the implication set. Surely classified units are reliably identified despite
the probabilistic approach and this capability of the developed algorithms is unique among
the probabilistic diagnostic techniques existing in the literature. The employed implication
representation and processing mechanism make it possible to divide the diagnostic process
into two separate phases at this point.

In the first phase one-step implications are extracted from the syndrome and propa-
gated in a limited length to create a a partially transitively closed implication set. This
phase terminates with the diagnosis of surely classable units. In the second phase those
units that cannot be surely identified are classified by a heuristic method. The thesis gives
several alternative solutions for both phases. These different solutions can be appropriately
combined according to the user requirements. Separating the inference extraction and fault
classification phases has the additional advantage that new heuristics tailored to the par-
ticular application environment can be easily introduced in the diagnostic system without
having to re-implement the implication-handling procedures.

The second part of the thesis introduces a new distributed diagnostic algorithm which
was developed with the reduction of the diagnostic message volume in mind. As a novel
feature, the algorithm divides the diagnostic activities into two stages, in order to schedule
the higher communication load during the initialization of the system when the performance
requirements are not strict. During the initial stage a system-wide local diagnostic image
is generated in each processing element. In the later working stage this basic diagnosis
is updated incrementally by taking the consequences of newly occurred diagnostic events
(failure, repair) into account. This diagnostic strategy also supports the event-oriented
dissemination of the local test result information, therefore new reporting messages are only
transmitted when they really represent relevant information.

The faulty units prevent the reliable message transport and may separate different parts
of the system. The scope of the produced diagnostic image extends to all fault-free processors
located in the same strongly connected component and the faulty units forming the isolating
barrier. The algorithm uses a barrier detection procedure to speed up the determination of
diagnosability boundaries. The faults in the interconnection links are also included in the
diagnostic model. Links are classified using a functional failure model without the use of
dedicated link tests.

The diagnostic procedures are supplemented by two communication protocols, tailored
to the characteristics of the two stages of diagnosis. For the initial stage a synchronous
protocol is given, which is designed to perform high-intensity, low-latency message transfer
until every test result report sent at each processor reaches its destination. The protocol
employs a simple routing mechanism which does not attempt to avoid redundant messages,
since the transmission of these messages does not create additional delay due to the rigid
scheduling of communication actions. On the contrary, additional “dummy” messages and

a separate termination phase must be employed in order to keep up the smooth operation of

113

the synchronous protocol. For the working phase an asynchronous protocol was developed,
which provides nearly optimal message volume even in the presence of faulty units in the
system. The routing mechanism of the protocol is a combination of an optimal message
distribution scheme for faultless networks, and supplemental forwarding rules to create
additional messages which compensate for the deficiencies of the distribution scheme in a
faulty environment. The correctness of the presented protocols was confirmed by practical
implementation.

In the third part of the thesis a backward error recovery scheme is developed for the
APEmille parallel computer. The created recovery scheme unifies the various error recovery
mechanisms selected for the different components. The selection of recovery mechanisms
was oriented by a component-level failure semantics model, which was (in the absence of
experimental reliability data) obtained from the system specification by theoretical methods.
As part of the recovery scheme we also present a prospective implementation of a stable
storage, which fits into the architecture of the APEmille computer and does not require the
inclusion of external hardware components.

The thesis also studies the possibility of extending the local information diagnosis for-
malism to practical centralized and distributed systems. Dedicated test invalidation modes
are derived adjusted to the particulars of the examined machines. The shortcomings of the
traditional system-level modeling technique are pointed out, and the alternative solutions
are proposed.

Naturally, the work described in this document cannot be considered to be closed. The
presented achievements still leave opportunities for refinement and further research. In
the case of the developed local information based probabilistic fault diagnostic algorithms
the promising directions for improvement are related to increasing the diagnostic accuracy.
Several alternatives are open for investigation. First of all, the diagnostic performance of
the presented fault classification heuristics and the scalar weight function can be studied
by detailed analysis of the diagnostic mistakes. The results of this analysis can be used to
refine the heuristics and to more carefully set up the weight function in order to increase the
diagnostic accuracy in non-symmetric and heterogeneous testing situations. The analysis
may also yield new heuristic methods of approximating the likelihood of fault hypotheses.
Another option to achieve a more favorable diagnostic performance is to invent a way of
“converting” some percentage of the diagnostic inaccuracy from malign misdiagnosis to
benign misdiagnosis, or even eliminate malign diagnostic mistakes completely.

The complementation of the distributed diagnostic algorithm can be done mainly with
respect of the used communication protocols, as the extension of the diagnostic model to
the constraint-based methodology was already accomplished [50] (with the participation of
the author). The use of the presented protocols is restricted to the two-dimensional mesh
topologies due to the mechanisms of the built-in routing and barrier detection procedures.
These procedures need to be extended to other system topologies as well, in order to extend
the applicability of the developed distributed algorithm for other systems than the Parsytec
GCel machine.

In the case of the proposed error recovery scheme for APEmille, the remaining work

is mainly of practical nature. The introduced scheme is only a high-level framework, the

114 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

detailed description of the component-based recovery mechanisms can be developed in com-
pliance with the presented guidelines. It is also necessary to experimentally verify the
assumptions behind this scheme, since these assumptions are based on theoretical consider-
ations and their validity is not yet confirmed. The formulation of the detailed specification
of recovery procedures can be followed by the practical implementation of the developed

€rror recovery scheme.

Appendix A

Definitions and notation

This section describes the main concepts of system-level diagnosis and their notation,
adopted for use throughout this document.

A potential fault in the system is denoted by f;, and the set of all potential faults under
consideration by F = {f1,..., fu}. Since multiple faults may occur, the subset of ® C F
faults present in the system is referred to as a fault pattern. The set of considered fault
patterns is ® = {®° ... &1}, Here, ®° symbolizes the fault-free case: ®° = (). The
number of faults in a fault pattern is ¢/ = |®J|. The set of faults actually present in the
system is denoted by F', and the number of actually faulty units is ¢ = |F|.

Tests have a terminology and notation similar to faults. A test is denoted by t;, and
the set of all tests devised for the system by 7 = t1,...,%,. A test pattern ©J contains the
tests that failed on the application of the test set 7. The set of all test patterns that are
expected to occur is @ = OV, ..., @7 1. Analogously, the ©° = () test pattern represents the
situation when all of the tests passed.

A parallel system is composed of a set U = {u1,...,up} of n = |U| units (processing
elements, PEs). In system-level fault diagnosis each unit u; is capable to execute tests on
a particular subset of other units in U. A given test performed by u; on u; is denoted by
ti; and is called a test connection. The predefined set of test connections is the T' testing
assignment. Note, that there is a one-to-one correspondence between the sets T' and 7. The
testing assignment can be drawn as a directed graph G = (V, Er), called the testing graph,
where a vertex v; € V' corresponds to the u; € U unit, and the directed edge (v;,v;) € Er
represents the test connection ¢;; € T' between units u; and u;. Multiple test connections
between the same two units are not allowed, therefore any two vertices are connected by at
most one edge in a certain direction in Ep. A directed edge sequence [v;,...,v;] in G is
called a path, its length k = | [v;,...,v,]| is the number of its edges.

With each u; unit the following sets can be associated:

C(u;)) = {uj:ti; €T}
F_l(ui) = {uj:t; €T}
Tp(ui) = {uj:|[vi,...,v]| < kinGr}
F;l(ui) = {uj:|[vj,...,v]| < kinGr}

The T'(u;) is the set units tested by u; (devices under test, DUT). The I'"!(u;) is the set

A-1

A-2 APPENDIX A. DEFINITIONS AND NOTATION

units testing u; (testers). These notion can be extended to a broader local environment of
diameter k. The set of units, that reach u; via directed paths of k£ or less length are called
the I‘,;l(ui) set of k-testers. Units reachable from u; via directed paths of k or less length
are the I'x(u;) set of k-DUT units.

Similarly, the following sets can be defined for any set of units U,, C U:

MUn) = |J T(w)—Un
u; €Um
I 'Un) = |J I'(w)—Un
u; €U

A unit is an internal unit of a set Uy, if it belongs to that set, otherwise it is an ezxternal
unit to the set Up,. Then, I'(Uy,) and I'"1(U,,,) are the set of external units to the set Uy,
which are tested by and testing the units internal to the set Up,.

In most multiprocessor systems cooperation among the parallel tasks is realized using
messages transferred over the built-in inter-process(or) communication facilities. A given
message transfer capability from unit u; to u; is denoted by ¢;; and is called a communication
link. The set of implemented communication links is the C' communication network. The
communication network can also be represented in graph form. Since usually communication
links are bidirectional, the communication graph is in most cases an undirected graph G¢ =
(Ve, Ec), where a vertex v; € V corresponds to the u; € U unit, and the edge (v, v;) € E¢
represents the communication link ¢;; € C' between units u; and u;. With each u; unit the

following sets can be associated:

N(’U,Z) = {uj 1C5 € C}
Ni(wi) = {uj:|[vi,...,v5]| <ke€Ge}

The units adjacent to u; in the communication graph constitute the N(u;) set of neighbors.
The units reachable from w; via undirected paths of £ + 1 or less length are the Ny (u;)
set of k-neighbors. In those parallel systems, where tests are conducted only via the built-
in communication network, the testing graph is a subgraph of the communication graph:
Gr C Ge. In such systems the neighbor units are either testers of, or are tested by wu;,
therefore N(u;) = ['(u;) UT ™! (u;). This is also valid in the case of k-neighbors: Ng(u;) =
Ty(u;) UT; (u;). The cardinality of neighbor sets are denoted by v(u;) = |N(u;)| and
vi(ui) = [Ni(ui)l.

A successfully executed #;; test produces an a;; test result. Test results are binary: they
either pass or fail. Passed test results have a value of 0, while failed test results have a
value of 1. The A’ set of test results obtained by one execution of all test connections is
a syndrome. The set of all possible syndromes is A = A%, ..., A9~!. Note, that there is a
one-to-one correspondence between the sets A and ©. Edges of the G testing graph can
be labeled by the corresponding elements of the syndrome to create an annotated testing
graph.

The diagnostic algorithm D is a projection between syndromes and fault patterns: A —

®. In other words, the input of the algorithm is the actual syndrome A’, and as the result

A-3

of its execution it generates the set of diagnosed fault-free U? and diagnosed faulty units
U' € ®. In the case of diagnostic inaccuracy, the U' diagnosed fault set and the physically
present F' actual fault set are not the same. The differences can fall into two categories.
When the fault state of some processors could not be identified, that is U° UU! C U, where
U' C F, then the diagnostic image is said to be incomplete. If the U° diagnosed fault-free
units and F fault sets or the U diagnosed faulty units and U — F reliable units have common
members: UNF # @ vU'N (U — F) # 0, then the diagnostic image contains misdiagnosed
units and is incorrect. Misdiagnosis can be of two types, either a fault-free unit is diagnosed
as faulty u; € Ul A f; ¢ F, or a faulty unit is diagnosed as fault-free u;j € UA fi € F.
From the technical viewpoint treating a fault-free unit mistakenly as a faulty unit reduces
the amount of resources but does not threaten system availability, therefore it is called a
benign misdiagnosis. Missing the detection of a faulty unit and treating it as fault-free is

hazardous to system integrity and so it is called a malign misdiagnosis.

Appendix B

Probability models

Probabilistic methods differ in the probabilistic parameters used and the probability model
employed to define the likelihood of the different syndromes. A probability model is char-
acterized by defining the probability space, which is a triple (2,0, P). In this triple Q is
the sample space, © is the event space, and P is a probability measure.

The most often used probability model is called the common probability model. In this
model, the sample space € is defined to be the set of all possible syndrome and fault set

pairs in a given testing graph G = (U, E). Formally,
Qe =A{(S,F): FCU and S is a function from E to {0,1} }

The event space ©¢ consists of the set of all possible subsets of 2. The probability measure
P is determined using the probability parameters describing the behavior of fault-free and
faulty units, assuming that all the units in F' are faulty and all the units in U — F are
fault-free. In the case of the 0-information tester model, every possible syndrome and fault
set pairs can have a nonzero probability value. However, for the partial tester or complete
testing models certain syndrome and fault set pairs will have zero probability. For example,
in these testing models a situation of u;,u; € U — F and S(t;;) = a;; = 1 can never occur,
so the probability of this syndrome and fault set pair is 0.

