
c© British Computer Society 2002

Quantitative Analysis of UML
Statechart Models of Dependable

Systems
GÁBOR HUSZERL1 , ISTVÁN MAJZIK1, ANDRÁS PATARICZA1 ,

KONSTANTINOS KOSMIDIS2 AND MARIO DAL CIN2

1Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Hungary
2Department of Computer Science III (Computer Structures),

Friedrich-Alexander University of Erlangen-Nuremberg, Germany
Email: huszerl@mit.bme.hu

The paper introduces a method which allows quantitative dependability analysis of systems modeled
by using the Unified Modeling Language (UML) statechart diagrams. The analysis is performed by
transforming the UML model to stochastic reward nets (SRNs). A large subset of statechart model
elements is supported including event processing, state hierarchy and transition priorities. The
transformation is presented by a set of SRN patterns. Performance-related measures can be directly
derived using SRN tools, while dependability analysis requires explicit modeling of erroneous states

and faulty behavior.

Received 22 November 2000; revised 26 November 2001

Handling Editor: I.-R. Chen

1. INTRODUCTION

Formal modeling and analysis techniques of modern com-
puter controlled systems are becoming more and more
important. Well-specified and easy-to-use design languages
and environments are required that enable multi-aspect
analysis and verification of the designs. In critical systems
like transportation or production systems not only does the
functional correctness have to be analyzed, but also the relia-
bility, availability, safety and performability. The analysis is
especially important in the early design phases, since modi-
fications and re-design are extremely costly if an inadequacy
is detected in the later phases of the development.

A core requirement for dependability-critical systems is
the ability to cope with faults. It is important that this
non-functional property can be validated before the system
is licensed for use in applications that affect, for instance,
human life. This requires a quantitative analysis, which
deals with reliability, availability and safety. For such an
analysis, in addition to the system’s function, the modeling
of faults and their treatment is also necessary, including the
effects of both possible internal faults and faults concerning
the system’s interaction with its environment (via sensors
and actuators). In this way the effects of a component fault
on system behavior, the error coverage and the recovery
cycle can be analyzed.

Nowadays a wide variety of formalisms, languages
and analysis techniques are offered to the designer.
From the viewpoint of design re-use and tool support,

standardized design languages are preferred. The Unified
Modeling Language (UML) [1] provides a visual notation
(standardized by the Object Management Group [2]) for
expressing the artifacts of complex distributed systems
ranging from embedded systems to business applications.
UML is supported by a wide variety of well-established tools
and environments, offering services for specification, design
refinement and automatic code generation. In recent years,
several methods have been elaborated to enable us to also
carry out formal analysis of UML-based designs. Among
others, problems of system-level dependability modeling,
formal verification and performance analysis of (subsets of)
UML models have been addressed in [3].

Our work is focused on the quantitative dependability
analysis of the UML behavioral models of embedded
systems. The dynamic behavior of the system is given
in UML by statechart diagrams [2], an object-oriented
mutation of classical Harel statecharts [4]. They describe
the internal behavior of components (objects, hardware
nodes, etc.) as well as their reactions to external events.
The detailed description of the behavior by statecharts
enables dependability analysis to be carried out, if the
model is extended with explicit categorization of failure
states/events and probabilistic information. Although the
UML notation was not designed for these purposes, its
standard mechanisms enable one to extend the model with
both timing/stochastic information (in the form of tagged
values) and classification of model elements (in the form of
stereotyped states and events).

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 261

Evaluation of embedded systems tends to be very
complex. Therefore, when modeling embedded systems
a trade-off has to be made between the degree of
detail in modeling and the degree of possible automation
of the analysis. This leads us to define a sub-
class of UML statecharts comprising so-called guarded
statecharts (GSCs) [5]. GSC models are well suited
for modeling of embedded systems where synchronization
among components can be described solely by Boolean
predicates on the active states of concurrent components
[6]. This kind of modeling can be considered as a higher-
level, behavioral view of the system. However, GSC
models do not support more implementation-related details
like event processing, a concept which may be of crucial
importance in modeling the real architecture of a system.
Moreover, this formalism prohibits the use of state hierarchy,
one of the most useful concepts in statechart diagrams.
Accordingly, we also cover event processing and state
hierarchy. Reaching the level of almost full UML statecharts
in this way, the modeler is allowed to prepare more compact
and intuitive models; however, the complexity, time and
resource requirements of the analysis increase.

The analysis is based on a transformation from these
statechart models to Petri nets (PNs) with timing and
stochastic extensions. PNs are a widely accepted formalism
for modeling and analysis of distributed systems. For
performance and dependability evaluation, extensions of
PNs with firing time distributions of transitions, like
generalized stochastic Petri nets (GSPNs) [7] and stochastic
reward nets (SRNs) [8, 9], offer not only a precise
mathematical background but also sophisticated analysis
tools. Although there are also other methods for quantitative
analysis (like queuing networks [10], stochastic process
algebra [11], etc.), Petri nets are still considered to be the
most mature in terms of the scope of the theoretical results,
the efficiency of the analysis algorithms and the number
of available tools [12]. SRNs generalize classical PNs by
rewards (various measures) and by assigning guards and
distributions of the firing time to transitions. Accordingly,
we choose SRNs for our analysis.

The paper is structured as follows. The next section in-
troduces the approach of model transformation. In Section 3
the GSC models and the corresponding model transforma-
tion are presented. In Section 4 we extend the model
with event processing and state hierarchy and identify the
corresponding model transformation patterns. Modeling of
faults, as a crucial step in dependability analysis, is discussed
in Section 5. The application of the transformations in de-
pendability analysis is discussed in Section 6. An illustrative
example is presented in Section 7. Section 8 contains the
conclusions.

2. ANALYSIS FORMALISMS AND TOOLS

UML models are not directly amenable to quantitative
dependability analysis. Therefore, a method has to be
introduced which generates a mathematical model that can
be evaluated by existing tools. The results of the analysis

can then be back-annotated to the UML model. In this
way the problems of both the manual re-modeling of the
system and the need for expertise in formal mathematics are
eliminated. This approach originated in the HIDE (High-
Level Integrated Design Environment for Dependability1)
project that proposed a general environment to integrate the
various model transformations from UML models towards
specific mathematical formalisms and analysis tools [3].

In our case the quantitative analysis of UML statechart
diagrams is performed by transforming them to SRNs. The
HIDE environment is utilized to define and implement the
transformation.

SRNs are a GSPN-like formalism based on a semi-
Markov reward process [8, 9]. By definition, an SRN is a
10-tuple consisting of:

1. a finite set of places;
2. a finite set of transitions (the transitions of an SRN will

be briefly referred to as SRN transitions, in contrast to
the UML transitions);

3. a finite set of inarcs (from places to transitions);
4. a finite set of outarcs (from transitions to places);
5. an integer weight for every arc;
6. a guard function for every transition;
7. an initial marking;
8. a distribution of the firing time for every transition

(it can be exponential, deterministic, Cox, etc. or a
deterministic value zero for immediate transition);

9. a priority relation (irreflexive, transitive) among the
transitions;

10. a finite set of measures.

An SRN transition t is enabled for a given marking if
and only if (i) the guard function of the transition evaluates
to true, (ii) there is no other enabled transition with higher
priority and (iii) on every place p there are not fewer tokens
in the given marking than the weight of the inarc from the
place p to the transition t . When the transition t fires, the
number of tokens on every place p is increased by the weight
of the inarc from p to t , and decreased by the weight of the
outarc from t to p. The weight of a non-existing arc is zero.

The target models of our transformation are SRNs with
guarded transitions (immediate or timed). SRNs could be
defined including inhibitor arcs, but our transformation does
not necessitate this extension.

Two SRN tools, SPNP [13] and PANDA [14], were used
in our analysis environment (both of them have a compatible
input format called CSPL, the C-based SPN Language).
PANDA allows one to annotate transitions with guards
and to use state-dependent capacities for arcs. Moreover,
PANDA accepts not only exponential distribution functions,
but also non-exponential ones (Erlang-k, gamma, Weibull,
normal, lognormal, hyperexponential, etc.). Dependability
measures can be specified by reward functions. To this
end, a reward concept is available based on reward rates

1The HIDE framework was developed under EU contract ESPRIT
Open LTR 27439, participants were the University of Erlangen-Nuremberg,
Consortio Pisa Ricerche—Pisa Dependable Computing Centre, Technical
University of Budapest, MID GmbH and INTECS Sistemi S.p.A.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

262 G. HUSZERL et al.

and impulse rewards combining knowledge of the net model
and the state space. (The net view is not lost when
defining reward functions on the state space.) Reward
functions are built from so-called characterizing functions
like mark(place) which deliver the number of tokens in an
SRN place. PANDA computes the expectation value of a
reward function (e.g. availability or throughput) as well as
accumulated rewards.

3. GUARDED STATECHART MODELS

GSCs are a sub-class of UML statecharts. GSCs represent
finite-state machines and describe the behavior of objects
in response to external stimuli (such as sensor signals),
modeling state-driven system behavior. The main elements
of a GSC are states (container states, basic states and initial
states) and transitions with guards. Labels of transitions
describe timing information, e.g. the arrival distribution
of signals, or static information, e.g. the probabilities of
possible outcomes. These labels can be provided as UML
tagged values in the form, e.g., ‘rate = 10’ or ‘weight =
0.6’.