Blough introduced a more general probability model. He modeled the actions of faulty
units by assuming that they behave in any arbitrary manner, even the most detrimental to
the diagnostic algorithm. The sample space ()¢ is the same in the Blough model as for the
common model, but the set of basic events is different. Since test outcomes by faulty units
are random values, in general no probability value can be assigned to a syndrome, fault set
pair. Therefore the basic events of the model consist of syndrome, fault set pairs that have
the same fault set and whose syndromes are identical except the test results of faulty units.

Thus, a syndrome, fault set pair (S’, F') is contained in a basic event B is defined as
B = {(S,F) : F =F'" and Vtij € T with u; € U—F,S(tij) = Sl(tij)}

Let Bt denote the set of basic events, then the event space ©¢ is composed of all subsets
of Bget. The probability of an algorithm producing a correct and complete diagnosis using

the model can be calculated as the minimum of the probabilities assigned to the syndrome,

B-1

B-2 APPENDIX B. PROBABILITY MODELS

fault set pairs in the basic event B, for which the set of faulty units F' is the set of units
classified as faulty and B contains the actual syndrome observed.

Lee and Shin introduced another generalization of the common probability model. Since
most probabilistic algorithms use less than the global syndrome information for diagnosis,
the authors assumed a distributed self-diagnosis method in which each unit declares itself
faulty-free or faulty. For this, units use only a limited form of the global syndrome infor-
mation, referred to as partial syndrome. Since the information analyzed during diagnosis
varies for every unit, each of them uses a different probability space. For a given unit u;, let
A; represent the partial syndrome used in the diagnosis of u;, and A be the set of all such
partial syndromes. Then, the sample space for unit u; is defined as

Q= { (A, f(wi)) : Ai € A, f(w) € {f0, f1}}

The event space ©; is the set of all possible subsets of I';. The definition of of the probability
measure P; depends on the partial syndrome information used.

All of the probability models presented have advantages and disadvantages. The com-
mon probability model provides exact calculation of the a posteriori fault probability of each
fault set given a syndrome. In this model an algorithm that produces the most probable
diagnosis can be formulated. Such an algorithm is also proven to be optimal in diagnostic
accuracy [105]. The Lee and Shin model makes it possible to generate the most proba-
ble diagnosis for a certain partial syndrome, assuring locally optimal algorithms (i.e. these
algorithms are optimal in diagnostic accuracy among all methods analyzing the same par-
tial syndrome information). While the problem of optimal diagnosis in the Lee and Shin
model can be solved in polynomial time, the same problem has exponential computational
complexity in the common model. Also a serious drawback of both models is that the prob-
ability parameters describing the operation of units most be known or estimated before any
probability analysis can be done.

Here lies the main advantage of the Blough probability model: the behavior of faulty
units do not need to be parameterized before its application. On the other side, this causes
many diagnosis algorithms that generate different diagnostic output to be evaluated as being
equal under the model. Thus, the Blough model can not distinguish between two methods,
one of which may perform significantly better in terms of diagnostic accuracy. Consequently,
exact analysis and optimal diagnosis is not possible using this model, but the asymptotic

or upper-bound characteristics of the algorithms can be estimated.

Appendix C

Simulation of the LID algorithms

The analysis of probabilistic diagnostic algorithms is not straightforward. The traditional
verification method, a correctness proof, is of no use in this case, since probabilistic algo-
rithms are inherently inaccurate. There are other analytical approaches to provide some
insight into the operation of such algorithms, Section C.1.2 reviews some of these. While
such analysis is feasible for a homogeneous system with units having the same, single test
invalidation model, the evaluation in a heterogeneous testing situation is much more com-
plex. Theoretical analysis of this kind is therefore exceeds the scope of this document. Still,
it is necessary to have some information about the performance and applicability of the
presented algorithms. Our method of choice for providing this information is simulation

and measurement.

C.1 Measured characteristics

This section introduces the decisions behind the selection of activities in the measurement
process by aswering the three main questions: what to measure? in the quantity of which
parameter(s) are the measurements to be varied? and how to measure the chosen values?
The answers to the above questions are given from the practical aspect of the user, who is
interested in application-related information. The theoretical aspect is presented by review-
ing existing attempts to analyze certain probabilistic diagnostic algorithms and discussing
the relationship of these algorithms to our work.

Before one could start experimenting with a diagnostic algorithm, he must (1) identify
the most important characteristics of the algorithm to be examined, (2) determine the
variable parameters of the algorithm to which the measurement results can be related, and
(3) invent a method for measuring the chosen characteristics. This section outlines this

process for the algorithms subject to our document.

C.1.1 Practical aspects

The first, and most important, question to answer is: what to measure? From the practical
viewpoint of the user two main characteristics can be identified: diagnostic accuracy and
algorithm complexity. Diagnostic accuracy captures the user’s confidence in the diagnostic

subsystem. It measures the number of incorrectly classified units, in our model this means

C-1

C-2 APPENDIX C. SIMULATION OF THE LID ALGORITHMS

Table C.1: Measured characteristics

Class Characteristic Form

Diagnostic accuracy Number of misdiagnosed units incorrect/all ratio
Type of misdiagnosis benign, malign
Arrangement of misdiagnosed units isolated, accessible

Algorithm complexity Time complexity processing time
Space complexity memory allocation

fault-free units to be diagnosed to be faulty, and vice versa. The number of misdiagnosed
units in itself is not really adequate to characterize the diagnostic performance of a proba-
bilistic algorithm. Better measures are the number of misdiagnosed units in the ratio of the
system size or rather in the ratio of the number of faulty units.

Perhaps an even more important attribute is the type of the diagnostic inaccuracy. When
the algorithm mistakes a fault-free processor for a faulty one, then it reduces the amount
of resources available for a further reconfiguration, but does not harm the system integrity.
Since in this case the diagnostic error occurs for the benefit of availability, we call this type
of inaccuracy benign misdiagnosis. On the other hand, mistaking a faulty processor for a
fault-free one does not decrease the amount of resources, but leaves unreliable components
be part of the system. This type of inaccuracy undermines system integrity, therefore we

call it malign misdiagnosis.

Also, the arrangement of incorrectly classified units can be of significance. In most
massively parallel systems the processing units communicate with each other via direct,
processor-to-processor links, driven by a communication controller chip built-in the PE
(e.g., transputers of the Parsytec GCel, see Section 3.1), or included as a separate compo-
nent (e.g., Cmille unit of the APEmille, see Section 4.1). Consequently, the failure of the
processor/communication controller usually means the loss of the corresponding communi-
cation links. In the event of several processor failures, certain areas of the processing network
may become completely isolated and unavailable for cooperation with the rest of the system.
In such situations the diagnostic mistakes within the inaccessible region are insignificant;
until the faulty units blocking the communication are not repaired these processing elements
are useless for the system anyway.

The complexity of any algorithm largely determines its applicability. This is especially
true for diagnostic algorithms, as they are background tasks, and the execution of diag-
nosis should have as small impact on system performance as possible. At the same time,
fast diagnosis is desirable to decrease error propagation. Complexity comprises two distinct
measures: time complexity evaluates the processing time and load required to run the al-
gorithm, while space complezrity quantifies the amount of memory used in the diagnostic
process. Space complexity may as well affect time complexity: using a larger amount of
memory than the available physical memory requires virtual memory management, which

will generate many additional processor and disk storage operations.
Table C.1 summarizes the measured characteristics of the developed algorithms.

Knowing the measured values (dependent variables) one must decide the set of vary-

C.1. MEASURED CHARACTERISTICS C-3

ing parameters (independent variables) of the measurements. These belong to three main
categories: the attributes of the fault-free system and of the fault injection mechanism, as
well as the variable parameters of the algorithms. In the case of diagnostic accuracy, the
system size, topology and the test invalidation model of the units are the essential system
attributes. Although the designed algorithms are topology independent, we restricted our
investigations to the most commonly used regular system topologies. Only the testing ar-
rangement is taken into account, because we do not simulate the application-related message
traffic and the algorithms do not perform diagnosis of the interconnection links. One of the
most important topological properties is the connectivity, which is composed of two quan-
tities: fan-in and fan-out. For testing graphs these quantities correspond to the number of
testers of, and the number of units tested by a certain processor.

Size and topology are closely interrelated. Due to the regular nature of the consid-
ered system topologies certain unit amounts are not valid (e.g., prime numbers for a two-
dimensional grid topology). Also, the number of units is limited by the resource requirements
and the duration of the simulation. A significant feature of the topology if it has borders; the
two-dimensional grid and torus are illustrative examples for this kind of difference. (More
precisely, bordered topologies are not really regular, but nevertheless, they are also quite
commonly used in parallel computers.) Large, non-bordered topologies can be regarded as
being “infinitely” large, provided that the number of faults is relatively small.

A notable advantage of the presented algorithms that they are also invalidation inde-
pendent, or in other words, the test invalidation of the units is also a variable parameter.
Obviously, it does not mean that the algorithms perform equally well for each test invalida-
tion model. The simplest counter-example is the T (consistent liar) model, which requires a
simple but specific diagnostic strategy, and therefore most of the general-purpose algorithms
produce poor results for this model. Beyond measuring the algorithms in different homo-
geneous test invalidation situations, it is just as well interesting to examine heterogeneous
setups, where the invalidation varies from unit to unit.

Fault injection can be characterized by the size and arrangement of the generated fault
patterns. Similarly to misdiagnosis, the number of faulty units is a less relevant measure
than the ratio of the fault pattern size to the whole system size. The main attribute of
the fault pattern arrangement was already mentioned: it is important to know whether the
faulty units isolate a part of the system or not. The probability of isolated areas can be
increased when the fault injection mechanism attempts to place faulty units close to each
other. In this case we speak of one or more fault group(s).

Certain algorithms, like the LID algorithms presented in this document, also have vari-
able parameters. In our case, we can influence the amount of diagnostic information pro-
cessed by modifying the local area from which inferences are collected. This is determined
by the number of iteration steps. Our general expectation is that the more iteration steps
the algorithms perform the better the diagnostic results will be.

Table C.2 summarizes the varying parameters of the measurement experiments.

So long we regarded the evaluation of the diagnostic accuracy. As it can be seen in

Table C.2, certain parameters are discarded from the measurement of the algorithm com-

plexity. Such is the test invalidation model. Invalidation affects algorithm performance via

APPENDIX C. SIMULATION OF THE LID ALGORITHMS

Table C.2: Varying parameters

Measured In the function of ...
characteristic Class Parameter Form
Diagnostic System attributes Size number of units, border
accuracy Topology (test) connections
Test invalidation heterogeneity
Fault injection Number of faulty units all/faulty ratio
Arrangement of faulty scattered, group
units
Algorithm parameters Number of iterations iteration steps
Algorithm System attributes Size number of units, border
complexity Topology (testing) connections

Fault injection
Algorithm parameters

Number of faulty units
Number of iterations

all/faulty ratio
iteration steps

the number of enabled inference rules. In our simplified diagnostic model the maximum set
of inference rules is relatively small, therefore there is little variance in the number of avail-
able implications from model to model. In the current implementation of the algorithms
this means that invalidation has little impact on the run-time and absolutely no effect on
the memory requirements. Another parameter left out of consideration is the arrangement
of faulty units. The algorithms work with implications, which depend much more on the
number of faults than their placement in the system, therefore the influence of fault pattern
topology on the algorithm performance is insignificant.

The last open question is: how to measure the chosen values? Most of the selected
attributes are quantitative, thus easy to measure. These are automatically recorded by the
simulation environment. However, the control or observation of the following attributes and

parameters raises some problems:

Arrangement of misdiagnosed units. Although the number and type of the diagnos-
tic mistakes is recorded by the measurement tool, this information does not relieve
anything about their arrangement. It is a complex task to automatically detect when
a misdiagnosed unit is located in an isolated region, thus this feature is not built-in
the simulation environment. Instead, the user can define appropriate fault patterns
and can use the selective statistics option to separately inspect specific areas of the

system.

Arrangement of faulty units. The problem of fault arrangement is similar: the mea-
surement tool provides injection mechanisms to create fault groups, but it cannot
guarantee that the resulting fault pattern really isolates a part of the system. More-
over, this approach is inadequate to examine situations where the isolated part is
mainly composed of fault-free units. The problem can be solved again by manually

defining fault patterns and selectively inspect the interesting areas.

Time complexity. When measuring the performance of the algorithm, several circum-

stances must be taken into account. The time complexity cannot be evaluated by

C.1. MEASURED CHARACTERISTICS C-5

Table C.3: Measurement methods

Measured

characteristic How to measure?

Number of misdiagnosed units Count differences of the real and diagnosed state
Type of misdiagnosis (Selectively) count benign/malign misdiagnosis
Arrangement of misdiagnosed units Custom fault pattern, selective statistics

Time complexity Single task operating system, debugging tool
Space complexity Debugging tool

Varying

parameter How to set?

System size Simulate n units

System topology Simulate chosen (testing) arrangement

Test invalidation Constrain test results to comply with invalidation
Number of faults Inject ¢ faults (drawing or probabilistic method)
Fault arrangement Evenly distributed, grouped, or custom fault sets
Number of iterations Run the algorithm in k iterations

the simulation environment, since the code added for this purpose would distort the
results. An appropriate profiling tool must be used for the purpose, which is able
to distinguish the time spent in the simulation environment from the time required
for executing the algorithm. Even the initial phase (allocating and setting up the
data structures) and the actual diagnostic phase of the algorithms must be handled
separately. And the measurements must take place in a single-tasking, single-user

operating system, on order to prevent possible background tasks to falsify the results.

Space complexity. The memory requirements of the implemented algorithms are both
hard to measure (it is difficult to separate the memory used by the simulator from
the memory used by the simulated algorithm), and the measurement results largely
depend on the compiler/operating system used to create the executable code. Any-
way, the theoretical considerations give good enough estimations of the real memory

requirements. Consequently, we decided to skip the verification of space complexity.

Table C.3 summarizes the measurement and parameter setting methods.

C.1.2 Theoretical aspects

In this section the theoretical analysis methods of the existing deterministic and probabilistic
diagnostic algorithms are reviewed. we also examine the relevance of these analysis methods

in correspondence with our algorithms.

Deterministic diagnostic methods

Deterministic diagnosis algorithms are expected to produce a correct and complete diagnos-
tic image of the system under certain well-defined circumstances. The primary objective of
theoretical analysis is the derivation of the necessary and sufficient conditions under which

correct and complete diagnosis is possible. This evaluation phase is called the diagnosability

C-6 APPENDIX C. SIMULATION OF THE LID ALGORITHMS

analysis. Then, the analysis process takes the form of a correctness proof to show that the
algorithms are really accurate in the existence of the derived conditions.

The traditional Preparata system model identified two different maintenance policies
and thus two distinct diagnostic goals. In the first approach one wants to know the location
of every faulty unit at once, in order to replace all of them with spares. The conditions of
this diagnostic goal are provided by the one-step diagnosability analysis. Another approach
is to find only one faulty unit in one step. The found faulty unit is repaired and the same
diagnostic process is repeated. This procedure continues until every unit becomes fault-
free. The circumstances under which this maintenance strategy succeeds are revealed by
the sequential diagnosability analysis.

The common property in both one-step and sequential diagnosis is that the set of iden-
tified faulty units must exactly correspond to the set of actually faulty units. Friedman [53]
proposed that a less ambitious goal could be reached with less stringent requirements. His
idea was that replacing a set of processors (including some that could be fault-free), might

be acceptable when correct and complete diagnosis is impractical.

Probabilistic diagnostic methods

Deterministic diagnosis identifies the entire fault set (or a predefined subset of all faults) from
the syndrome, provided that certain restrictions on the testing structure and the behavior
of the units hold. By contrast, probabilistic diagnosis methods try to locate the faulty units
only with high probability. They require no restrictive assumption on the set of faulty units
or the structure of the testing assignments, but on the other hand they cannot guarantee a
correct and complete diagnosis in every situation. Thus, the concept of diagnosability is not
applicable in this case. Since diagnosability analysis is an inappropriate method to evaluate
probabilistic diagnosis algorithms, they must be studied by other means. The three existing

approaches used to evaluate probabilistic diagnosis are:

1. Analyzing the diagnosis accuracy produced in certain situations.

2. Finding the necessary conditions to guarantee that the set of most likely faulty units

given the syndrome is found.

3. Proving that the diagnosis accuracy will approach 100 percent as the number of units

in the system grows to infinity.

The first method is the most straightforward, end it is also our method of choice. How-
ever, we do not attempt to obtain the required information through mathematical analysis
due to the complexity of the generalized test invalidation theory, instead, we measure the
different aspects of diagnostic accuracy and algorithm performance using simulation.

The second approach may seem particularly appealing from a practical viewpoint. Note,
that this analysis method is the counterpart of the deterministic diagnosability analysis in
the probabilistic environment. Recall, however, it has been shown that finding the most
probable diagnosis based on the global syndrome information is an NP-hard problem [105,
65].

C.2. MEASUREMENT RESULTS C-7

The third argument is easier to calculate than the first two. Still, from the same point
of view, is insufficient since an acceptable diagnosis accuracy is required for finite systems.
In spite of this, asymptotically correct and complete diagnosis is a desirable property of any
probabilistic diagnosis algorithm due to the significance of automated diagnosis for large
and massively parallel systems. Obviously, we cannot simulate an infinite system (in fact,
the number of units must be kept relatively small to achieve acceptable execution times and
memory requirements). Therefore, only the trend of misdiagnosis relative to the increasing

system size can be examined.

C.2 Measurement results

The algorithms were implemented for measurement purposes in a dedicated simulation en-
vironment. The simulation environment was developed by the author for evaluation of
centralized fault diagnostic algorithms [106, 6], including but not restricted to, local infor-
mation diagnosis based algorithms. As a standard setting, the simulations were performed
in a two-dimensional toroidal mesh topology containing 12 x 12 processing elements. Ran-
dom fault patterns of various sizes were injected, then the system was diagnosed by the
chosen algorithm and statistical data was collected. Measurements consisted of 512 such
subsequent simulation rounds. Although several homogeneous and heterogeneous invalida-
tion schemes were involved in the measurements, for conciseness the presented results in
most cases correspond to only the symmetric (PMC) test invalidation model, which is the

most pessimistic (providing the least diagnostic information) test invalidation model.

For the measured parameter values we introduce a shorthand notation to be used in
tables and figures. This notation and the computation of the statistical data is described in
Table C.4. The most important global parameters are: the size of the system (the number
of simulated processing elements) which is by default n = 144 in out measurements, the
fault set size (the mean number of the randomly injected processor faults), the connectivity
of the testing graph in the given system topology, and the number of simulation rounds.
There are also momentary values respective to the actual simulation round r;, these are: the
current number of faulty units, and the number of incorrectly diagnosed fault-free and faulty
units in the generated diagnostic image. Momentary data is collected in p = 512 simulation
rounds and the following statistical parameters are computed: the number of simulation
rounds in which at least one processor was incorrectly diagnosed (which is proportional
to the probability of incorrect diagnosis), the maximum number of incorrectly diagnosed
units (which is a worst-case measure of diagnostic accuracy), and the average number of
incorrectly diagnosed units expressed in the percentage of the system size. None of these
values describes completely the diagnostic properties of the studied algorithms, therefore
additional parameters (standard deviation, confidence interval, etc.) were also computed.
Yet, for volume constraints all of the measured parameters cannot be presented here. We

tried to select the most characteristic statistical parameter for each presented property.

C-8 APPENDIX C. SIMULATION OF THE LID ALGORITHMS

Table C.4: Measured parameter values

Global parameters

Name Description Computed as
n System size (number of units) |U|

v Connectivity of the testing graph ming, ey |T'(w;)|
p Number of simulation rounds |R|
Momentary parameters (corresponding to round 7;)

Name Description Computed as
i Fault set size (number of faulty units) | F

MO; Number of misdiagnosed fault-free units UL N (U — F)|
M1, Number of misdiagnosed faulty units |U? N F;|
Statistical parameters

Name Description Computed as
MR Number of rounds with incorrect diagnosis [{ri:r € R,(MO; + M1;) > 0} |

MM1 Maximum number of misdiagnosed fault-free units max,,cr MO;
MM1 Maximum number of misdiagnosed faulty units max,,cr M1;
AMO Average percentage of misdiagnosed fault-free units 100 - (Erie rMO;/n)/p
AM1 Average percentage of misdiagnosed faulty units 100 - (Erie rM1;/n)/p

C.2.1 Comparison of fault classification heuristics

In this section we compare the performance of the developed inference propagation based and
scalar LID algorithms. The diagnostic results of the LMIM, DIL, and LTC methods are not
considered separately, as in Section 2.2 they were proven to generate the same implication
set when run in an appropriate number of iterations. The measurement experiments have
confirmed that these methods produced identical diagnostic results with the same fault
classification heuristic employed. Therefore, only the CIP-2 and CIP-4 scalar methods and
the Majority, Election and Clique heuristics are presented from the viewpoint of diagnostic
accuracy; while LMIM, DIL, and LTC are considered separately from the viewpoint of time
complexity. In the rest of this section we study the effect of the parameter variations as
specified by Table C.2.

System size. To illustrate the tendency of diagnostic accuracy as the system size increases,
we varied the number of units in the simulated two-dimensional toroidal mesh topology.
Five system sizes were simulated, having respectively 6 x 6, 8 x 8, 12 x 12, 16 x 16, and
18 x 18 units. In each system 50 percent of the processors were faulty. The results, shown in
Figure C.1, represent the average number of incorrectly diagnosed units in the percentage
of the system size. T'wo-step implications were used in the fault classification. The figure
well indicates the expected convergence of the diagnostic accuracy to a constant value. In
toroidal systems the constant value is approximated from below, as the wrapped around
test connections provide gradually less diagnostic information compared to the size of the
system.

The Clique heuristic did not make any diagnostic mistakes in the examined measurement
range. However, this impressive diagnostic accuracy also has its price, namely the large

amount of unknown units. To illustrate this attribute of the Clique heuristic, the average

C.2. MEASUREMENT RESULTS C-9

5 5
g A/A//A\A\A A
24t . gar .
2 . <
= i T A X 2
g3r . 33 .
= =
3 &
8 °
g 2r , %2 E
g e g a|
5 g -
8 K]
alr 1 s
=

RPN R AR
0 A~ Sl 4 s - -
0 50 100 150 200 250 300 0 50 100 150 200 250 300
System size System size
’ CIP-2 —&— Majority v Clique --#-- ’ CIP-2 —&— Majority v Clique --#--
CIP-4 —-->¢--- Election -3 CIP-4 —-->¢--- Election -1
(a) Average misdiagnosed fault-free units (b) Average misdiagnosed faulty units

Figure C.1: Average misdiagnosed units versus system size

number of unknown fault-free units (AUO) and unknown faulty units (AU1) is presented
in the percentage of the system size in Figure C.2, for various fault probabilities ranging
from 2 percent to 66 percent. The AUO and AUl values are computed analogously to
the AMO and AM1 values presented in Table C.4. Clearly, the total number of unknown
units (AU0+AU1) considerably exceeds the total number of units incorrectly diagnosed
(AMO0+AM1) by the other methods. On the other hand, the Clique heuristic is the only
option in those applications which do not tolerate diagnostic mistakes of any kind.

30 ‘ 5
ome A | -
45 -
e o B
L u i .
) 25 LT - e 4+ /,.’ 4
=) 3 y
< 2 35) ;
2 20 n B 1 ra
S 4 = L]
= = 3+ , i
8 / : >
150 4 . 25 ® :
3 — s
B c 2t o an
S 10} , H
g o g 1s5f B .
g c
< 5 41 |
S5 gL , |
05 | .
0 R SR REEETISTEE L IR e g e) 0 L L 1 L " L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
System size System size
’ 2% —o— 25% v 66 % - M- ’ 2% —o— 25% v 66% ——W—-
11% - 50 % - 11 % - 50 % -
(a) Average unknown fault-free units (b) Average unknown faulty units

Figure C.2: Average unknown classified units by the Clique heuristics

Fault set size. The effect of the fault set size on diagnosis accuracy is shown in Figure C.3.

C-10 APPENDIX C. SIMULATION OF THE LID ALGORITHMS

The figure shows the average number of incorrectly diagnosed units in the percentage of the
system size for various fault percentages. It can be seen, that diagnostic accuracy drops
when the amount of faulty units reaches 50 percent of the system size. However, diagnosis is
quite accurate (less than 0.2 percent of the total 144 processors) in the practically relevant

0-25 fault percent. The Clique heuristic did not make any diagnostic mistakes in this range.