3.1. The GSC formalism

Given a set E of external event variables, a GSC is a
finite set A of state transitions and a finite set S of states.
Transitions include the following elements:

• the trigger is a Boolean expression of atomic predicates
over event variables;

• the guard is a Boolean expression of predicates
in(state) where in(state) evaluates to true if state is the
actual state of the GSC or of some concurrent GSC;

• the set of target states to be entered.

When state transitions are depicted graphically, they are
labeled with labels of the form tr[guard], where guard
is (the name of) a guard and tr is (the name of) a trigger.

GSCs are not hierarchic—rather, there are only two levels.
At the upper level there are container states that describe
concurrent behavior by comprising simple state machines.

With GSCs non-deterministic behavior can also be
modeled. This is important, since although the software of
embedded systems is completely deterministic, the system
can not know if and when external events or faults will occur.

The execution of the transition is atomic and instanta-
neous, if its trigger and its guard evaluate to TRUE. The
execution effects the non-deterministic choice of exactly one
state of the set of target states as the next state of the GSC.
A guard expression of a state machine M may not contain
predicates of states of M; it may, however, contain state
predicates of a concurrent machine of the GSC.

An example of a transition is

startsignal on [in(L.up) && in(N.ready)]

and the target states are

{M.ready, M.waiting}

Here M.up, M.ready and M.waiting are states of
GSC M , L.up is a state of the concurrent GSC L and
N.ready is a state of the concurrent GSC N ; && is the
logical AND operator.

Guards can be considered as high-level abstractions of
synchronization mechanisms. Outputs are considered to be
part of the state in which they occur.

3.2. Modeling with GSCs

In this section we indicate how GSCs can be used to model
the behavior, e.g., of an embedded control system.

Using GSCs we can abstract continuous signals to discrete
signals by assuming a finite set of critical attribute values.
For example, it is only important to observe whether a
robot arm is directed in a position allowing for unloading
or pointing towards a press; all intermediate positions can
be collapsed into a single third value. This way, we model
sensor and actuator signals via states. A state representing
an actuator signal being active means that the actuator is set
to a certain discrete value. Analogously, if a component
is in a state which represents a sensor signal, it means
that this sensor is set. In GSC models, hardware and
software components are only allowed to communicate
via such sensor and actuator states. This interaction is
expressed by guard expressions containing predicates over
sensor or actuator states (so-called public states). Similarly,
interactions between tasks of the control software are also
modeled by guarded state transitions. This corresponds to an
asynchronous synchronization pattern between tasks. This
pattern is inherently multi-threaded, because it models a
message being passed to another object without the yielding
of control [15].

The following steps lead to a GSC model of an embedded
system and its environment, which comprises controllers and
the controlled units interacting by sensors and actuators.

1. Prepare the component models. Specific states
(the public states) describe the events the system
components (controllers and controlled units) generate
or respond to. These states represent, e.g., sensor and
actuator signals. The controllers manage disjoint sets of
actuator signals. The model of controlled units, usually,
need not be very detailed, since its only purpose is to
restrict the state space of the controllers to reasonable
state transitions and to inform the controllers about
sensor or actuator failures.

2. Specify guards for state transitions. These guards
represent the component’s inferred knowledge about
its environment, i.e. about the actual public states of
certain system components, and determine the response
of the components to this knowledge.

3. Specify the rates or weights of state transitions. Rates
label timed transitions and specify the mean transition
time. Weights label immediate, timeless transitions and
specify the branching probability in case of conflicts.

4. Specify the dependability measures. These measures
can be expressed in terms of reward functions [8],

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 263

assigned to the UML model in the form of structured
comments.

3.3. From GSCs to SRNs

For dependability analysis the GSC models are transformed
to SRN models amenable to mathematical analysis. The
transformation neglects the concurrent container states,
since they have no counterparts in the SRN structure. The
following three simple patterns are used.

1. The basic states are represented as SRN places. The
places hold the names of the basic states. The initial
marking of a place is 1 if there is an initial transition in
the GSC leading to the corresponding state. Otherwise
the initial marking is 0.

2. State transitions labeled with rates are transformed to
timed SRN transitions with the same rates. Guards and
triggers become guards of SRN transitions.

3. State transitions labeled with weights are transformed
to immediate SRN transitions with the same weight.
Immediate transitions have priority over timed transi-
tions. The weights of conflicting immediate transitions
are normalized so that they become branching proba-
bilities.

Additional SRN transitions are generated for loss of
signals or generation of spurious signals (see Section 5). The
modeler has only to specify the rates.

This way we obtain a set of topologically isolated subnets
which interact by guards. This approach requires fewer
modeling elements than a single SRN without guards and,
thus, makes the model more comprehensible.

4. EVENT PROCESSING AND STATE HIERARCHY

Extending the GSC model with event processing and state
hierarchy needs a thorough analysis of the semantics of
UML statecharts. In this section first we summarize and
compare the semantics of the source and target models of
the transformation. The discussion of the UML statechart
semantics is based on the (informal) UML standard [2] and
on the formalization presented in [16].

In the next subsection the transformation from UML
statecharts to SRNs is discussed. Our transformation is
presented in a modular way, by introducing a set of SRN
transformation patterns. These patterns are assigned to
elements, peculiar constructs (like event dispatcher) and
concepts (like state hierarchy, synchronization) of the UML
statechart formalism. This approach helps to decompose
the problem and understand the proposed solutions. These
patterns are combined automatically by using composition
rules. The modularity of the definition helps also in proving
the properties of the resulting SRN model according to the
informal requirements of the UML semantics as defined in
the standard [2].

The source models of the transformation described in
this paper are restricted to UML statecharts without history
states. Actions are restricted to the generation of new events,
while events cannot have parameters.

4.1. Semantics of models

While checking the semantics, we were faced with two
problems. The first was that some aspects of UML semantics
are not defined in the standard. In this case we tried to
parameterize our transformation by elaborating patterns for
different possible cases. The next problem was that the
semantics of UML statecharts with timed state transitions
have not yet been formalized. While considering the
issues of time, we were stuck with the requirements of the
untimed case: run-to-completion processing and execution
steps.

The semantics of UML statecharts is expressed in terms
of a hypothetical machine with the following components.

• An event queue storing events coming from the
machine itself or from the environment. The internal
structure of the event queue is not specified in UML.

• An event dispatcher selecting one event at a time from
the queue. If an event is dispatched, it will be passed
to the machine to react to it. When the machine
has finished its reaction (possible state changes) and
reached a stable state, a next event can be dispatched.
The selection policy of the dispatcher is not defined in
UML.

• A state machine processing the dispatched events. The
reaction of the machine is determined by its actual state
configuration and the possible transitions triggered by
the selected event.

The dynamic operation consists of cyclic event dispatch-
ing and state changing phases, which are called steps of the
state machine. Steps are characterized by run-to-completion
processing of events, i.e. there is no new event dispatched
until the previous one is completely processed (the state
machine reaches a stable state configuration). During a step,
several state transitions can be executed, since the statechart
may contain concurrent sub-machines. Each step consists of
the following hypothetical phases:

• dispatching an event;
• collecting the enabled transitions;
• selecting a maximal subset of them, where enabled

transitions with higher priority must not be omitted if
other transitions with lower priority are included;

• firing the selected transitions (the order is not
specified).

Several other peculiar aspects of the semantics are
discussed in the following subsections where the particular
transformation patterns are presented.

Event queues and event dispatchers. The events arriving
from the environment or from the state machine itself
are collected in the queue and dispatched by the
dispatcher one at a time. Event queues provide
the interfaces among state machines belonging to
different objects. The queue and the dispatcher
can be implemented by distinguished objects or by
the services of the run-time environment (operating

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

264 G. HUSZERL et al.

system). The UML standard does not define precisely
the policy of the dispatcher or the number and
distribution of event queues. Accordingly, we will
define patterns for several policies and leave it to the
designer to specify the details in the UML model
(e.g. by using stereotypes).

Hierarchy of states and transitions. One important fea-
ture of statecharts is the hierarchic structure of states.
States can contain substates (only one of them is active
at the same time) or concurrent sub-machines (all of
them are active if their parent state is active). Transi-
tions of a statechart may have their source and target
states at different levels of the state hierarchy. Due
to the state hierarchy, multiple transitions (triggered by
the same event and having source states being active in
the current state configuration) may be enabled at the
same time. Enabled transitions which have common
state(s) to exit (i.e. not in concurrent sub-machines)
are in conflict. Some conflicts can be resolved by the
priority relation: a transition having source state at
lower level has higher priority. From the point of view
of the priority, enabled transitions can be represented
in the form of a tree according to the state hierarchy.
Transitions on different branches of this tree can fire
independently, while the conflicts caused by transitions
being on the same path from the root to a leaf are
resolved by the priority scheme (the transition being
closer to the root has lower priority). Conflicts among
transitions emanating from the same state are resolved
non-deterministically.

Semantics of timed transitions. The standard UML does
not define the semantics of timed transitions, therefore
the relationship of guard evaluation and time progress
is not specified. We will define various patterns for the
possible combinations of timing and guard evaluation.

Step semantics. The transitions of the UML statechart fire
in steps, i.e. a stable state configuration is reached only
if the maximal set of enabled transitions has already
fired. In contrast, an SRN reaches a stable state after
each firing. Since guards are evaluated in stable states,
the behavior of the UML state machine and that of the
SRN model may differ. The consistent evaluation of the
guards has to be forced in the SRN.

The main distinguishing feature of the semantics of
UML statecharts and those of the SRN is that the firing
of SRN transitions has only local effects, i.e. the firing
of a transition depends only on the source places and
on the guard and timing of the transition, and thus
modifies only its local environment. There is no central
event dispatching and firings of transitions enabled
by the same stimulus cannot be divided into steps.
Accordingly, event dispatching, the synchronization of
guard evaluation and the step completion need extra
constructions in the transformation.

procedure build_nondet_dispatcher(event e) {
add_place(<name>=e+"0");
add_place(<name>=e+"1");
add_trans(<name>="disp_"+e, <type>=immediate);
add_iarc(<tr_name>="disp_"+e, <pl_name>="READY");
add_iarc(<tr_name>="disp_"+e, <pl_name>=e+"0");
add_oarc(<tr_name>="disp_"+e, <pl_name>=e+"1");
add_trans(<name>="split_"+e, <type>=immediate);
add_iarc(<tr_name>="split_"+e, <pl_name>=e+"1");

}

ALGORITHM 1. Subnet for non-deterministic event dispatching.

4.2. Transformation patterns

The general transformation patterns introduced below were
presented first in [17]. In this section we formalize these
patterns and demonstrate their typical application to subnets
corresponding to the example in Section 7. The patterns are
described using a pseudo-code.

The composition rules of the patterns and the generation
of the initial marking of the composed SRN are described
in Section 4.7. They together build the full algorithm
of the transformation. Based on this, the transformation
tool identifies the UML model elements and applies the
patterns automatically, constructing in this way an SRN
corresponding to the UML statechart model.

For the sake of simplicity, it is supposed that each element
of the UML model has its own unique identifier and this
identifier is reused when giving names to the elements of
the SRN model. This method also facilitates reading by
visualizing the correspondence. In the figures, the guards
of transitions will be depicted as expressions in square
brackets, placed close to their guarded transitions. A place
name in an SRN guard or a mark(place name) expression
is true if and only if the named place contains tokens. ‘!’,
‘&&’ and ‘| |’ are logical NOT, AND and OR operators,
respectively. The guard [guard] means an arbitrary guard
expression. The function names used in the algorithms are
to be interpreted as follows: parentstate(s) is a state having
an element s in its subvertex set. superstate of s is true for a
state if it is parentstate(s) or it is parentstate(parentstate(s)),
and so on recursively until the top state of the statechart is
reached. isRegion(s) is true for a state if its derived Boolean
value isRegion (part of the UML metamodel) is true (i.e. it
is a direct substate of a concurrent superstate).

4.3. Event queue and dispatcher

We have defined two patterns for event dispatchers [17]. One
is selecting events from the queue non-deterministically. It is
easy to implement with SRNs and it covers all potential
behavior. Another dispatcher is also elaborated, selecting
events in the order of their arrival (FIFO, first in, first
out). These dispatching policies are adequate for different
applications. They can both be extended to also support
multi-level priority dispatching.

The generation of the SRN pattern of a non-deterministic
event dispatcher is shown by Algorithm 1.

Figure 1 depicts an example subnet corresponding to this
pattern. Tokens representing the events of the transformed
UML model (ask, down and up) are collected in places ask0,

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 265

procedure build_fifo_dispatcher(event e) {
add_place(<name>=e+"0"); add_place(<name>=e+"1");
add_trans(<name>="disp_"+e, <type>=immediate);
add_trans(<name>="discard_"+e, <type>=immediate, <guard>=’"queue_"+n is not empty’);
add_iarc(<tr_name>="discard_"+e, <pl_name>=e+"0");
add_iarc(<tr_name>="disp_"+e+n, <pl_name>=e+"0");
for (i=0 to n) {

add_place(<name>=e"_queue_"+i);
add_trans(<name>="disp_"+e+"_"+i, <type>=immediate, <guard>="’queue_"+i is empty’);
add_oarc(<tr_name>="disp_"+e+"_"+i, <pl_name>="queue_"+i);
add_oarc(<tr_name>="disp_"+e+"_"+i, <pl_name>=e+"_queue_"+i);
if (i>0) {

add_iarc(<tr_name>="disp_"+e+"_"+(i-1), <pl_name>="queue_"+i);
add_iarc(<tr_name>="disp_"+e+"_"+(i-1), <pl_name>=e+"queue_"+i);}}

add_iarc(<tr_name>="disp_"+e, <pl_name>="queue_0");
add_iarc(<tr_name>="disp_"+e, <pl_name>=e+"queue_0");
add_iarc(<tr_name>="disp_"+e, <pl_name>="READY");
add_oarc(<tr_name>="disp_"+e, <pl_name>=e+"1");
add_trans(<name>=split_"+e, <type>=immediate);
add_iarc(<tr_name>="split_"+e, <pl_name>=e+"1");

}

ALGORITHM 2. Subnet for FIFO event dispatching.

ask0

READY

ask1

up0

down0
down1

up1

disp_down

disp_ask

disp_up split_up

split_ask

split_down

FIGURE 1. SRN pattern of a non-deterministic event dispatcher.

down0 and up0, respectively (these events are generated by
actions). At the end of a step, a token appears at the place
READY and a token from a non-empty place on the left-
hand side is moved to a place representing the selected event
(ask1, down1 or up1). It corresponds to a non-deterministic
selection of an event by the dispatcher. All non-selected
events are preserved and no more events (tokens) can be
selected until a new token appears in the place READY. The
selected event can be processed by accessing the token on
the right-hand side. The transitions split ask, split up, etc.
are necessary to generate tokens to be processed when the
event triggers concurrent UML transitions.

The transformation pattern for the FIFO event dispatcher
is more complex: Algorithm 2 contains its formal
description and Figure 2 shows a subnet belonging to the
pattern.

The subnet depicts only two events of the transformed
UML model (up and down), but the concept is the same for
more events. The input of the queue structure is at the top
of the figure and the output is at the bottom, therefore the
tokens will flow downwards in the figure. Here the length of
the queue is three.

[!queue_0][!queue_0]

[!queue_1]

[!queue_2]

[queue_2]

[!queue_1]

[!queue_2]

[queue_2]

queue_0

queue_1

queue_2

up_queue_0

up_queue_1

up_queue_2 down_queue_2

down_queue_0

down_queue_1

down0

down1

up0

up1

discard_up discard_down

split_up split_down

READY
disp_up disp_down

disp_up_0

disp_up_1

disp_up_2

disp_down_0

disp_down_1

disp_down_2

FIGURE 2. SRN pattern of a FIFO event dispatcher.

There are three columns (of the length of the FIFO) of
places: the left-most group controls the FIFO structure; the
other two groups store the different events. The tokens
representing the incoming events arrive at the top of the
figure at places up0 and down0, and the one just selected
is issued at the bottom in place up1 or down1. If the queue
is full, the incoming tokens will be discarded (by transitions
discard up and discard down), otherwise they are inserted
into the upper-most places of the control (left-most) column
and of the column corresponding to the type of the event.
The pair of tokens runs downwards to the bottom-most row
with a free place in the control column. Dispatching of

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

266 G. HUSZERL et al.

procedure generate_tree(event e) {
new_relation(<name>=T, <type>=unidirectional, <fields>=(ancestor, descendant));
for (each transition t1 of the SC triggered by e) {

for (each transition t2 of the SC triggered by e) {
if (source(t1) is superstate of source(t2)) {

add_relation(<relation>=e <ancestor>=t1, <descendant>=t2);}}}
for (each transition t1 of the SC triggered by e) {

for (each transition t2 of the SC triggered by e) {
for (each transition t3 of the SC triggered by e) {

if (in_relation(<relation>=e <ancestor>=t1, <descendant>=t2) AND
in_relation(<relation>=e <ancestor>=t1, <descendant>=t3) AND
in_relation(<relation>=e <ancestor>=t3, <descendant>=t2)) {

del_relation(<relation>=e <ancestor>=t1, <descendant>=t2);}}}}
}

ALGORITHM 3. Subnet for the priority relation.

events is modeled in the same way as in the case of the non-
deterministic event dispatcher.

4.4. Hierarchy of states and transitions

One important feature of statecharts is the hierarchical
structure of states. A state of a statechart can be a basic state
(containing no other states), an OR state (containing only
substates being active alternatively if the state itself is active)
or an AND state (containing only concurrent regions).

Recall that transitions are enabled when their source
states are active, their triggering event is dispatched and the
guard expressions of the transitions evaluate to true. Two
transitions are conflicting when the firing of one of them
inhibits the firing of the other, that is the intersection of the
two sets of states they exit is not empty.

Transitions originating from substates of the source state
of a transition take priority over the transition in question.
When several transitions are enabled, their maximal non-
conflicting set (with maximal priority) may fire at the same
time in a single step. The priority relation defines a partial
ordering relation over the set of transitions (because some
transitions may be independent). Partial ordering relations
are usually represented as tree structures.

The priority relation of transitions is used by the
transformation. The transitions triggered by the same event
are arranged in a priority tree according to the hierarchy of
the transitions. (Trees are depicted as having a root at the
top and leaves at the bottom; thus the directions ‘up’ and
‘down’ have to be understood accordingly.) On a path from
the root to a leaf, a transition with higher priority is located
closer to the leaf. Non-conflicting transitions and conflicting
ones with equal priorities are located on different arcs of the
priority tree. Compound transitions are mapped to a set of
simple transitions.