CIP-2 —&— CIP-2 —&—

CIP-4 —-¢-— CIP-4 —-¢-—

8 | Majority -+ 7 8 | Majority -+
Election £ Election -1

7k Cligue --#-- X 7k Cligue --#--

Misdiagnosed fault-free units (AMO)
Misdiagnosed faulty units (AM1)

- . olm—m
0 10 20 30 40 50 60 70 0 10
Fault percentage Fault percentage
(a) Average misdiagnosed fault-free units (b) Average misdiagnosed faulty units

Figure C.3: Average misdiagnosed units versus fault set size

Fault arrangement. For analyzing group faults we used the user-defined static fault patterns
shown in Figure C.4. The measurement results for the whole system can be seen in Table C.5.
The diagnostic algorithms computed the implication sets 1, 2, and 4-step implication, but
as we expected, there was no significant improvement using 4-step implications over 2-step
implications. Note, that for Pattern (a) neither algorithms diagnosed incorrectly the fault-
free units, and even for Pattern (b) only the CIP-2 algorithm made such mistakes. The
Clique again did not make any diagnostic mistakes. Also note, that the maximum number
of incorrectly diagnosed faulty units is surprisingly small compared to the fault set size.
This is due to the sure fault classifications provided by the detected contradictions.

The advantage of user-defined fault patterns is that the simulation environment can
selectively prepare statistics to a subset of chosen units. We used this feature to verify
the behavior of the diagnostic algorithms on the fault group borders. For this purpose the
border region indicated by grey background Pattern (a) was chosen for selective statistics.
Diagnostic mistakes occurred only for isolated faulty units, none of the units in the border
area have been misdiagnosed.

Diagnostic information. Like Table C.5 shows, inference propagation (increasing the length
of implication chains) improves the diagnostic performance. Figure C.5 presents this effect in
the case of randomly injected fault patterns consisting of 25 and 50 percent faulty units. The
number of simulation rounds with incorrect diagnosis is shown in the function of inference

propagation iterations. The diagnostic information used in the fault classification were

C.2. MEASUREMENT RESULTS C-11

(a) Closed fault pattern (b) Open fault pattern

Figure C.4: Fault patterns to examine diagnosis on the fault group borders

Table C.5: Maximum misdiagnosed units in group fault patterns

Majority Election Clique CIP-2 CIP-4
Pattern MMO / MM1 | MMO / MM1 | MMO / MM1 | MMO / MM1 | MMO / MM1
(a) 1-step 0/ 9 0/ 7 0/ 0 0/ 9 0/ 7
2-step 0/ 6 0/ 6 0/ 0 0/ 8 0/ 6
4-step 0/ 5 0/ 6 0/ 0 0/ 8 0/ 6
(b) 1-step 0/ 8 0/ 5 0/ 0 4/ 6 4/ 5
2-step 0/ 2 0/ 4 0/ 0 3/ 6 6/ 3
4-step 0/ 2 0/ 4 0/ 0 3/ 5 6/ 2

increased gradually from one-step implications to four-step implication chains. The results
justify our assumption: the measured values quickly converge to a lower limit and subsequent

inference propagation iterations improve diagnostic accuracy less and less.

Topology. We also examined the effect of system topology on diagnostic accuracy. Three
regular interconnection topologies were simulated as illustrated in Figure C.6: (a) hexagonal
toroidal grid with three connections, (b) 2-dimensional toroidal mesh with four connections,
and (c) triangular toroidal grid with six connections. Figure C.7 plots the number of simula-
tion rounds with incorrect diagnosis in the function of connectivity. Random fault patterns
consisting of 25 and 50 percent faulty units were injected in the system. As it can be seen,
all of the heuristics perform better regardless of fault set size as the number of connections
increases. In a completely connected system each heuristic would provide a correct and

complete classification.

Time complexity versus diagnostic information. As seen in Table C.6, the LID methods
have linear time complexity with respect to the number of transitive propagation iterations,
except the LTC algorithm. In the LTC algorithm the amount of considered diagnostic
information depends on the local environment from which the implications are collected. The
complexity of the method is O(nv}) in the function of the vy size of the local environment.
The table contains the total simulation time of the 512 rounds in seconds, for the default

system composed of 144 units. The duration of a single diagnosis with three iterations

C-12 APPENDIX C. SIMULATION OF THE LID ALGORITHMS

500% Majority —2— |- 500 W " *
| Election -—->¢--- N A oo o E

Clique - x
& . CIP-2 (& =
S a0l clp-4 ——m—- 2 4004
k) e
2 =
2 g
o S 300 F
S 300 3
g 8
S £ L
g 200 \bb E
2 \ °
0 . S 100
2 R T S
S e | 14
& w0 T RS -3

0 = -
1 2 3 4
0 o = Length of implication chains
! 2 3 4 ’ Majority —&— Clique v CIP-4 ——&--
Length of implication chains Election ----%--- CIP-2 £}
(a) Incorrect rounds at 25 percent faults (b) Incorrect rounds at 50 percent faults

Figure C.5: Simulation rounds with incorrect diagnosis versus implication length

@ (b) (©

Figure C.6: Simulated system topologies

ranges from less than 5 milliseconds (for the fastest CIP-2 algorithm) to 8 seconds (for the
slowest LTC algorithm), which are more than adequate for practical applications.

The results were obtained using a single processor system equipped with Pentium Celeron
processor running at 333 MHz clock frequency. At the time of writing this configuration
is regarded as a low-class personal computer. The code of the simulating environment
and the simulated algorithm are linked together into a single executable. Unfortunately,
the employed development software did not support the detailed examination of program
modules, therefore we could only measure the total simulation time. As a consequence, the
time measurements contained a constant, uniform error: the time spent in the simulator.
To eliminate this error we created a null diagnostic program, which simply copied the
set of physical units states into the set of diagnosed unit states, furthermore did nothing.
By modifying the time measurement results with the delay of the null program we could

eliminate the measurement error.

C.2. MEASUREMENT RESULTS C-13

Majority —A— ;
Election - o
500 ¢ Clique - |1 500
& CIP-2
s CIP-4 -~ 7
e S 400
3 400 -
o : =]
c e c
g 3
g £ 300 ¢
G 300 (N @
(5 0
5 g
o
g 2 200 |
£ 200 | 2
2 AN =
- N 100
g .
=}
(=}
@
0
6 ’ Majority —&— Clique v CIP-4 ——&--
Connectivity of testing graph Election —X-—- CIP-2 —&}
(a) Incorrect rounds at 25 percent faults (b) Incorrect rounds at 50 percent faults

Figure C.7: Simulation rounds with incorrect diagnosis versus connectivity

Table C.6: Time complexity versus number of iterations

Simulation time (seconds)
Iterations LMIM DIL LTC CIP-2 CIP-4

None 4.3 7.3 4.8 14 1.5
1 796.4 17.3 170.5 1.8 1.9
2 1582.3 27.6 1215.6 2.1 2.5
3 2233.1 38.2 4275.3 2.4 2.9

C.2.2 Comparison to existing probabilistic methods

In order to compare the performance of the developed probabilistic methods to the existing
approaches, we implemented several known algorithms taken from the literature, namely:
the Blough, Sullivan, and Masson (BSM) algorithm [62], the LDA1 algorithm of Somani
and Agarwal [63, 64], and the Dahbura, Sabnani, and King (DSK) algorithm [67, 68]. Also
included in this comparison is our CFT algorithm, which despite that it was developed by
the author is treated as an external algorithm as it does not fit into the framework of local
information diagnosis. The mentioned algorithms are all included in Section 1.2.2, which
outlines their fault classification mechanism.

During the measurements we experienced that the diagnostic accuracy provided by the
BSM algorithm is so low, that it is simply not comparable to the other methods. Therefore,
the BSM method was omitted from the diagrams.

System size. In Figure C.8 the average number of incorrectly diagnosed units in the percent-
age of the system size are displayed for all of the compared algorithms. The measurements
were carried out under the same circumstances as in the previous section. Clearly, the infer-
ence propagation based LID methods have the best overall diagnostic accuracy. The scalar
LID methods provide worse accuracy than the DSK, CFT, and LDA1 algorithms with re-

C-14 APPENDIX C. SIMULATION OF THE LID ALGORITHMS

gard to fault-free to faulty (benign) diagnostic mistakes, but they perform much better with
regard to faulty to fault-free (malign) diagnostic mistakes. The higher benign misdiagnosis
only reduces the amount of available resources, while the lower malign misdiagnosis implies
that the CIP algorithms are less prone to endanger system integrity by missing faulty proces-
sors. Therefore we say that scalar methods have more favorable diagnostic properties than
the methods taken from the literature, despite that they have similar overall (AM0+AM1)

diagnostic inaccuracy.

5 5
g s T A4 _
—
2,1 1 Sat A
2 2 g A G s
E mmmmm e Ko S S X §2) S
=] X s
g3r 2% oo . . .
E 5
F 8
8 °
o 2F E Q
2 O 1%
8 OO © o o) g
S o4 ST 4 = 8
(] o
S 1t . 2
2 s
s
TR ACEEEET T
ol —mg ‘ -
0 50 100 150 200 250 300
System size
CIP-2 —&— Election {1 CFT @ CIP-2 —&— Election {1 CFT @~
CIP-4 —X— Clique -~~~ LDAL ~ & - CIP-4 —%— Clique -~ - LDAL — & -
Majority - DSK --©-- Majority - DSK --©--
(a) Average misdiagnosed fault-free units (b) Average misdiagnosed faulty units

Figure C.8: Average misdiagnosed units versus system size

Fault set size. The developed and the existing algorithms are compared with regard to fault
set size in Figure C.9. The figure presents average number of incorrectly diagnosed units
in the percentage of the system size, measured with the same settings as in the previous
section. It can be seen that for smaller fault sets all the probabilistic algorithms perform
quite well (less than 1 percent of the total number of units is misdiagnosed under 30 percent
fault probability!), but the strength of the inference propagation approach is obvious above
25 percent fault probability. The difference in the diagnostic accuracy increases in parallel
with higher fault percentage.

Invalidation. A notable advantage of local information diagnosis based methods is that
they are based on generalized test invalidation and therefore are capable of utilizing the
additional diagnostic inferences contained in non-symmetric invalidation models. To verify
the improvement the extra implications yield, we studied the behaviour of the algorithms
in the homogeneous symmetric, four homogeneous non-symmetric, and a heterogeneous
test arrangement. The heterogeneous situation was imitated by randomly selecting the
test invalidation of each unit with equal probability from the set of non-equivalent testing
models listed in Table 1.1. The simulated system contained 144 processors arranged in a
two-dimensional toroidal mesh topology, of which 50 percent was faulty. The results show

that the diagnostic accuracy of LID methods is in general several times higher than that

C.2. MEASUREMENT RESULTS C-15
16 T T 16 T T
CIp-2 —&— CIp-2 —&— A
CIP-4 —-¢-—- CIP-4 —-¢-—- ;
14 | Majority - 14 | Majority - !
Election -3 Election -3
Clique —=—- Clique —=—-
12 + DSK --©&-- 12 + DSK --©&--
CFT -~ @ CFT -~ @ o
LDAL —-A-— LDAL —-A-— /
10 + 10 + ‘o

Misdiagnosed fault-free units (AMO)
Misdiagnosed fault-free units (AMO)
©

30
Fault percentage

20 40 20 30 40

Fault percentage

(a) Average misdiagnosed fault-free units (b) Average misdiagnosed faulty units

Figure C.9: Average misdiagnosed units versus fault set size

of the algorithms taken from the literature. For certain invalidation models: Tox and Txg
the difference can be more than one order of magnitude, but also in the heterogeneous case
it is quite significant. We must also mentioned that although the inference extraction and
propagation procedures generate all of the available implications, the employed fault classifi-
cation heuristics are invalidation-independent. Taking into consideration the characteristics
of the different non-symmetric invalidation models could result in much better diagnostic
performance in certain cases (e.g., the Tx; model). However, our aim was to present a
general diagnostic methodology, therefore we intentionally did not make adjustments for

improving the methods in particular situations.