The relation can be built as shown in Algorithm 3.
Figure 3 shows a small statechart as an example. Both

state hierarchy (with A as a superstate of AA, AB, etc.)
and concurrent regions (of state AB) are included. Eight
transitions (a to g) are presented, all of which are triggered
by the same event. (Transitions triggered by other events
are not depicted.) The priority tree corresponding to the
priority structure of the transitions is shown at the bottom
of the figure. It consists of two types of nodes.

• Simple nodes (shown by nodes labeled with the names
of UML transitions in Figure 3) represent the SRN

>η<

>θ<

A
AA

>β<

AB1AA

AB2A

AB
AB1A AB1B

AB2B

ε

>δ<

AB1AB

η

>γ<

α β δ ζ

θ

γ

>α<

>ζ<

>ε<

FIGURE 3. The tree structure of the priority relation.

subnets which correspond to the UML transitions. For
the sake of simplicity, UML transitions are named in
this figure by Greek letters and a special notation is
used to distinguish these names from events (which are
not shown, since recall that each transition in this figure
has the same trigger event).

• Joining nodes (shown by empty circles) connect the
subtrees.

The priority tree structure can be considered as a tree-like
daisy chain of transitions. When an event is selected, the
tokens representing the selected event should run through
the tree from the leaves to the root. On parallel arcs they run
simultaneously; the arcs are synchronized only at the joining
nodes. Every transition has to know whether the transitions
with higher priority have consumed the event or not, because
an enabled transition may only fire if the transitions with
higher priority could not fire. In the tree structure above, the
transitions get the event in the order of their priorities.

Accordingly, the SRN representing the selection of UML
transitions is a tree of interconnected subnets (corresponding
to the simple and joining nodes of the priority tree) with an
auxiliary control structure. This control structure consists
of two chains of places, where the tokens representing the
events can run through the tree. A given token runs on one
of the chains, when the event is not yet consumed by the

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 267

function set_of_predecessors(transition t) {
set pred=empty;
for (each state s of the SC) {

if (((s is superstate of source(t) OR s is source(t)) AND
s is not superstate of stable_target(t) AND s is not stable_target(t))

OR (isRegion(s) AND
parentstate(s) is superstate of source(t) AND parentstate(s) is not superstate of stable_target(t))) {

put(<set>=pred, <element>=s);
}

}
return pred;

}

function set_of_successors(transition t) {
set succ=empty;
for (each state s of the SC) {

if ((s is superstate of stable_target(t) OR s is stable_target(t)) AND
(s is not superstate of source(t) AND s is not source(t))) {

put(<set>=succ, <element>=s);}}
return succ;

}

function least_common_region(transition t) {
state lcr=null;
for (each state s of the SC) {

if (isRegion(s) AND
s is superstate of source(t) AND s is superstate of the stable_target(t) AND
lcr is superstate of s) {

lcr=s;
}

}
}

procedure build_nodes(transition t) {
add_place(<name>="uncons_"+t);
add_place(<name>="cons_"+t);
add_place(<name>="still_uncons_"+t);
add_trans(<name>=t+"_yes", <type>=timed, <param>=(tagged value "rate" of the UML transition t),

<guard>=’(AND(not_empty(p) for each place p, the name of which is in set_of_predecessors(t)))
AND (the guard of the UML transition t is true)’);

add_trans(<name>=t+"_not", <type>=immediate,
<guard>=’NOT(guard(t+"_yes")) OR

(OR(empty(p+"_n") for each place p, the name of which is in set_of_predecessors(t)))’);
add_iarc(<tr_name>=t+"_not", <pl_name>="uncons_"+t);
add_iarc(<tr_name>=t+"_yes", <pl_name>="uncons_"+t);
add_oarc(<tr_name>=t+"_not", <pl_name>="still_uncons_"+t);
add_oarc(<tr_name>=t+"_yes", <pl_name>="cons_"+t);
for (event e in sent_event(t)) {

add_oarc(<tr_name>=t+"_yes", <pl_name>=e+"0");}
for (each state s in enumerate_predecessors(t)) {

add_iarc(<tr_name>=t+"_yes", <pl_name>=s+"_n"); }
for (each state s in enumerate_successors(t)) {

add_oarc(<tr_name>=t+"_yes", <pl_name>=s+"_n");}
if (least_common_region(t)<>null) {

add_iarc(<tr_name>=t+"yes", <pl_name>=least_common_region(t)+"_n");}
}

ALGORITHM 4. Subnet for a UML transition.

transitions on the given arc of the tree, and the token runs
on the other chain, when the event is already consumed.
These chains will be referred to in this paper as chains of
unconsumed/consumed events.

4.4.1. Simple nodes
The formal description of building a simple node is
presented by Algorithm 4, where stable_target(t)
returns the set of basic states becoming active when
transition t is firing. This set is formed by the target state
of the transition and the following states, recursively:

• the initial substates of the target state;
• the initial states of the regions of the target state;
• the initial states of another region(s) of the superstate

of the target state.

Figure 4b shows the SRN pattern of a simple node of the
tree, belonging to the UML transition presented in Figure 4a.
The UML transition is represented by the SRN transition
t1 yes. The other SRN places represent the following items.

• Predecessor states. They are the states to be left when
the UML transition fires (in this case it is only the
state DS). The predecessor states are the source state
of the transition and all of its superstates which are not
superstates of the target states. The parallel regions of
the superstate regions of the source state which are not
superstate regions of the target states are also to be left.
They can be identified according to the static structure
of the statechart. Here both the predecessor and target
state are substates of the common state DC.
There could also be other states to be left, namely
the active states of parallel regions of the predecessor

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

268 G. HUSZERL et al.

cons_t1 DG_n ask0 still_uncons_t1

(a)

(b)

DS DG

DC

rate=10

up [UG1] / ask

rate=10

DS_n

t1_yes
[UG1 && DS] [!UG1 || !DS || !DS_n]

t1_not

uncons_t1

FIGURE 4. A simple UML transition (a) and the corresponding
SRN pattern (b).

states. These states cannot be identified unambiguously
by the static analysis of the statechart, thus exiting these
states necessitates another solution (described later).
When the SRN pattern is generated, whether the
corresponding UML transition is located within any
concurrent region of the statechart has to be checked.
The least common region (LCR) of a UML transition is
characterized as follows:

– it is a region (direct substate of a concurrent state);
– it is the superstate of both the source and the target

states;
– there is no lower region in the state hierarchy

which fulfills the two previous criteria.

When the SRN transition corresponding to a UML
transition fires, the token also has to be removed
from the SRN place representing its LCR (if any).
Without removing this token, in special situations
the non-deterministic choice among conflicting UML
transitions can not be assured. Namely, the conflict
between a transition inside a region and another
transition (from inside a concurrent region) to a target
state outside of the parent state of these regions can
not be detected. This token can be restored in the
synchronization phase (see later) unambiguously.

• Successor states. These are the states to be entered
when the transition fires (in this case it is the single state
DG). This set of states can be unambiguously identified
by analyzing the static structure of the statechart.

• The chain of unconsumed events. At the beginning
of a step, the selected event is not consumed, i.e. no
transition has fired processing that event. Accordingly,
the tokens representing the event appear in the chain
of unconsumed events on the arcs of the appropriate
priority tree structure of the triggered transitions.
In Figure 4, places uncons t1 and still uncons t1 are in
this chain.

• The chain of consumed events. The token representing
the event will be moved from the chain of unconsumed
events to the chain of consumed events (here place
cons t1) if the transition t1 yes fires. If t1 yes
cannot fire, t1 not fires, putting the token to place
still uncons t1, i.e. the event remains unconsumed.
(The guard of the transition t1 not expresses that t1 yes
cannot fire.)

• Generation of events. This is implemented by outarc(s)
from the timed SRN transition to the appropriate
place(s) of the event dispatcher. Here in the example
a token is passed to the place ask0.

The guard [UG1 && DS] of the SRN transition t1 yes
contains the expression UG1 (belonging to the guard of the
UML transition) and DS that refers to the source state. Note
first that the guard of this transition refers to DS, while it is
connected to DS n (and DG n). The distinction between the
input/output places of the transition (the ‘next’ places) and
the places referred to in its guard (the ‘last’ places) will be
described in detail in Section 4.6. Second, checking of the
marking of the place DS is necessary to avoid firing when a
token is generated to a ‘next’ place by another transition.

In this example the simplest timing policy was chosen,
where the fastest of the enabled conflicting transitions fires.
There are other possible policies as well, some of them are
described in Section 4.5.

If there are two conflicting transitions of the statechart
enabled at the same time then the firing of the corresponding
SRN transitions occurs as follows.

• If one of them has higher priority, then it is placed
closer to the leaves of the tree structure, and the sub-
SRN corresponding to the other transition can only
fire if the event was not consumed by the sub-SRN
corresponding to the transition with higher priority.

• If they have the same priority or they are not related
by the priority relation, then the transitions are placed
on different arcs of the tree, and the conflict is resolved
by the guards and the firing times of the timed UML
transitions. Two conflicting transitions cannot fire
in the same step, because the one that fires first
removes the token from the ‘next’ place representing
the common parent state to leave. If two transitions
have no common state to leave, they are not conflicting.

There is a special case in which a transition leaves and
then enters the same (set of) states again, in the same step.
This situation may also involve states in active parallel
regions. Normally, the set of states left by a transition is
handled by the so-called synchronization step (Section 4.6).
However, in this special case whether a state was not affected
by the firing of a transition or it was left and entered again
cannot be distinguished. Accordingly, the source states
have to be left explicitly by generating transitions for each
possible state configuration to be left. This construction can
be applied to each transition of a statechart and it does not
increase the state space of the SRN (but involves more SRN
transitions).