Table C.7: Average misdiagnosed units in various invalidation models

PMC, Txx | ST, Tgx HK1, T;x Txo BGM, Tx; | Random
AMO / AM1 | AMO / AM1 | AMO / AM1 | AMO / AM1 | AMO / AM1 | AMO / AM1

Majority | 0.15/ 0.33 | 0.00 / 0.02 | 1.89/ 0.06 | 0.00/ 0.00 | 0.02/ 1.56 | 0.01/ 0.85
Election | 0.00 / 1.53 | 0.00 / 0.02 | 0.00/ 1.58 | 0.00/ 0.00 | 0.02/ 2.02 | 0.04/ 081
Clique 0.00 / 0.00 | 0.00/ 0.00 | 0.00/ 0.00 | 0.00/ 0.00 | 0.00/ 0.63 | 0.01/ 0.25
CIP-2 450 / 063 | 0.00/ 0.19 | 566/ 0.88 | 047 /1525 | 0.19/ 0.00 | 2.26 / 1.33
CIP-4 340/ 0.81 | 000/ 019 | 412/ 147 | 1.51/14.20 | 0.19/ 0.00 | 2.08/ 1.22
BSM 2.54 /13.71 | 0.00 /13.21 | 1557 / 13.21 | 2.54 / 34.47 | 2.54 / 0.00 | 2.33 / 11.92
DSK 1.80/ 388 | 0.00/ 217 | 823/ 949 | 595/ 952 | 1.24/ 3.55 | 1.81/ 3.98
CFT 135/ 296 | 000/ 1.85 | 7.33/ 7.83 | 6.20/ 9.40 | 1.85/ 2.03 | 1.27/ 3.01
LDA1 137/ 399 | 000/ 297 | 7.53/ 6.42 | 3.49/21.99 | 1.37/ 0.00 | 1.30/ 3.77

Time complezity versus system size. Table C.8 lists the simulation time of the compared
algorithms. The table contains the total time of the 512 simulation rounds in seconds for 25
percent fault probability. The LID methods were executed in one iteration. The duration

of a single diagnosis ranges from less than 80 useconds (for the fastest BSM algorithm) to

C-16 APPENDIX C. SIMULATION OF THE LID ALGORITHMS

22 seconds (for the slowest LMIM algorithm). The 22 second delay for a system containing
324 processors may be acceptable in practical situations, but it is obvious that the O(n?)
time complexity of the LMIM algorithm makes it inapplicable for larger systems.

Table C.8: Time complexity versus system size

Simulation time (seconds)
Size LMIM DIL LTC CIP-2 CIP-4 BSM DSK CFT LDA1

36 4.4 1.3 28.0 0.2 0.2 0.04 0.08 0.08 0.05
64 69.5 3.8 656 0.5 0.6 0.06 0.19 021 0.11
144 796.1 17.0 170.2 14 1.5 0.14 0.70 0.82 0.36
256 44287 544 320.8 2.0 2.5 0.24 2.21 2.51 0.46
324 | 11505.2 86.5 408.6 2.6 3.2 0.34 3.48 3.98 0.60

To make the time complexity of the various algorithms easy to evaluate, we plotted the
simulation time against the number of iterations and against the system size in Figure C.10.
The diagrams had to be scaled down by the maximum value in order to be comparable. The
polynomial time complexity of the LTC algorithm with regard to iteration number, and the
polynomial time complexity of the LMIM and DIL algorithms with regard to system size
are clearly visible. Interestingly, the CFT algorithm also shows polynomial time complexity,
but it is due to the constant fault probability, since CFT has quadratic time complexity
respective to the fault set size.

MM —2— MM —2—

DIL - DIL ¢

LTC - LTC -

CIP-2 -~ I CIP-2 -~

0.8 | CIP-4 --m-- e . 08 FH Clp-4 —m—

- ' BSM --©o--

DSK -~ @

= Py = CFT b

N ooef - & op [LDAL 2
3 - ©
£ s £
5 . - IS
< " X £

g 04r ’ g 04y
F =
02 L7 1 02+
0 &l ‘) 0)
0 1 2 3 0 50 100 150 200 250 300
Number of iterations System size
(a) Time complexity versus iterations (b) Time complexity versus system size

Figure C.10: Measured time complexity

Appendix D

Communication protocols for

distributed diagnosis

This chapter presents the synchronous and asynchronous communication protocols employed
in the initial and working phase of the developed distributed diagnostic algorithm. These
protocols are integral parts of the diagnostic procedure, as in distributed algorithms the re-

liable broadcast of the local test result report messages is essential for the correct operation.

D.1 Communication in the initial stage

The initial stage of the algorithm is executed immediately after switching on the Parsytec
GCel machine. The purpose of the initial stage is to obtain an initial diagnostic image of the
system, therefore the information exchange takes place in only one diagnostic round (i.e.,
every processor generates and distributes its local syndrome only once). This means that
the employed communication protocol must implement a high-performance fault-tolerant
global multicast. The characteristics of the required communication protocol can be sum-
marized as: test result report messages are sent from each fault-free processor to every other
reachable fault-free processor, the system may contain multiple faulty units, synchronous
communication must be used for fast message transfer, the protocol must use “dummy mes-
sages” to handle irregularity in the interconnection topology, communication terminates
when each message at every unit was delivered, a separate termination stage is necessary.
The choice of synchronous communication for the initial stage is motivated by the fol-
lowing considerations. Since messages are exchanged between every connected fault-free
processors, the message volume can be very high depending on the size of the system. The
accurate number of messages in a two-dimensional mesh topology having x X y processors—
assuming that processors forward the messages to all of their fault-free neighbors and faults

are permanent—can be written as:

(z +y) (4oy — 2(z + y) — 4 + b + 26¢)

where ¢ is the number of faulty units, ¢, is the number of faulty units situated on the
borders of the mesh, and ¢, is the number of faulty units located in the corners of the mesh.

The fastest possible communication model must be employed to minimize the distribution

D-1

D-2 APPENDIX D. COMMUNICATION PROTOCOLS FOR DISTRIBUTED DIAGNOSIS

7 Communication sequence: > Wait
‘ % m) Send
£) Receive
‘ 1. 2 3. 4. 8.

*********** 8o w0 on g 80w

O =

O
O=O Q)

Figure D.1: The synchronous communication protocol

time of messages. The synchronous communication model has low-level supported built-in
the transputer hardware, thus it is much faster than the asynchronous transfer methods. For
this and other reasons [107] synchronous communication is preferred when large information
volume needs to be exchanged.

The probability of multiple simultaneous fault occurrences is considerable after switch-
on, requiring protocols tolerating even large amount of faulty units in the initial stage. For
this purpose our protocol has a simple routing mechanism which does not execute separate
fault-handling code. On the contrary, the larger the number of faulty units in the system the
faster the protocol will be (because the number of transmitted messages is decreased). The
operation of the protocol in a 5 X 5 two-dimensional bordered mesh topology is illustrated
in Figure D.1 (the processor-to-processor interconnections are not shown).

The protocol is composed of a set of communication actions executed in a predefined
schedule. The communication steps are described in the right side of the figure. Black
arrows represent a send, gray arrows a receive activity. The sequence of communication
actions, however, is not identical for every unit. Two types of units exist, represented by
white and shaded nodes that are placed on the mesh in a chequered pattern. The white
nodes correspond to units that use the upper communication sequence. These units in the
first step of the protocol send in the north direction, then in the second step receive from
south, then in the third step send to west, etc. The shaded nodes use an inverted sequence,
created by swapping the role of communicating parties (senders become recipients and vice
versa) and accordingly, the direction of transmission. These communication actions are
listed in the lower row. Figure D.1 also illustrates the first step of the protocol in the left
side. Note, that except some units on the border that are forced to wait, practically all of the
processors are transferring messages. In the second step the direction of message transfer
is inverted, so again almost every processor will have a communicating pair and different
units on the mesh border will have to wait. So continues the execution of the protocol until
the eighth step, when the whole sequence is started again. The protocol is applicable for
torus topology as well as bordered mesh topology, in fact in a toroidal topology there are
no waiting nodes at all.

The above mechanism forwards incoming messages to each of the fault-free neighbors of a

D.1. COMMUNICATION IN THE INITIAL STAGE D-3

certain unit (except of course the sender of the actual message). This ensures that each fault-
free processor belonging to the same strongly connected component will eventually obtain
every test result report message. However, the protocol is not minimal in terms of messages
transmitted. Some processors may receive the same information two or even more times.
Additional copies of the same, already received message are ignored. Nevertheless, the time
spent by transferring these redundant TRR messages is lost. More complicated routing
algorithms can reduce or even eliminate this redundancy. Two main reasons motivated the

choice of the simplest possible routing method:

e An improved routing algorithm may require the knowledge of the global diagnostic
image of the system. This system-wide diagnostic image can be needed for the routing
algorithm in order to construct an optimal message distribution scheme. However, this

global diagnostic information is not available during the initial stage.

e A smaller message count does not necessarily imply the reduction of the execution
time. The execution of a complex routing algorithm to optimize the transmission
can be time-consuming. Furthermore, the trade-off between the two choices, that is
whether to use a simple method with fast execution time and some redundant messages
or a more complex and slower method with no redundant messages, is application-

dependent.

Some messages transmitted during the synchronous communication process are dummy
messages, that is they do not represent valuable information. They are only required to
maintain the continuous operation of the synchronous protocol. The necessity of dummy
messages is illustrated in Figure D.2(a). The numbers written on the arrows show the
amount of diagnostic messages that the adjacent unit can send to the respective direction.
As it can be seen, the number of messages transmitted in different directions are usually not
equal. Consequently, after a certain number of communication rounds the processors will
have no more information to send in one direction while still several messages are waiting
to be forwarded in other directions. Naturally, processors cannot ignore the “depleted”
directions, since then a deadlock, breaking the execution of the protocol and blocking the
entire system, would occur. As a solution, empty “dummy messages” must be transferred
to all directions in which no new information is available.

The synchronous communication terminates when all of the TRR messages have been
delivered. If the system is cut up into several strongly connected components by barriers
formed of faulty processors, only the members of the same strongly connected component
are reachable and communication with units in other components is impossible. Therefore,
the knowledge of the node accessibility graph is necessary in order to detect when the
termination criterion is fulfilled. Note, that although a global diagnostic image (from which
the node accessibility graph may be derived) is not available during the communication,
by the time the last TRR message is received and processed the diagnostic image will be
gradually completed (recall, that diagnosis is integrated with message transfer), and hence
the termination criterion can be correctly evaluated.

Not all processors terminate simultaneously, as units are located in various distances

from each other. This phenomenon is illustrated in Figure D.2(b). The numbers written

D-4 APPENDIX D. COMMUNICATION PROTOCOLS FOR DISTRIBUTED DIAGNOSIS

(a) Necessity of dummy messages (b) Necessity of a termination phase

Figure D.2: Handling irregularity of the interconnection graph

into the nodes indicate the maximum distance of the respective unit to any other unit. Mes-
sages travel one direct connection per one communication round, thus units in more central
positions may receive every TRR message earlier than outer units. Immediate termination
of the earlier finished unit could cause a deadlock, because its neighbors are unaware of the
fact that the unit has fulfilled its termination criterion. Two solutions can be applied to

this problem:

1. Processors can maintain a record about the messages received by their neighbors. They
are informed about these messages, since either they sent a certain information to the
neighbor, or the neighbor received the information from another unit and forwarded
it to them. A processor can detect if any of its neighbors is terminating by examining

the maintained records.

2. A separate termination phase can be employed. The finishing processor must perform
one additional communication round. During this final round, the processor receives
pending messages from its neighbors (all of these messages are either dummy or dupli-
cate, otherwise the termination condition would not have been met) and sends special
messages to each neighbor notifying them about its intention to finish. The termina-
tion phase method does not require memory for storing message record opposite to
the first solution. It also does not imply longer execution time of the communication
protocol, as the last finishing processor—without active neighbors to inform about the

termination—will not perform the additional termination phase.

Based on these considerations the second solution was integrated in the developed dis-
tributed diagnostic algorithm.

D.2 Communication in the working stage

The working stage of the algorithm begins after the initial stage has terminated. During
further operation the diagnostic algorithm remains in the working stage (except when two
isolated parts of the system are united by a processor repair and the algorithm returns to the

initial stage). As the majority of potential faults were detected during boot-time, infrequent

D.2. COMMUNICATION IN THE WORKING STAGE D-5

fault events with a small number of simultaneous fault occurrences are expected. Therefore,
only the differences from the initial system-wide diagnostic image need to be distributed and
processed. Messages are disseminated with a communication protocol having the following
main characteristics: asynchronous communication model, lower message count than in the
initial stage, more complex routing method, distributed message routing based on local fault
patterns, no termination phase is necessary.

As after the initial stage a global diagnostic image is available and only a moderate
amount of new diagnostic events (fault occurrences and unit repairs) are expected, an
event-oriented, incremental test result report distribution strategy can be used to signif-
icantly reduce the communication load. However, the communication model used in the
initial stage is not suitable for this purpose. Synchronous transmission works well for inten-
sive communication and large message count. The infrequent communication in the working
stage would cause the system to be generally in a state waiting for synchronization, since the
sending process would be blocked until the receiving process is ready. For low intensity mes-
sage transfer the asynchronous communication model, performing the low-level send/receive
actions in the background and allowing the processor to execute other tasks as well, is much
more appropriate.