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 269

procedure build_joining_nodes(transition t, event e) {
if (there is no transition t* with in_relation(<relation>=e, <ancestor>=t, <descendant>=t*)){

add_oarc(<tr_name>="split_"+e, <pl_name>="uncons_"+t);}
if (there is exactly one transition t* with in_relation(<relation>=e, <ancestor>=t, <descendant>=t*)){

add_trans(<name>="forward_consumed_to_"+t, <type>=immediate);
add_iarc(<tr_name>="forward_consumed_to_"+t, <pl_name>="cons_"+t*);
add_oarc(<tr_name>="forward_consumed_to_"+t, <pl_name>="cons_"+t);
add_trans(<name>="forward_unconsumed_to_"+t, <type>=immediate);
add_iarc(<tr_name>="forward_unconsumed_to_"+t, <pl_name>="still_uncons_"+t*);
add_oarc(<tr_name>="forward_unconsumed_to_"+t, <pl_name>="uncons_"+t);}

if (there are more transitions t* with in_relation(<relation>=e, <ancestor>=t, <descendant>=t*)){
n = {number of such transitions t*}
add_place(<name>="waiting_to_"+t);
add_trans(<name>="forward_consumed_to_"+t, <type>=immediate);
add_iarc(<tr_name>="forward_consumed_to_"+t, <pl_name>="waiting_to_"+t, <multiplicity>=n);
add_oarc(<tr_name>="forward_consumed_to_"+t, <pl_name>="cons_"+t);
add_trans(<name>="forward_unconsumed_to_"+t, <type>=immediate);
add_oarc(<tr_name>="forward_unconsumed_to_"+t, <pl_name>="uncons_"+t);
for (each transition t* with in_relation(<relation>=e, <ancestor>=t, <descendant>=t*)) {

add_iarc(<tr_name>="forward_unconsumed_to_"+t, <pl_name>="uncons_"+t*);
add_trans(<name>="collect_consumed_from"+t*, <type>=immediate);
add_iarc(<tr_name>="collect_consumed_from"+t*, <pl_name>="cons_"+t*);
add_oarc(<tr_name>="collect_consumed_from"+t*, <pl_name>="waiting_to_"+t);
add_trans(<name>="collect_unconsumed_from"+t*, <type>=immediate, <guard>={"waiting_to_"+t is not empty});
add_iarc(<tr_name>="collect_unconsumed_from"+t*, <pl_name>="still_uncons_"+t*);
add_oarc(<tr_name>="collect_unconsumed_from"+t*, <pl_name>="waiting_to_"+t);}}

}

ALGORITHM 5. Subnet for a joining node in the tree structure.

collect_unconsumed
_from_t2

uncons_t4cons_t4

2
forward_consumed_to_t4

forward_unconsumed_to_t4

waiting_to_t4

[waiting_to_t4]

collect_consumed
_from_t3_from_t2

collect_unconsumed
_from_t3

[waiting_to_t4]

cons_t2 still_uncons_t2 cons_t3 still_uncons_t3

collect_consumed

FIGURE 5. SRN pattern of a joining node in the tree structure.

4.4.2. Joining nodes
A joining node of the tree merges the event chains of its
subtrees (Algorithm 5). An example subnet is depicted in
Figure 5. All of the UML transitions in the subtree have
higher priority than any transitions along the common path
of the tree above the joining node, therefore the event is
unconsumed in this common path if and only if the event
was not consumed by any of the transitions of the subtree.

The event is ‘consumed’ in the common path when some
of the transitions of the subtree have already fired (they have
carried over the tokens on the ‘consumed’ chain) and the
other transitions cannot fire (they have passed on the tokens
along the chain). This construction ensures that when the
token representing the event reaches the root of the tree,
then no more sub-SRNs corresponding to transitions of the
statechart will fire, thus the step has to be finished.

In our example the two joining arcs are represented
by the two place pairs consumed t2, still unconsumed t2
and consumed t3, still unconsumed t3. According to the
previous pattern (Figure 4), one token can be found either
in place consumed t2 or in place still unconsumed t2, and

another token can be found either in place consumed t3 or in
place still unconsumed t3.

If the event was not consumed by the transitions
on the joining arcs, then there are tokens in places
still unconsumed t2 and still unconsumed t3. In this case
transition forward unconsumed to t4 can fire, and the
control is passed to a transition on the common (joined)
arc with lower priority (here a token is put to place
unconsumed t4) or, if there are no transitions with lower
priority, a token is put to the place READY belonging to the
dispatcher (Figure 1).

If the event was consumed by one or both of the
transitions on the joining arcs, then there is a token in place
consumed t2 or/and in place consumed t3. Thus, transition
collect consumed from t2 or/and collect consumed from t3
can fire. Token(s) will be put to the place waiting to t4,
which may enable the token from the place representing an
unconsumed event (if any) to be removed. If there are as
many tokens in place waiting to t4 as the number of arcs to
be joined (here 2), then transition forward consumed to t4
will fire and a token appears in the place consumed t4

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

270 G. HUSZERL et al.

a. b. c.

[guard]

[guard]

[guard][!guard]

predecessor states predecessor states predecessor states

[guard]

places corresponding to places corresponding to places corresponding to

successor statessuccessor statessuccessor states
places corresponding to places corresponding to places corresponding to

FIGURE 6. Models for combining guards and timing.

representing on the common arc that the event was already
consumed.

It can be proved that the properties of the UML statechart
semantics are satisfied by these patterns, i.e. an SRN
transition corresponding to a UML transition can only fire
if the predecessor states of the UML transition are active, its
guard evaluates to true and no transition with higher priority
was enabled and triggered.

4.5. Time semantics

The relationship between timing and guard evaluation is not
specified in standard UML. In our approach, time delay is
associated with UML transitions, assuming that this delay
is due to program code execution, communication delay or
fault activation. Accordingly, the guard expressions have
to be evaluated before the firing of the (timed) transitions.
Another possible way is to associate the delays to the states,
where the evaluation of the guards and the selection of the
transitions is preceded by some delay. In our opinion, the
former approach is a better fit to the majority of practical
problems.

4.5.1. Guarded transitions
We describe three possible semantics for timed and guarded
UML transitions and their transformation patterns. They
may fit to different applications. The three alternatives are
as follows (Figure 6 shows the implementations):

• the selection of the transitions is irrespective of timing
constraints (a);

• the guard has to be true permanently during the delay
or else the transition will be deselected (b);

• the ‘fastest’ of the enabled transitions wins (c) (this is
the one used in the example in this paper).

Since only enabled UML transitions can be selected for
firing, the first transitions of each pattern below must be
guarded. This guard contains the guard of the appropriate
UML transition extended by a conjunctive term to express
the fact that the transition can only fire if the appropriate
state was active before the actual step. Figure 6a–c shows
sub-SRNs corresponding to the transitions of the statechart.

The types and parameters of the timed SRN transitions
correspond to the types and parameters of the corresponding
statechart transitions. The timing policy (resampling, race
with age/enabling memory, etc.) is determined by the
designer and must be implemented by the SRN tool used
for the analysis.

In Algorithm 4 the third alternative (Figure 6(c)) is
implemented, but any of the alternatives mentioned here can
be used by changing transition(t+" yes") and its
environment appropriately.

4.6. Step semantics

The UML semantics requires the evaluation of the guards of
the transitions at the beginning of a step, before the firing
of any transition. The guards refer to the consistent state
configuration before the actual step. In SRNs, the guard of
a transition will be evaluated just before the given transition
fires; the evaluation is not scheduled at the beginning of a
‘step’ and the results are not stored. In SRNs it is possible
that some transitions have already fired before the guard
expressions of other transitions are evaluated. For the correct
evaluation of guards the last stable state configuration of the
state machine (i.e. the state before the actual step) must be
recorded. To do that, the SRN places representing the states
of the statechart are duplicated. For a state A there is an SRN
place A containing a token if and only if the state A was
active just before the actual step (called the last place in the
following) and there is another SRN place A n containing a

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 271

function put_in_states(state s) {
state s_last=s;
for (each substate s* of s) {

add_relation(<relation>="S",
<fore>=s_last, <back>=s*);

s_last=put_in_states(s*);}
return(s_last);

}

procedure generate_list_of_states() {
new_relation(<name>=S,

<type>=unidirectional,
<fields>=(fore, back));

put_in_states({top state of the SC});
}

ALGORITHM 6. Subnet for generating a list of places.

token if and only if the state A will be active after the actual
step (called the next place in the following).

The SRN places DS n and DG n in Figure 4 depict
the next places, while the guards of the appropriate SRN
transitions in the subnet are expressions over the marking of
the SRN places recording the last stable state of the system
(i.e. last places). The contention is for the tokens of the
next places, while the last places provide a consistent guard
evaluation during the firing of the guarded transitions.

This concept necessitates a synchronization of the
duplicated places at the end of each step. In the tree structure
of the triggered transitions, when the token representing the
selected event reaches the root of the tree, it is passed to
a synchronization chain. All states of the statechart are
included in this chain, where every state precedes all of
its substates, otherwise the order is arbitrary. In the SRN
model, the synchronization chain is the chain of places
corresponding to the statechart states. The synchronization
of the duplicated places could happen independently, but the
non-deterministic ordering would increase the state space of
the SRN without any advantage. A fixed ordering avoids this
kind of state space explosion.

A depth-first tour on the graph of the state hierarchy
is implemented in Algorithm 6. The pattern for the
synchronization is shown in Algorithm 7.

Figure 7 depicts the synchronization pattern of the
UML state DS, where the SRN places DS and DS n are
synchronized. There is a token in DS if and only if the
state DS of the statechart was active just before the actual
step, and there is a token in place DS n if and only if the
state DS of the statechart will be active after the actual
step. The SRN place DC (not shown in the figure but
referred to in guards) represents the direct parent state of
(the UML state) DS. The places S DS and S DG are two
places in the synchronization chain. A token is passed from
S DS to S DG (for synchronizing the next state in the order
of the synchronization chain) if DS and DS n are already
synchronized by the transitions on the right-hand side of the
figure or the places are cleared when the parent state of DS
is not active.

This pattern not only synchronizes the duplicated places,
but also corrects transient inconsistencies in the markings.
Due to the incompleteness of identifying the dynamically
changing set of active states when a statechart transition

S_DG

S_DS
DS

DS_n

[!DS && !DS_n ||

 DS && DS_n && DC]

[DS && !DS_n

&& S_DS]

[!DS && DS_n

&& S_DS]

[!DC]
syncOK_DS

synced_DS

updated+_DS

updated−_DS

FIGURE 7. Synchronization of the duplicated places.

fires, the tokens must be removed from places representing
states considered to be inconsistently active, since their
parent states are inactive. Remember that the predecessor
states on Figure 4 are only the source and parent states of the
statechart transition and the regions parallel to them, which
are to be exited. However, there may be other states also to
be exited, namely the active substates and the active states
of parallel regions of states to be exited. Since they cannot
be identified statically, these states were not emptied when
the predecessor states were exited. This inconsistency must
be resolved at the end of the step. Also recall that the places
corresponding to the LCR of the transitions were emptied as
well and these missing tokens have to be put back to those
places. The places with missing tokens can be identified
unambiguously, because no regions of the statechart can be
inactive if their parent states are active. Note that these
transient problems do not affect the result of the step.

For example, in Figure 3 the predecessor states of the
transition a are AB1AA, AB1A, AB1 and AB. If a is enabled
then either AB2A or AB2B must be active (since their parent
state AB2 is active). Which of them is active at the given
situation cannot be identified statically, therefore they do not
appear in the set of predecessor states of a. Before the end
of the step when a fires, the one that is active must be exited,
because their parent state AB was exited.

4.7. Composition of subnets

The composition of the subnets includes three tasks as
shown in Algorithm 8.

• A single SRN place ‘READY’ is generated that
represents the end of a step.

• Three places (the ‘last’, ‘next’ and ‘synchronization’
places) are generated for each state of the statechart.
If a given state is active in the initial state configuration
of the statechart then the ‘last’ and ‘next’ places are
marked.

• The subnets described in the previous sections are
generated and connected by additional arcs.

The necessary number of patterns is as follows.

• The number of event queues and the type of event
dispatcher(s) are defined by the designer (additional
information is attached to the UML model). Global
event dispatching, event dispatching per object,
event dispatching per statechart and FIFO or non-
deterministic dispatching can be selected.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

272 G. HUSZERL et al.

procedure build_synchronization(state s) {
state par_s={the parent state of s in the SC};
add_trans(<name>="syncOK_"+s, <type>=immediate,

<guard>=’(s and s+"_n" are both empty) OR (neither s nor s+"_n" nor parentstate(s) are empty)’);
add_iarc(<tr_name>="syncOK_"+s, <pl_name>="S_"+s);
add_trans(<name>="synced_"+s, <type>=immediate, <guard>=’parentstate(s) is empty’);
add_iarc(<tr_name>="synced_"+s, <pl_name>="S_"+s);
add_iarc(<tr_name>="synced_"+s, <pl_name>=s+"_n");
add_iarc(<tr_name>="synced_"+s, <pl_name>=s);
add_trans(<name>="updated+_"+s, <type>=immediate, <guard>=’s is empty but neither s+"_n" nor "S_"+s’);
add_oarc(<tr_name>="updated+_"+s, <pl_name>=s);
if (isRegion(s)) {

add_trans(<name>="updated-_"+s, <type>=immediate,
<guard>=’s and "S_"+s are not empty but s+"_n" and parent(s) do’);

add_trans(<name>="restoreregion_"+s, <type>=immediate,
<guard>=’s, "S_"+s and parent(s) are not empty but s+"_n" does’);

add_oarc(<tr_name>="restoreregion_"+s, <pl_name>=s+"_n");
}
else {

add_trans(<name>="updated-_"+s, <type>=immediate,
<guard>=’s and "S_"+s are not empty but s+"_n" does’);

}
add_iarc(<tr_name>="updated-_"+s, <pl_name>=s);
if (there is a state s* with in_relation(<relation>="S", <fore>=s, <back>=s*)) {

add_oarc(<tr_name>="syncOK_"+s, <pl_name>="S_"+s*);
add_oarc(<tr_name>="synced_"+s, <pl_name>="S_"+s*);}

else {
add_oarc(<tr_name>="syncOK_"+s, <pl_name>="READY");
add_oarc(<tr_name>="synced_"+s, <pl_name>="READY");}

}

ALGORITHM 7. Subnet for synchronization of the duplicated places.

procedure SC2SRN() {
add_place(<name>="READY", <init>=1);

for (each state s of the SC) {
if (s in {initial configuration of the SC}){

add_place(<name>=s, <init>=1); add_place(<name>=s+"_n", <init>=1); add_place(<name>="S_"+s);}
else {

add_place(<name>=s); add_place(<name>=s+"_n"); add_place(<name>="S_"+s);}}

if (event dispatching is non-deterministic){
for (each event e of the SC) {build_nondet_dispatcher(e);}

else {
n = ((length of the queue)-1);
for (i=0 to n) {add_place(<name>="queue_"+i);}
for (each event e of the SC) {build_fifo_dispatcher(e);}

for (each transition t of the SC) {build_nodes(t);}

for (each event e of the SC) {
generate_tree(e);

for (each transition t of the SC) {build_joining_nodes(t, e);}
n = (number of transitions t, which have no transitions t* with

in_relation(<relation>=e, <ancestor>=t*, <descendant>=t));
add_place(<name>="waiting_to_top");
add_trans(<name>="forward_consumed_to_top", <type>=immediate);
add_iarc(<tr_name>="forward_consumed_to_top", <pl_name>="waiting_to_top", <multiplicity>=n);
add_oarc(<tr_name>="forward_consumed_to_top", <pl_name>="S_"+{top state of the SC});
add_trans(<name>="forward_unconsumed_to_top", <type>=immediate);
add_oarc(<tr_name>="forward_unconsumed_to_top", <pl_name>="READY");
for (each transition t, which has no transitions t* with

in_relation(<relation>=e, <ancestor>=t*, <descendant>=t)) {
add_iarc(<tr_name>="forward_unconsumed_to_top", <pl_name>="uncons_"+t);
add_trans(<name>="collect_consumed_from"+t, <type>=immediate);
add_iarc(<tr_name>="collect_consumed_from"+t, <pl_name>="cons_"+t*);
add_oarc(<tr_name>="collect_consumed_from"+t, <pl_name>="waiting_to_top");
add_trans(<name>="collect_unconsumed_from"+t, <type>=immediate, <guard>={"waiting_to_top" is not empty});
add_iarc(<tr_name>="collect_unconsumed_from"+t, <pl_name>="still_uncons_"+t);
add_oarc(<tr_name>="collect_unconsumed_from"+t*,<pl_name>="waiting_to_top");}}

generate_list_of_states();
for (each state s of the SC) {build_synchronization(s);}

}

ALGORITHM 8. The main procedure to compose the subnets.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 273

• There are as many transition hierarchy trees as the
number of events handled by the transitions of the
statecharts of each event dispatcher.

• The number of sub-SRNs representing transitions is the
same as the number of transitions in the model.

• Each state of the statechart is represented by a pair of
places in the SRN.

• For each state of the statechart, there is a synchroniza-
tion subnet.

The initial state of the SRN is defined as follows. If
the event queue contains events in the initial state then
these events are represented by the initial marking of the
appropriate places. The initial state configuration of the
statechart has to be mapped to the SRN by inserting tokens
into the corresponding pairs of places. The initial marking
of the place READY has to be 1.

The external environment can be modeled (in closed
systems) by separate UML statechart(s) which will be
transformed to SRNs with outarc(s) to the appropriate places
of the event queue(s).

5. MODELING OF FAULTS

In this section how faults and errors can be modeled
is shown. Explicit modeling of component faults and
identification of system failures will allow us to compute
reliability and availability figures.

The following types and locations of a fault can be
distinguished. Design faults can exist in hardware and
software. (In fact the co-design paradigm is gradually
making hardware and software indistinguishable.) Certain
physical faults occur inside a single component of the system
and can be handled by that component. Some physical faults
occur inside a component but must be handled by another
component. External faults occur in the environment and
are often transient. Faults can give rise to errors, that is to
undesired system states, which in turn can lead to the failure
of the system [18].

Augmenting the system model with a realistic fault
model is the basis for the dependability analysis. Faults
are modeled, for instance, by message losses or loss of
synchrony. Errors can be modeled by so-called state
perturbations. State perturbations include distinguished
states corresponding to degraded performance of the
modeled system, paths leading to such states, erroneous state
transitions, trigger events due to external faults giving rise to
erroneous state transitions and the use of guards to express
fault-tree-like failure conditions. Thus, a wide spectrum of
possible errors can be modeled.