Because of the entirely different nature of communication, a new protocol with dis-
tributed message routing was developed for the working stage. Instead of choosing between
the two alternatives: whether to employ a simple but redundant method or a more complex
routing procedure with less redundant messages, a combined mechanism was developed.
A simple routing method was created to provide an optimal message dissemination in the
fault-free system structure. Routing is based on the relative position between the unit for-
warding the incoming message and the originator of the message. However, the method
does not function when faulty units are present in the system. Therefore, a supplemental
procedure which compensates for the effect of faulty units was added. The characteristics of
the resulting routing algorithm are optimal information transfer in a fault-free system, and
low amount of redundant messages if faults are present. The routing process is executed
independently on each processor using local test results, and it is automatically adapted to
the possible changes of the fault situation.

The routing protocol of the working stage implements a one-to-all multicast, fulfilling
two main requirements: (1) it guarantees that every fault-free unit reachable by the message
originator eventually receives the information, and (2) the generated message volume is kept
as low as possible (in the optimal case the processors receive every message only once).

The developed routing algorithm is based on three different source of knowledge: (1)
relative position from the message originator, (2) local fault pattern, and (3) additional
directions included in the message. The relative position between the message originator
and the unit forwarding the message are used to create an optimal distribution scheme for
the fault-free case. An example optimal distribution path is presented in Figure D.3(a).
When a processor receives diagnostic message, it calculates the relative position from the
unit starting the message. In the so called “minor” relative positions (northwest, southwest,
southeast, northeast areas marked by white arrows) messages are forwarded in only one

direction. In the “major” relative positions (northern, western, southern and eastern line of

D-6 APPENDIX D. COMMUNICATION PROTOCOLS FOR DISTRIBUTED DIAGNOSIS

forward fault pattern

message forward direction i forwarding unit

® Ii

NN

message originator

(a) Routing in a fault-free system (b) Routing based on local information

Figure D.3: The asynchronous communication protocol

processors) two copies of the message are forwarded to two different neighbors. The method
is optimal for the fault-free mesh, that is all units receive the messages only once.

If the system contains faulty units as well, the previous method in itself is not sufficient.
Faults are obstacles in the way of message distribution, so employing the presented method
some processors can be left-out of the communication. Additional messages must be gener-
ated which can get “behind” the faulty units to compensate for the inhibitive effect. The
two-dimensional mesh structure containing faulty processors may be considered as a maze.
Then, the problem is to find a path in the maze from the entrance (the message originator)
to every point (fault-free reachable processor) avoiding the walls (failed units).

For this purpose, an idea based on the famous right-hand rule of solving maze problems
is used. The rule is utilized in the algorithm in the following way. Every unit examines the
local fault pattern in the forward direction (e.g., if the message was received from south,
then the forward direction is north). The local fault pattern is formed by the fault state of
the five nearest units in the forward direction (see Figure D.3(b)). When there are faulty
units in the forward local fault pattern, units add new messages to the distribution scheme.
There are 32 different message addition rules, as there are five units and 2° fault-free/faulty
combinations in the forward fault pattern. For brevity’s sake we omit the description of

these rules. In general, the additional messages travel along the sides of the *

‘walls”, like in
the right-side rule. Therefore, messages must be able to “turn” left or right on the corner
of an obstacle. A turn can be accomplished only in two steps, so routing information must
also be included within the message. Two-step moves can be realized by considering these
routing directions at the recipient unit. As messages travel on their distribution path and
encounter obstacles formed by faulty units, with two-step distribution rules they can get
behind the obstacles, and from that point the original forwarding algorithm again provides

their optimal dissemination.

Appendix E

Reliable storage in APEmille

A reliable device used to store persistent information or intermediate data structures of
compound operations is called a stable storage [94, 108]. The two main properties of this

abstract device can be summarized as follows:

e Resistance against external hardware or software failures (processor failures, invalid

storage accesses) and internal errors such as decays, and
e Atomicity of read and write operations.

The stable storage system we propose for recording checkpoints and other persistent
data resides entirely on the disk storage of the Local Host computers. Only a part of the
disk area is devoted to this purpose, the rest holds a normal UNIX file system. There is
a special process, called the Storage Manager (SM), which has an exclusive access to the
stable storage area. We assume that the resource protection and process isolation services
provided by the OS are adequate to prevent any failed process to corrupt the data in the
stable area.

Besides, the storage system must handle the following types of faults: ezternal hardware
faults such as the erroneous behavior of the host processors, external software failures that
manifest themselves at the user interface of the Storage Manager, and internal errors of the
SM process and the disk drive/controller. The stable storage is designed to hold objects
that can have the size of a single or multiple memory pages. We are not interested in the
internal structure of an object, but we require that a large object of many pages should
occupy a contiguous space in the memory. There are two operations defined on the objects:
a write command to create or update an object in the stable storage, and a read command
to retrieve the last written value of the object.

The techniques proposed to realize the stable properties are listed in Table E.1. Soft
internal errors originated in the disk drive and controller are partly handled by the hardware
itself; modern storage systems are equipped with powerful coding mechanisms to detect and
correct decay errors. To tolerate soft errors during disk access we employ the careful disk
operations, as described in [109]. A careful read operation repeatedly performs a normal disk
read until it gets a good status or a predefined limit of retries is exceeded. This eliminates
soft read errors. A careful write operation repeatedly performs a normal disk write followed

by a read until it returns a good status with the data being written. This eliminates null

E-1

E-2 APPENDIX E. RELIABLE STORAGE IN APEMILLE

Table E.1: Realization of the stable storage properties

Desired property Requirement Realization technique
Fault tolerance of resilience careful disk operations
hardware/software failures stability available copy replication

Replica Majority Commit
consistency access control
semantic integrity checking

Atomicity of indivisibility shadow updating
read/update operations serializability two-phase locking (in ACR)
three-phase commit (in RMC)

writes and bad writes to good addresses. Address value problems are discovered by the

Storage Manager process using access control and a simple semantic check on the objects.

Ensuring storage stability

The techniques that help the Storage Manager process to detect the interaction errors at its

user interface we inherit from [108]. The purpose of these detection techniques are two-fold:

1. they ensure a proper initialization of the transactions by checking that the first access

to the object is valid, and
2. they enforce that the read and write transactions respect their predefined semantics.

The checking of the first access is performed by a key control mechanism. Any transaction
that changes an object must first provide a key, which is inspected by the SM. For the
purpose of the key we suggest to use a checksum, generated from the entire data content of
the object. The checksum mechanism should be inexpensive with respect to the computa-
tion, but must be capable of verifying the integrity of the object. The checksum is stored
together with the object. At the beginning of the transaction the SM compares the stored
and the provided checksums. If they match, then the access to the object is granted to
the requesting process. When the transaction successfully terminates, the Storage Manager
computes a new checksum based the changed data contents and stores it as the new key
to the object. On the next access the requesting process must present the new key to gain
control of the object.

After passing access control the requested transaction can take place. Interaction prob-
lems during the execution of the transaction are detected by checking the semantics of the
performed operation. The following two properties characterize the semantics of atomic

read and write transactions:

P access: any access to an object implies accessing all of the pages it is composed of once
and only once. This property encompasses the unitary (“all or nothing”) characteristic

of the atomic transactions on the object.

C access: all the pages that constitute an object are accessed in the ascending order of

their logical address. This property helps to filter out incorrect accesses to the object.

E-3

These properties fit well the purpose of storing checkpoints in our stable storage, since the
scientific computations running on APEmille typically use large contiguous data structures
such as vectors and arrays. Although the semantic checking power they provide is not very
strong, they detect the most common malfunction during the stable storage access [108],
the address value failure. And they can be verified quite easily by a simple counter. More
powerful semantic checking mechanisms (such as application-specific data acceptance tests)
can be developed with a deeper knowledge of a certain application.

In order to implement stability, there must be at least one intact and up-to-date in-
stance of the data deposited in the stable storage at any time. Permanent internal faults
and external hardware/software failures can make the disk storage of any host computer
unavailable. Therefore, the stable data area must be maintained at multiple host computers.
The different copies of the stable data area are called replicas, they a supervised by a replica
manager (in the APEmille the Storage Manager process can fulfill this role) which uses a
replica control protocol to keep the available copies up-to-date and organize the accesses to
the replicated objects user-transparently, as if it would be a single, highly available storage
system. Two protocols were selected for APEmille depending on the system configuration:
the available copy replication (APC) for smaller systems, and the Replica Majority Commit
(RMC) protocol for complex configurations. Details of these replica control protocols are
presented in the next section.

The atomicity of the read/write transactions can be guaranteed by fulfilling two basic
conditions. The simplest method for ensuring the unitary or indivisibility property of write
transactions is shadow updating [110]. This technique allocates two buffers of identical size
to record the object. One of the buffers has the actual data of the object, the other one is
called the shadow buffer. A binary pointer indicates which buffer plays the active/shadow
part at a certain point of time. A write operation is carried out in two steps: (1) the new
value of the object is written in the shadow buffer; (2) the pointer is inverted, i.e., the role of
the active/shadow part is exchanged. If an error occurs during the first step, then the second
step is omitted, thus the changes are not reflected in the state of the object. The second
step is so simple, that it can be implemented as an atomic action using a read-modify-write
(RMW) or test-and-set (TAS) instruction found in most modern processors.

The serializability property means that atomic transactions must always be carried out
according to a serial schedule, or in other words, there must exist a partial ordering of read
and write events. This property also plays an important role in the multiple copy update
problem, therefore serializability is inherent to the replica control protocols mentioned above:
available copy replication employs the two-phase locking technique, while Replica Majority

Commit contains a modified three-phase commit protocol.

Management of the replicated data

An ideal replication control protocol should guarantee the consistency of the replicated data
in the presence of any arbitrary combination of non-Byzantine failures, while providing
the highest possible data availability and requiring the lowest possible overhead. Data

consistency in a replicated storage system means that the distributed processes accessing

E-4 APPENDIX E. RELIABLE STORAGE IN APEMILLE

the stored information experience an identical view of the global state of the replicated
data at any point of time. This notion incorporates two aspects: the mutual consistency of
different copies, and the internal consistency of each copy. Copies of the data are mutually
consistent if they are identical; since this is impossible to achieve for every instant of time
this constraint is relaxed to require that multiple copies must converge to the same final

state as all access activities cease.

Internal consistency of the data refers to the information content and involves both the
semantic integrity of the stored object and the atomic property of the update operations.
Semantic integrity stresses the need for the stored data to reflect accurately the state of
the real world object it describes. Atomic transactions guarantee that the storage system
reflects either none or all of the actions caused by a create/update transaction. Since the
transaction is committed only if it does not violate semantic integrity, atomic transactions
guarantee the internal consistency of the data, and so does any serial schedule of atomic
transactions. Thus for a replicated storage with the possibility of concurrent transaction

processing, mechanisms must be provided to generate serializable transaction schedules.

In the absence of network partitions the consistency of the replicated data can be en-
sured by the available copy replication (ACR) protocols [111]. These replication control
protocols were designed to provide better fault tolerance characteristics than voting meth-
ods in environments that preclude partial communication failures. The operation of ACR
protocols is based on: (1 imposing a total ordering on all writes so that all replicas receive
these requests in the same order, (2) broadcasting these writes to all available replicas, and
(3) requiring that replicas residing on nodes recovering from a failure remain unavailable
until they are brought up-to-date. Using this mechanism read requests never need to access
more than one available replica, because all available replicas are ensured to be valid and
contain the latest version of the data. Furthermore, the replicated data can be accessed as
long as there is at least one available replica.

The situation is quite different when network partitions (i.e., normally connected and
logically coherent parts of a network are separated by a communication failure) must be
taken into account [112]. This situation may occur in APEmille when two complete con-
figurations are connected together to form an even more potent computing environment.
A major limitation of the available copy replication strategy in this case is that it requires
reliable failure detectors. As network failure detection is usually implemented by time-outs
(which is an unreliable failure detection method), partitioning may lead to falsely suspect
a correct but inaccessible process. For such a case we propose the use of the RMC (Replica
Majority Commit) replication control protocol [113]. The RMC protocol was introduced
to solve the update majority problem in the presence of unreliable failure detectors. The
update majority problem is the task of updating a replicated object according to the ma-
jority voting strategy. Majority voting refers to a replication protocol where a read or write
operation on a logical object must always access some majority of the replicas:

e On reading the object: the transaction accesses some majority of the replicas, chooses
the one with the highest version number, and returns the contents of the selected

replica.