Our error model is based on the notion of state
perturbations. For example, unintended state transitions are
state perturbations. An unintended transition from state s

to state q may be due to a permanent or temporary fault
and q may be an erroneous state. An unintended state
transition due to a temporary fault occurs at most once
in the considered period. An unintended state transition
caused by a permanent fault can occur whenever the system
is in the state that gives rise to the erroneous transition.

[mark(A’)]

AA’

rate=’loss’

rate=’inj’

rate=10

F1

F2

T

1*mark(A)

[!mark(A’)&&!mark(A)]

FIGURE 8. Modeling of corrupt signals.

Such state perturbations can be modeled by binary and
reflexive relations over the state space of a statechart [19,
20, 21, 22].

Signal losses can mean that events or in-state guards are
not observed. The trigger event is lost or the guard always
evaluates to TRUE. In this way, sensor and actuator faults or
the loss of messages can also easily be modeled.

Finally, guards can express dependability requirements in
the form of negations of fault trees (Boolean expressions)
over component states. For instance, a fault tree defining
possible collisions of certain devices that could lead to
the failure can be specified. In this way, dependability
requirements, resulting from the requirement analysis, can
be directly integrated into the system model.

As mentioned, our fault model includes corrupted actuator
and sensor signals. Besides modeling the loss, duplication
or corruption of events (spurious events), a guard can also
sense an active signal state as being inactive and vice versa.
In this case we duplicate the places corresponding to signal
states (Figure 8). Place A′ models the state of the signal and
place A models the presence of the signal (public state). A
fault occurs when places A′ and A have different markings
(see below). The arc annotation 1∗mark(. . .) defines a state-
dependent capacity of the arc. For example, if mark(A) = 0,
then firing of the output transition T depends only on the
marking of place A′.

Two normal and two faulty cases can be distinguished:

1. both places are empty, the transition T cannot fire;
2. both places contain tokens, the transition T can fire;
3. only A′ contains a token, i.e. the fault ‘signal is lost’

occurred. Then the transition T can fire;
4. only A contains a token, i.e. a fault ‘spurious signal’

occurred, then the transition T cannot fire. However,
the guards of other transitions (which refer to this
public state) evaluate to TRUE.

The faults are modeled as the results of the firing of
transitions F1 and F2. The modeler has only to specify the
corresponding failure (firing) rates ‘inj’ and ‘loss’.

6. MODEL ANALYSIS

The SRN (generated from the UML model according to
the patterns described in the previous sections) can be
analyzed by the SRN tools PANDA or SPNP. In certain cases

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

274 G. HUSZERL et al.

(in particular, when transitions have exponential firing times)
analytic solutions are possible, otherwise simulations have to
be performed. Both tools support the computation of steady-
state measures (if a steady state exists) and transient analysis.

The results of the analysis of the SRN (and so of the
transformed UML model) are, for example:

• the reachable state configurations of the system;
• the expected probability that a state is active;
• the expected value of the throughput of a transition;
• the expected probability that a transition is enabled;
• the expected probability that a transition fires.

These results can be utilized to gain both performance and
dependability measures of the model.

Simple performance measures can be derived directly
from the results presented above (throughput, utilization). In
more complex cases, user-defined reward functions can also
be used.

Dependability-based analysis in this framework requires
the explicit modeling of faulty behavior and the explicit
identification of erroneous states, as presented in the
previous section. The analysis of the probability of
erroneous states leads to reliability (if no repair is modeled)
and availability characteristics (if a repair is modeled).
Analogously, safety figures can be derived by distinguishing
the unsafe states in the model. Other application-specific
measures may combine the performance characteristics with
fault modeling (e.g. the performance of the system in the
case of an error, utilization of a repair facility, etc.). This
means to specify non-functional requirements in terms of
structured English sentences with its syntax is presented in
[23], by clear and consistent notation. The translation steps
for interpretation and verification of these sentences are also
shown in the same paper.

The analysis of detailed GSC and statechart models
is very time consuming and needs high-performance
computers. Full models of realistic applications usually
have higher complexity than modern tools and computers
can handle. Thus, quantitative analysis should be focused
on certain system components such as core parts of the
embedded controllers. They can be modeled in detail, while
the other system components need not be modeled in such
depth. Here the connection with the system-level structural
dependability analysis [24] could be important: system-
level sensitivity analysis can identify critical components,
while the analysis of dynamic behavior provides parameters
useful in the computation of (system-level) dependability
attributes.

Another way to reduce complexity is to deduce certain
scenarios from the statechart model and model them by
sequence diagrams. Usually these sequence diagrams are
much less complex than the statechart model itself. The
transformation of sequence diagrams to SRNs has also been
elaborated. Characteristics like runtime and termination
probability of selected scenarios can be computed by the
SRN tools [6].

7. APPLICATION OF THE TRANSFORMATION

The transformations described in this paper have already
been applied to several examples. We can mention, among
others, the ‘Trajectory Planner’ example of a spacecraft
[25] and the model of the replication manager in distributed
object-oriented software [26]. In the latter case, the
possibility of modeling and analyzing systems with event
processing was necessary in order to be able to examine the
fault notification mechanism, error processing and recovery
techniques and their effects on system availability.

Here we illustrate our approach by an example of an em-
bedded fault-tolerant system, a variation of a production cell
model [27, 28], because it is a well-known benchmark exam-
ple for the modeling of distributed embedded systems and
we can present both the GSC and UML statechart models.

The system contains a press that processes metal plates,
a robot with an extensible arm (with an electromagnet)
for loading and unloading the press and a repair console.
The feed belt as well as the deposit belt are not modeled
explicitly. The breakdown of the press can be sensed by the
repair console, so that the repairman (worker) can repair the
press. The robot arm may also become stuck and will also
then be repaired by the repairman.

The complete UML model of an extended version of this
example is given in [29]. It comprises a requirement model,
an object model and a deployment model.

The dynamic view of the system is given by statecharts.
According to our modeling approach, each device model
consists of a hardware behavioral model and the statechart of
the corresponding controller (a single, central cell controller
or that of several distributed device controllers). In the
first phase of the modeling, we used the higher-level GSC
diagrams; later in the refinement phase full statecharts were
prepared.

The complete GSC model comprises five statecharts
(with nine state transition diagrams and 34 basic states, of
which eight are sensor states and eight are actuator states).
The GSC model of the press (Figure 9) consists of two
components, one for the hardware of the press and one
for its controlling unit. This part of the model contains
two sensor and four actuator states. (The guards of some
transitions on the figure apply to states of other components
not presented here.) A possible malfunction of the press
hardware is modeled as a kind of state perturbation, which
can be detected by the controlling unit. For the sake of
simplicity, the transitions of the reparation are omitted.

The full statechart model of the same system consists of
one single hierarchical statechart with 15 concurrent states
containing 50 substates and 68 transitions triggered by 42
events (14 timer events). A single global event queue is
assumed, with non-deterministic dispatching policy. This
statechart was transformed to an SRN with 373 places, 472
transitions (304 guarded, 82 timed), 547 inarcs and 558
outarcs. To illustrate the model, the statechart corresponding
to the hardware of the rotary table is depicted in Figure 10.

For the quantitative analysis of the models, the SRN tool
PANDA was used. The transformed GSC model (as the

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 275

[Done]

[Unloaded]

Wait Process

Processing

Done

Done’

Failure

Failure’

[Work]

rate=10 weight=0.01

weight=0.99

rate=1

rate=10
Ready

Work’Ready’

Work

Crashed’

Crashed

Busy Busy’

[Loaded]

rate=10

[Failure]

rate=10

[Done]

rate=10rate=10

[Unloaded]

[Work]

rate=10

weight=0.01

[Unloaded]

HW

[Loaded]

rate=10

[Failure]

rate=10

[Unloaded]

rate=10

rate=1

rate=10

weight=0.99

CTR

Wait Process Failure

ProcessingDone

Ready CrashedWork

Busy

FIGURE 9. GSC model and the corresponding SRN model of the press.

Empty
One More

Belt Robot

Crash

Full

TableHW

product2/offtable

product1/ontable

up
down

up

down product1

TabPos Table

FIGURE 10. Statechart model of the table (hardware).

components are strongly coupled by the guards) has 9316
reachable states. The size of the state space of the full
statechart model increases if a FIFO dispatching policy is
selected; the increase depends heavily on the length of the
queue.

Various performance and dependability results were
computed by PANDA [6]. For example, computing the
utilization of the repairman as a function of the elapsed time
shows that the utilization increases to 0.15. The throughput
of the system (the mean number of forged plates per time
unit) was also computed as a function of the signal loss rate.
There is a domain of the signal loss rate between 10 and 1000
where the throughput is particularly sensitive to the loss rate
(the throughput rapidly decreases to 20%).

Failure events like the breakdown of the robot arm and its
repair were analyzed as special scenarios. The distribution
function of the time to load the press after the breakdown
shows that on average 64 s is required. Another experiment
compared the fault-free case and the scenario when the
signal from the robot control was lost twice. The average
duration increased by 33%.

8. CONCLUSION

We have presented a method which allows quantitative
dependability and performance analysis of systems modeled
by the use of UML statechart diagrams. To facilitate the

trade-off between the details of modeling and the complexity
of the analysis, both the higher-level, simplified formalism
(GSC) and the full UML statecharts were supported by the
transformation and the corresponding analysis.

Our transformation from UML statecharts to SRNs covers
a large subset of model elements including event processing,
state hierarchy and transition priorities. The transformations
were presented in the form of transformation patterns. The
properties of the resulting SRNs satisfy the requirements
defined in the UML standard. The number of places and
transitions in the generated model is proportional to the
number of model elements in the statechart. The number of
states generated (the state space of the underlying Markov
chain) corresponds to the number of state configurations of
the UML model.

By the transformation, the possibility of using UML to
model and analyze error-prone and fault-tolerant system
behavior is greatly enhanced. In the case of complex systems
this kind of analysis should be restricted to core critical parts
of the system, such as a (central) controller or a replication
manager, since the analysis is based on a detailed model of
the system.

ACKNOWLEDGEMENTS

This work was partially supported by the projects ES-
PRIT Open LTR 27439 ‘HIDE’, the Hungarian-German

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

276 G. HUSZERL et al.

Researchers Exchange Program No. 8, and OTKA-F030553
and OTKA-T30804 (Hungarian NSF). The authors would
like to thank the reviewers for their constructive comments.

REFERENCES

[1] Rumbaugh, J., Jacobson, I. and Booch, G. (1999) The
Unified Modeling Language Reference Manual. Addison-
Wesley Longman, Inc., Reading, MA.

[2] OMG (1997) UML Semantics, Version 1.3. Object Manage-
ment Group, Needham, MA. http://www.omg.org.

[3] Bondavalli, A., Dal Cin, M., Latella, D. and Pataricza,
A. (1999) High-level integrated design environment for
dependability (HIDE). In Proc. Fifth Int. Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS-
99F), Monterey, CA, November 18–20, pp. 87–92. IEEE
Computer Society, Los Alamitos, CA.

[4] Harel, D. (1987) Statecharts: a visual formalism for complex
systems. Sci. Comput. Program., 8, 231–274.

[5] Dal Cin, M., Huszerl, G. and Kosmidis, K. (1999) Trans-
formation of guarded statecharts for quantitative evalua-
tion of dependable embedded systems. In Proc. 10th Eur.
Workshop on Dependable Computing (EWDC-10), Vienna,
Austria, May 6–7, pp. 143–148. Österreichische Computer
Gesellschaft, Vienna.

[6] Dal Cin, M., Huszerl, G. and Kosmidis, K. (1999)
Quantitative evaluation of dependability critical systems
based on guarded statechart models. In Proc. HASE’99,
Fourth IEEE Int. Symp. on High Assurance Systems
Engineering, Washington, DC, November 17–19. IEEE
Computer Society, Los Alamitos, CA.

[7] Ajmone Marsan, M. (1991) Stochastic Petri nets: an
elementary introduction. In Rozenberg, G. (ed.), Advances in
Petri Nets, pp. 1–29. Springer, Wien, Berlin.

[8] Ciardo, G., Blakemore, A., Chimento, P., Muppala, J. and
Trivedi, K. (1993) Automated generation and analysis of
Markov reward models using stochastic reward nets. In
Meyer, C. and Plemmons, R. J. (eds), IMA Volumes in
Mathematics and its Applications: Linear Algebra, Markov
Chains and Queueing Models, Vol. 48, pp. 145–191. Springer,
Berlin.

[9] Muppala, J. K., Ciardo, G. and Trivedi, K. S. (1994)
Stochastic reward nets for reliability prediction. Commun.
Reliab., Maintain. Service., 1, 9–20.

[10] Bause, F., Buchholz, P. and Kemper, P. (1994) Hierarchically
combined queueing Petri nets. In Proc. 11th Int. Conf.
on Analysis and Optimization of Systems, Discrete Event
Systems, Sophia-Antipolis, France, June. Lecture Notes in
Computer Science, 199, 176–182. Springer, Wien, New York.

[11] Bernardo, M. and Gorrieri, R. (1996) Extended Markovian
process algebra. In Proc. 7th Int. Conf. on Concurrency
Theory (CONCUR’96), Pisa, Italy, August 26–29, pp. 315–
330. Lecture Notes in Computer Science, 1119. Springer,
Wien, New York.

[12] Donatelli, S., Hillston, J. and Ribaudo, M. (1995) A
comparison of performance evaluation process algebra and
generalized stochastic Petri nets. In Proc. 6th Int. Workshop
on Petri Nets and Performance Models (PNPM’95), Duke
University, NC, October 3–6. IEEE Computer Society, Los
Alamitos, CA.

[13] Ciardo, G., Muppala, J. and Trivedi K. S. (1989) SPNP—
stochastic Petri net package. In Proc. IEEE 3rd Int. Workshop

on Petri Nets and Performance Models (PNPM’89), Kyoto,
Japan, December 11–13, pp. 142–151. IEEE Computer
Society, Los Alamitos, CA.

[14] Allmaier, S. and Dalibor, S. (1997) PANDA—Petri net
ANalysis and Design Assistant. In Tools Descriptions, 9th
Int. Conf. on Modeling Techniques and Tools for Computer
Performance Evaluation (Tools’97), St. Malo, France, June
2–6. Lecture Notes in Computer Science, 1245, 58–60.
Springer, Wien, New York.

[15] Douglass, B. P. (1998) Real-Time UML. Addison-Wesley
Longman, Inc., Reading, MA.

[16] Latella, D., Majzik, I. and Massink, M. (1999) Towards a
formal operational semantics of UML statechart diagrams. In
Proc. FMOODS’99, IFIP TC6/WG6.1, 3rd IFIP Int. Conf. on
Formal Methods for Open Object-based Distributed Systems,
Florence, Italy, February, pp. 331–347. Kluwer, New York.

[17] Huszerl, G. and Majzik, I. (2000) Quantitative analysis
of dependability critical systems based on UML statechart
models. In Proc. HASE 2000, Fifth IEEE Int. Symp. on
High Assurance Systems Engineering, Albuquerque, NM,
November 15–17, pp. 83–92. IEEE Computer Society, Los
Alamitos, CA.

[18] Lee, P. A. and Anderson, T. (1990) Fault Tolerance,
Principles and Practice. Springer, Wien, New York.

[19] Dal Cin, M. (1998) Checking modification tolerance. In Proc.
Third IEEE Int. High-Assurance Systems Engineering Symp.,
HASE 98, Washington, DC, November 13–14, pp. 9–12. IEEE
Computer Society, Los Alamitos, CA.

[20] Dal Cin, M. (1997) Verifying fault-tolerant behavior of state
machines. In Proc. Second IEEE High-Assurance Systems
Engineering Workshop, HASE 97, Washington, DC, August
11–12, pp. 94–99. IEEE Computer Society, Los Alamitos,
CA.

[21] Dal Cin, M. (1998) Modeling fault-tolerant system behavior.
In Albrecht, R. (ed.), Advances in Computing Science, Vol. 3,
pp. 213–234. Springer, Wien, New York.

[22] Huszerl, G. (1998) Formal Verification of Fault-Tolerant
Systems. A Relational Approach to Model Checking. Master’s
Thesis, TU Budapest/University of Erlangen–Nuremberg.

[23] Dal Cin, M. (2000) Structured language for specification
of quantitative requirements. In Proc. HASE 2000, Fifth
IEEE Int. Symp. on High Assurance Systems Engineering,
Albuquerque, NM, November 15–17, pp. 221–227. IEEE
Computer Society, Los Alamitos, CA.

[24] Bondavalli, A., Majzik, I. and Mura, I. (1999) Automated
dependability analysis of UML designs. In Proc. 2nd
IEEE Int. Symp. on Object-Oriented Real-Time Distributed
Computing (ISORC’99), Saint Malo, France, May 2–5,
pp. 139–144. IEEE Computer Society, Los Alamitos, CA.

[25] Huszerl, G. and Kosmidis, K. (2000) UML—extensions
for quantitative analysis. In Proc. UML 2000 Workshop:
Dynamic Behaviour in UML Models: Semantic Questions,
York, October, pp. 70–75. LMU-München, Institut für
Informatik, München, Germany.

[26] Huszerl, G. and Majzik, I. (2001) Modeling and analysis of
redundancy management in distributed object-oriented sys-
tems by using UML statecharts. In Proc. 27th Euromicro
Conf., Workshop on Software Process and Product Improve-
ment, Warsaw, Poland, September 4–6, pp. 200–207. IEEE
Computer Society, Los Alamitos, CA.

[27] Lewerentz, C. and Lindner, Th. (1995) Formal Development
of Reactive Systems: Case Study Production Cell. Lecture
Notes in Computer Science, 891. Springer, Wien, New York.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

UML STATECHART MODELS OF DEPENDABLE SYSTEMS 277

[28] Matos, G., Purtilo, J. and White, E. (1997) Automated
computation of decomposable synchronization conditions.
In Proc. Second IEEE High-Assurance Systems Engineering
Symp., HASE 97, Washington, DC, August 11–12, pp. 72–77.
IEEE Computer Society, Los Alamitos, CA.

[29] Csertán, Gy., Dal Cin, M., Huszerl, G., Jávorszky, J.,
Kosmidis, K., Pataricza, A. and Szász, Cs. (1998)
The Demonstrator. Technical Report ESPRIT
Project 27439 (HIDE) deliverable 5 (HIDE/D5/TUB/1/v2).
http://www.inf.mit.bme.hu/FTSRG/Publications/.

THE COMPUTER JOURNAL, Vol. 45, No. 3, 2002