E-5

e On writing the object: the transaction accesses some majority of the replicas, deter-
mines the highest version number in the majority, generates a new version number
by increasing the highest version number, and updates all replicas in the accessed

majority with this new version number.

The update majority problem consists for a set of replica managers to agree on the out-
come of a transaction. A proper algorithm for solving the update majority problem has
the following three properties: (1) uniform agreement: no two failure-free replica managers
decide differently, (2) non-blocking: every failure-free replica manager that starts the pro-
tocol eventually decides, and uniform wvalidity: every failure-free replica manager decides

identically.

Bibliography

[1]

[10]

F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assigment problem
of diagnosable systems,” IEEE Transactions on Electronic Computers, vol. EC-16,
pp- 848-854, Dec. 1967.

T. Bartha and E. Selényi, “Probabilistic system-level fault diagnostic algorithms for
multiprocessors,” Parallel Computing, vol. 22, pp. 1807-1821, Feb. 1997.

T. Bartha, “Effective approximate fault diagnosis of systems with inhomogeneous test
invalidation,” in Proc. of the 22nd Euromicro Conference, (Prague, Czech Republic),
pp- 379-386, Euromicro, Sept. 1996.

T. Bartha and E. Selényi, “Probabilistic fault diagnosis in large, heterogeneous com-

puting systems,” Periodica Polytechnica, 2000. Accepted for publication.

T. Bartha and E. Selényi, “System-level diagnosis based on local test results,” in
Proc. of the 1996 Mini-Symposium, pp. 35-36, Dept. of Measurement and Information
Systems, Jan. 1996.

T. Bartha, Rendszerszinti diagnosztikai algoritmusok multiprocesszoros rendszerekhez.

Dept. of Measurement and Information Systems, 1999. Mérési atmutato.

T. Bartha and E. Selényi, “Efficient probabilistic diagnosis algorithms for large sys-
tems,” in Proc. of the 3rd European Dependable Computing Conf. (EDCC-3), (Prague,
Czech Republic), Sept. 1999. Fast abstract and poster presentation.

T. Bartha and E. Selényi, “On classification heuristics of probabilistic system-level
fault diagnostic algorithms,” in Proc. of the Austrian-Hungarian Workshop on Dis-
tributed and Parallel Systems (DAPSYS-2000), (Balatonfiired), Sept. 2000. Accepted

for publication as full paper.

T. Bartha and E. Selényi, “System level diagnosis of multiprocessors using local infor-
mation,” in Proc. of the Austrian-Hungarian Workshop on Distributed and Parallel
Systems (DAPSYS-96), (Miskolc), pp. 183-190, Oct. 1996.

9

T. Bartha and A. Pataricza, “Distributed system-level diagnostic algorithm,” in Proc.
of the 14th Scientific Workshop, (Budapest), Kandé Kdlman Technical College, May
1994.

XXV

xxVvi

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

T. Bartha, A. Pataricza, and J. Altmann, “On integrating error detection into a fault
diagnosis algorithm for massively parallel computers,” in Proc. of the IEEE Int. Symp.
on Parallel and Distributed Systems (IPDS-95), (Erlangen, Germany), pp. 154-164,
IEEE Computer Society Press, Oct. 1995.

T. Bartha, A. Pataricza, and J. Altmann, “An event-driven approach to multipro-
cessor diagnosis,” in Proc. of the 8th Symp. on Microprocessor and Microcomputer
Applications (uP’94), vol. 1, (Budapest), pp. 109-118, Budapest University of Tech-
nology and Economics, Oct. 1994.

T. Bartha, “Diagnosis algorithms of multiprocessor systems,” Master’s thesis, Bu-

dapest University of Technology and Economics, Oct. 1993.

T. Bartha and P. Maestrini, “Backward error recovery in the APEmille parallel com-
puter,” in Proc. of the 3rd European Dependable Computing Conf. (EDCC-3), (Prague,
Czech Republic), Sept. 1999. Fast abstract and poster presentation.

T. Bartha, “A proposal for the recovery subsystem of the APEmille parallel com-
puter,” tech. rep., Istituto di Elaborazione della Informazione, Pisa, Italy, 2000. Ac-
cepted for publication.

T. Bartha, “Utilizing backward error recovery to achieve fault tolerance in a SIMD
supercomputer,” in Proc. of the SafeProcess ’2000 Conference, vol. 2, (Budapest),
pp- 961-966, MTA SZTAKI, June 2000.

T. Bartha, “A backward error recovery scheme for the APEmille parallel computer,”
in Proc. of the 11th European Workshop on Dep. Comput. (EWDC-11), (Budapest),
June 2000. Electronic publication (http://domino.inf.mit.bme.hu/EWDC-11.nsf).

J.-C. Laprie, “Dependable computing and fault tolerance: Concepts and terminology,”
in Proc. of the 15th Int. Symp. on Fault-Tolerant Computing (FTCS-15), (Ann Arbor,
USA), pp. 2-11, IEEE Comput. Soc. Press, June 1985.

M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand, J. Honig, W. Hohl, E. Michel,
and A. Pataricza, “Fault tolerance in distributed shared memory multiprocessors,”
Lecture Notes in Computer Science, vol. 732, pp. 31-43, 1993.

D. Pradhan, ed., Fault- Tolerant Computing, Theory and Techniques. Englewood Cliffs:
Prentice Hall, 1986.

J. C. Laprie, ed., Dependability: Basic Concepts and Terminology, vol. 5 of Dependable
Computing and Fault-Tolerant Systems. Wien: Springer, 1992.

R. K. Iyer, “Experimental evaluation,” in Special Issue, 25th Int. IEEE Symp. on
Fault-Tolerant Computing, June 1995.

S. Mallela and G. Masson, “Diagnosis without repair for hybrid fault situations,”
IEEFE Transactions on Computers, vol. C-29, pp. 461-470, June 1980.

BIBLIOGRAPHY xxvil

[24]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

F. Cristian, “Understanding fault-tolerant distributed systems,” Communications of
the ACM, vol. 34, pp. 5678, Feb. 1991.

L. Lamport, R. Shostak, and M. Pease, “Tha Byzantine generals problem,” ACM
Transactions on Programming Languages and Systems, vol. 4, pp. 382-401, June 1982.

C. Kime, “System diagnosis,” in Fault-Tolerant Computing: Theory and Techniques
(D. Pradhan, ed.), vol. 2, ch. 8, pp. 577-626, Englewood Cliffs, N. J.: Prentice-Hall,
1986.

A. D. Friedman and L. Simoncini, “System-level fault diagnosis,” IEEE Computer,
vol. 13, pp. 47-53, Mar. 1980.

S. Kreutzer and S. Hakimi, “Adaptive fault identification in two new diagnostic mod-

” in 21st Allerton Conf. on Communication, Control and Computing, (Urbana,

I1.), pp. 353-362, University of Illinois, 1983.

els,

F. Barsi, F. Grandoni, and P. Maestrini, “A theory of diagnosability of digital sys-
tems,” IEEE Transactions on Computers, vol. C-25, pp. 585-593, June 1976.

M. L. Blount, “Probabilistic treatment of diagnosis in digital systems,” in 7th IEEE
Int. Symp. on Fault-Tolerant Computing, pp. 72-77, June 1977.

J. Kuhl and S. Reddy, “Distributed fault-tolerance for large multiprocessor systems,”
in 7th Ann. Symp. on Computer Architecture, pp. 23-30, 1980.

A. K. Somani, V. K. Agarval, and D. Avis, “A generalized theory for system level
diagnosis,” IEEE Transactions on Computers, vol. C-36, pp. 538-546, May 1987.

E. Selényi, Generalized Theory of System-Level Diagnosis. D.Sc. thesis, Hungarian
Academy of Sciences, Budapest, 1985. In Hungarian.

J. Maeng and M. Malek, “A comparison connection assignment for self-diagnosis
of multiprocessor systems,” in 11th IEEE Int. Symp. on Fault-Tolerant Computing,
pp- 173-175, 1981.

C. Kime, “An analysis model for digital system diagnosis,” IEEE Transactions on
Computers, vol. C-19, pp. 1063-1073, Nov. 1970.

J. Russell and C. Kime, “System fault diagnosis: Closure and diagnosability with
repair,” IEEE Transactions on Computers, vol. C-24, pp. 1078-1089, Nov. 1975.

J. Russell and C. Kime, “System fault diagnosis: Masking, exposure, and diagnos-
ability without repair,” IEEE Transactions on Computers, vol. C-24, pp. 1155-1161,
Dec. 1975.

S. H. Maheswari and S. L. Hakimi, “On models for diagnosable systems and prob-
abilistic fault diagnosis,” IEEE Transactions on Computers, vol. C-25, pp. 228-236,
Mar. 1976.

xxviii BIBLIOGRAPHY

[39] R. Gupta and I. Ramakrishnan, “System-level diagnosis in malicious environments,”
in 17th IEEE Int. Symp. on Fault-Tolerant Computing, pp. 184-189, 1987.

[40] S. Hakimi and A. Amin, “Characterization of connection assignment of diagnosable
systems,” IEEE Transactions on Computers, vol. C-23, pp. 86-88, Jan. 1974.

[41] G. Sullivan, “A polynomial time algorithm for fault diagnosability,” in 25th Symp. on
the Foundations of Computer Science, pp. 148-156, 1984.

[42] V. Raghavan and A. Tripathi, “Improved diagnosability algorithms,” IEEE Transac-
tions on Computers, vol. 40, pp. 143-153, Feb. 1991.

[43] V. Raghavan and A. Tripathi, “Sequential diagnosability is co-NP complete,” IEEE
Transactions on Computers, vol. 40, pp. 584-595, May 1991.

[44] H. Fujiwara and K. Kinoshita, “On the computational complexity of system diagno-
sis,” IEEFE Transactions on Computers, vol. C-27, pp. 881-885, Oct. 1978.

[45] G. Sullivan, “An o(t® + |e|) fault identification algorithm for diagnosable systems,”
IEEE Transactions on Computers, vol. 37, pp. 388-397, Apr. 1988.

[46] A. Dahbura and G. Masson, “An o(n??°) fault identification algorithm for diagnosable
systems,” IEEFE Transactions on Computers, vol. C-33, pp. 486—492, June 1984.

[47] A. Dahbura and G. Masson, “A practical variation of the o(n?%) fault diagnosis algo-
rithm,” in 1/th IEEE Int. Symp. on Fault-Tolerant Computing, (New York), pp. 428
433, IEEE, 1984.

[48] S. R. McConnel, D. P. Siewiorek, and M. M. Tsao, “The measurement and analysis
of transient errors in digital computer systems,” in 9th IEEE Int. Symp. on Fault-
Tolerant Computing, pp- 67-70, 1979.

[49] A. Pataricza, K. Tilly, E. Selényi, and M. Dal Cin, “A constraint based approach to
system level diagnosis,” Internal Report 4/1994., University of Erlangen-Nirnberg,
Erlangen, June 1994.

[50] T. Bartha, A. Pataricza, P. Urbdn, J. Altmann, and A. Petri, “Constraint based
system-level diagnosis of multiprocessors,” in Proc. of the 2nd European Dependable
Computing Conf. (EDCC-2), Lecture Notes on Computer Science, (Taormina, Italy),
pp- 403-420, Springer-Verlag, Oct. 1996.

[61] C. Liaw, S. Su, and Y. Malaiya, “Self-diagnosis of non-homogeneous distributed sys-
tems,” in 12th IEEE Int. Symp. on Fault-Tolerant Computing, (New York), pp. 349
352, IEEE, 1982.

[62] S. Huang, J. Xu, and T. Chen, “Characterization and design of sequentially t-
diagnosable systems,” in 19th IEEE Int. Symp. on Fault-Tolerant Computing, (New
York), pp. 554-559, IEEE, 1989.

BIBLIOGRAPHY XXI1X

[53]

[54]

[55]

A. Friedman, “A new measure of digital system diagnosis,” in 5th IEEFE Int. Symp.
on Fault-Tolerant Computing, (New York), pp. 167-169, IEEE, 1975.

T. Bartha, System-Level Fault Diagnosis. TEMPUS Parallel Project, 1996. Electronic
publication (http://mazsola.iit.uni-miskolc.hu/tempus/parallel/fault).

M. Barborak, M. Malek, and A. Dahbura, “The consensus problem in fault-tolerant
computing,” ACM Computing Surveys, vol. 25, pp. 171-220, June 1993.

T. Kameda, S. Toida, and F. Allan, “A diagnosing algorithm for networks,” Informa-
tion and Control, vol. 29, pp. 141-148, 1975.

G. Meyer and G. Masson, “An efficient fault diagnosis algorithm for symmetric multi-
ple processor architectures,” IEEE Transactions on Computers, vol. C-27, pp. 1059—
1063, Nov. 1978.

K. Nakajima, “A new approach to system diagnosis,” in 19th Ann. Allerton Conf. on
Communication, Control, andComputation, pp. 697-706, Sept. 1981.

S. Hakimi and K. Nakajima, “On adaptive system diagnosis,” IEEE Transactions on
Computers, vol. C-33, pp. 234-240, Mar. 1984.

S. Lee and K. Shin, “Probabilistic diagnosis of multiprocessor systems,” ACM Com-
puting Surveys, vol. 26, pp. 121-139, Mar. 1994.

E. Scheinerman, “Almost sure fault tolerance in random graphs,” SIAM Journal of
Computing, vol. 16, pp. 1124-1134, Dec. 1987.

D. Blough, G. Sullivan, and G. Masson, “Intermittent fault diagnosis in multiprocessor
systems,” IEEE Transactions on Computers, vol. 41, pp. 1430-1441, Nov. 1992.

A. Somani and V. Agarwal, “Distributed syndrome decoding for regular intercon-
nected structures,” in 19th IEEE Int. Symp. on Fault-Tolerant Computing, (New
York), pp. 70-77, IEEE, 1989.

A. Somani and V. Agarwal, “Distributed diagnosis algorithms for regular intercon-
nected structures,” IEEE Transactions on Computers, vol. 41, pp. 899-906, July 1992.

S. Lee, Probabilistic Multiprocessor and Multicomputer Diagnosis. PhD thesis, Uni-
versity of Michigan, Ann Arbor, Mich., 1990.

D. Blough, G. Sullivan, and G. Masson, “Efficient fault diagnosis of multiproces-
sor systems under probabilistic models,” IEEE Transactions on Computers, vol. 41,
pp- 1126-1136, Sept. 1992.

A. Dahbura, G. Masson, and C. Yang, “Self-implicating structures for diagnosable
systems,” IEEE Transactions on Computers, vol. C-34, pp. 718-723, Aug. 1985.

A. Dahbura, K. Sabnani, and L. King, “The comparison approach to multiprocessor
fault diagnosis,” IEEE Transactions on Computers, vol. C-36, pp. 373-378, Mar. 1987.

XXX

[69]

[70]

[72]

[73]

[75]

[79]

[80]

BIBLIOGRAPHY

S. Lee and K. Shin, “Optimal and efficient probabilistic distributed diagnosis
schemes,” IEEE Transactions on Computers, vol. 42, pp. 882-886, July 1993.

D. Fussell and S. Rangarajan, “Probabilistic diagnosis of multiprocessor systems with
arbitrary connectivity,” in 19th IEEE Int. Symp. on Fault-Tolerant Computing, (New
York), pp. 560-565, IEEE, 1989.

S. Rangarajan and D. Fussell, “Probabilistic diagnosis algorithms tailored to sys-
tem topology,” in 21st IEEE Int. Symp. on Fault-Tolerant Computing, (New York),
pp- 230-237, IEEE, 1991.

S. Rangarajan and D. Fussell, “Diagnosing arbitrarily connected parallel computers
with high probability,” IEEE Transactions on Computers, vol. 41, pp. 606-615, May
1992.

M. Malek and Y. Maeng, “Partitioning of large multicomputer systems for effective
fault diagnosis,” in 12th IEEE Int. Symp. on Fault-Tolerant Computing, (New York),
pp. 341348, TEEE, June 1982.

S. Hosseini, J. Kuhl, and S. Reddy, “A diagnosis algorithm for distributed computing
systems with dynamic failure and repair,” IEEE Transactions on Computers, vol. C-
33, pp- 223-233, Mar. 1984.

S. Hosseini, J. Kuhl, and S. Reddy, “On self fault-diagnosis of the distributed systems,”
in 15th IEEE Int. Symp. on Fault-Tolerant Computing, (New York), pp. 30-35, IEEE,
1985.

R. Bianchini and R. Buskens, “An adaptive distributed system-level diagnosis algo-
rithm and its implementation,” in 21st IEEFE Int. Symp. on Fault-Tolerant Computing,
pp- 222-229, IEEE, New York 1991.

R. Bianchini and R. Buskens, “Implementation of on-line distributed system-level
diagnosis theory,” IEEE Transactions on Computers, vol. 41, pp. 616626, May 1992.

M. Stahl, R. Buskens, and R. Bianchini, “On-line diagnosis of general topology net-
works,” in IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, (New
York), pp. 114-121, IEEE, July 1992.

D. Blough, G. Sullivan, and G. Masson, “Fault diagnosis for sparsely interconnected
multiprocessor systems,” in 19th IEEFE Int. Symp. on Fault-Tolerant Computing, (New
York), pp. 62-69, IEEE, 1989.

P. Maestrini and P. Santi, “Self diagnosis of processor arrays using a comparison
model,” in Symposium on Reliable Distributed Systems (SRDS ’95), (Los Alamitos,
Ca., USA), pp. 218-228, IEEE Computer Society Press, Sept. 1995.

B. Andrasfai, Graph Theory. Polygon Konyvtar, Szeged: Polygon Kiadd, 1997. in

Hungarian.

BIBLIOGRAPHY xxx1

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms. Comp. Sci. and Inf. Proc., Reading, Mass.: Addison-Wesley, 1975.

D. Stauffer and A. Aharony, Introduction to Percolation Theory. London: Taylor and
Francis, 1994.

Parsytec Computer GmbH, Aachen, Germany, Parsytec GC Technical Summary, 1991.

M. D. Cin and A. Pataricza, “Increasing dependability in multiprocessors,” in Proc.
of the 8th Symp. on Microprocessor and Microcomputer Applications (uP’94), vol. 1,
(Budapest), pp. 55-64, Budapest University of Technology and Economics, Oct. 1994.

L. Lamport, “Time, clocks and the ordering of events in distributed systems,” Com-
munications of the ACM, vol. 21, no. 7, pp. 558-564, 1978.

P. Ciompi, F. Grandoni, and L. Simoncini, “Distributed diagnosis in multiproces-
sor systems: The MuTeam approach,” in 11th IEEE Int. Symp. on Fault-Tolerant
Computing, (New York), pp. 2529, IEEE, 1981.

S. Rangarajan and D. Fussell, “A probabilistic method for faul diagnosis of multipro-
cessor systems,” in 18th IEEFE Int. Symp. on Fault-Tolerant Computing, (New York),
pp. 278-283, IEEE, 1988.

I. Fekete, T. Gregorics, and S. Nagy, Introduction to Artificial Intelligence. Budapest:
LSI Oktatéozpont, 1990. in Hungarian.

A. B. et al. (The APEmille Collaboration), “APEmille: A parallel processor in the
teraflop range,” internal report, INFN, Mar. 1995.

F. Aglietti, A. Bartolini, C. Battista, and S. Cabasino, “The teraflop parallel computer
APEmille,” Lecture Notes in Computer Science, vol. 1225, pp. 991-998, 1997.

F. A. et al. (The APEmille Collaboration), “An overview of the APEmille parallel
computer,” Nucl. Instr. and Meth. in Phys. Res., vol. A 389, pp. 56-58, 1997.

S. Chessa, B. Sallay, and P. Maestrini, “Diagnostic model and diagnosis algorithm
of a SIMD computer,” in Proc. of the Third European Dep. Comp. Conf. (EDCC-3),
pp- 283-300, Sept. 1999.

B. Lampson, M. Paul, and H. Siegert, eds., Distributed Systems - Architecture and
Implementation. An Advanced Course, vol. 105 of Lecture Notes in Computer Science,
(New York, NY), Springer-Verlag, 1981.

B. Sallay, P. Maestrini, and P. Santi, “A comparison-based diagnosis algorithm tol-
erating comparator faults,” technical report, CNR - Istituto di Elaborazione della

Informazione (Pisa), 1999.

S. Chessa and P. Maestrini, “Correct and almost complete diagnosis of processor
grids,” technical-report, CNR - Istituto di Elaborazione della Informazione (Pisa),
1999.

xxxil

[97]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

BIBLIOGRAPHY

K. Chandy and L. Lamport, “Distributed snapshots: Determining global states of
distributed systems,” ACM Transactions on Computer Systems, vol. 3, pp. 63-75,
Feb. 1985.

T. Bartha, “Rollback recovery in distributed systems,” Tech. Rep. B4-12-06-98, Isti-

tuto di Elaborazione della Informazione, Pisa, Italy, 1998.

J. Planck, Efficient Checkpointing on MIMD Architectures. PhD thesis, Princeton
University, Jan. 1993.

J. Plank, “Efficient checkpointing on MIMD architectures,” Tech. Rep. TR-406-93,

Princeton University, Computer Science Department, June 1993.

G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage. PhD
thesis, University of California at Berkeley, Dec. 1991. also available from MIT Press,
1992.

D. Johnson and W. Zwaenepoel, “Sender-based message logging,” in 17th Int. Symp.
on Fault-Tolerant Computing (FTCS-17), (Washington DC, USA), pp. 14-19, IEEE
Comput. Soc. Press, 1987.

L. Alvisi, B. Hoppe, and K. Marzullo, “Nonblocking and orphan-free message log-
ging protocols,” in Twenty-Third Int. Symp. on Fault-Tolerant Computing (FTCS-23),
(Los Alamitos, CA, USA), pp. 145-54, IEEE Comput. Soc. Press, Aug. 1993.

L. Alvisi and K. Marzullo, “Deriving optimal checkpoint protocols for distributed
shared memory architectures,” in Proc. of the Fourteenth Ann. ACM Symp. on Prin-
ciples of Distributed Computing, (New York, NY, USA), p. 263, ACM, 1995.

D. M. Blough, Fault Detection and Diagnosis in Multiprocessor Systems. PhD thesis,
The John Hopkins University, Baltimore, 1988.

T. Bartha, Tobbprocesszoros rendszerek kozpontositott diagnosztikdjinak vizsgdlata.

Dept. of Measurement and Information Systems, 1994. Mérési atmutato.

P. Behr, W. Giloi, and W. Schrider, “Synchronous versus asynchronous communi-
cation in high-performance multicomputer systems,” in Aspects of Computation on
Asynchronous Parallel Processors, pp. 239-247, North-Holland, 1989.

M. Banatre, G. Muller, and J. Banatre, “Ensuring data security and integrity with
a fast stable storage,” in Proc. IEEE Intl. Conf. on Data Eng., (Los Angeles, CA),
pp. 285-293, Feb. 1988.

B. Lampson, “Atomic transactions,” in Distributed Systems—Architecture and Imple-
mentation, vol. 105 of Lecture Notes in Computer Science, pp. 246-265, New York,
NY': Springer-Verlag, 1981.

F. Cristian, “Reaching agreement on processor group membership in synchronous
distributed systems,” Distributed Computing, vol. 4, pp. 175-187, 1991.

BIBLIOGRAPHY xxxiii

[111]

[112]

[113]

[114]

[115]

[116]

[117]

J.-F. Paris and D. Long, “The performance of available copy protocols for the man-
agement of replicated data,” Performance Evaluation, vol. 11, pp. 9-30, 1990.

B. Parhami, “A multi-level view of dependable computing,” Computers & FElectrical
Engineering, vol. 20, pp. 34768, July 1994.

R. Guerraoui, R. Oliveira, and A. Schiper, “Atomic updates of replicated data,” in
European Depend. Comput. Conf. (EDCC-2), pp. 365-381, LNCS, 1996.

T. Bartha and E. Selényi, “The mathematical model of integrated diagnostics,” in
Proc. of the 1994 Mini-Symposium, pp. 3—4, Dept. of Measurement and Information
Systems, Jan. 1994.

T. Bartha and E. Selényi, “Considering syndrome decoding as a classification prob-
lem,” in Proc. of the 1995 Mini-Symposium, pp. 1-2, Dept. of Measurement and
Information Systems, Jan. 1995.

L. Harmat, Self-Checking and Self-Diagnosis of Multiprocessor Structures. C.Sc. the-

sis, Hungarian Academy of Sciences, Budapest, 1980. In Hungarian.

G. Gruber, Design of Multi-Microprocessor Self-Diagnosing Systems. Doctoral thesis,
Technical University of Budapest, Budapest, 1984. In Hungarian.

