
COMBINATION OF IDDQ TESTING AND HIGH LEVEL ATPG

Budapest University of Techology and Economic Sciences
Department of Measurement and Information Systems

Abstract: T est generation for today’s complex digital cir cuits is an extr emely computation
intensive task. The search space of ATPG can be reduced by starting from higher level circuit
descriptions. The integration of alternate testing methodology - IDDQ testing - is suggested for
increasing the efficiency of a high level VHDL based test generator.

1. Introduction

The ever growing complexity of digital circuits have imposed greater and greater demand on test pattern gener-
ation algorithms for the past twenty years. Though promising solutions have been elaborated to speed up the test
generation process, no algorithm can cope with its excessive computational complexity, as it is proven that the
ATPG problem is NP-complete. An attractive path for the circumvention of this obstacle can be the raise of the
abstraction level of the input of the ATPG procedure, in order to reduce the structural complexity of the circuit.
A high level automatic test pattern generation tool [4] was developed within the frame of the FUTEG [1] project.
The tool accepts architectural level digital circuit descriptions in VHDL language, and produces functional level
test vectors for a given fault set. The test generation is executed by applying constraint satisfaction techniques,
and is enhanced by heuristics-based constraint preprocessing and scheduling methods.
The conventional circuit testing paradigm provides fault detection by applying a test vector stimulus to the in-
puts, and observing the outputs of the circuits. An alternate paradigm is applied in the case of IDDQ testing [5].
This technique observes the effect of the faults activated by test stimuli at the power supply line of the circuit,
thus providing an opportunity of simplification in automatic test generation algorithms.
Incorporation of IDDQ testing methodology into the BudaTest ATPG system is a promising idea. Due to the na-
ture of its basic test generation principles, inherited from traditional gate level algorithms, a significant gain is
expected in test generation efficiency. A preliminary experimental version of the IDDQ-enhanced BudaTest tool
is under development.

2. The BudaTest ATPG Tool

BudaTest is an automatic test generator for digital circuits described on architectural functional level in VHDL
language, thus it was proposed to be used typically after the scheduling and resource allocation phases but, it
does not assume that the logic was already unfolded into a sea of gates.The tool applies systematic search meth-
ods in order to find test vectors for a given set of faults. It is a modular prrogtam implemented in C++ language.

It must be pointed out that one of the main design guidelines of BudaTest was direct support of the early design
process, in terms that the VHDL subset accepted by BudaTest is identical to the synthetizable subset provided
by the AMICAL [7] behavioural level synthesis tool. This way the user has a complete chain of technologies
covering the behavioural to structural transformation and the test and testability analysis as well.

2.1. The fault model

The validity of the fault model is one of the most important issues considered at the selection of the ATPG mod-
el. On the functional architectural level, VHDL language constructs have direct counterparts in the term of hard-
ware components and signals; hence, physical faults af fecting interconnections are manifested as storage
problems of these signals. The traditional stuck-at and short fault model is applicable here, too; moreover, the
model used by BudaTest makes the handling of multiple bit-faults on a single high-level signal possible.
Faults of the functional units (FUs) can be represented as purely functional faults, e.g. the execution of a wrong

operation. However, in an ATPG tool integrated into a design system based on FU libraries, a more accurate
fault representation is possible with the use of either
- faulty unit libraries, where library elements are obtained by the back-annotation of lower level faults, or

- test scenarios, where test patterns for FUs are given together with the FUs themselves. Test scenarios are
actually high level algorithmic extensions of the traditional primitive cube of fault notation.

Both fault representations can be used for the constraint based approach. The test scenario representation pro-
vides a very useful feature of hierarchical test generation: the test patterns of a simple component can be reused
when generating test vectors for a more complex circuit. This feature allows the easy integration of I DDQ test
vectors into the BudaTest tool.

3. IDDQ Testing

The traditional digital circuit testing methodology is based on voltage measurement; i.e. the observation of the
voltage level, as a logical value, appearing on a circuit output while the appropriate logical values are forced to
the circuit’s inputs. However, many of the physical, transistor level faults in digital circuits can be detected by
completely different, current measurement methods. IDDQ testing is one of the most promising and most well-
elaborated of these current based techniques [3].

3.1. Principle of Fault Detection

Most of the high-complexity digital circuits used by today’s electronics industry are built with CMOS technol-
ogy. The basic scheme of all CMOS circuits consists of two blocks: a network of p-channel MOSFETs between
the power supply line (VDD) and the output, and a network of n-channel MOSFETs between the ground (VSS)
and the output. Due to the properties of MOSFETs, IDD, the current flowing on the VDD power supply line is
usually very low, expect during the time of switching transients. The value of IDD in a stabilized, quiescent state
of the circuit, noted as IDDQ, is typically in the magnitude of femtoamperes (10-15 A) in the case of a single tran-
sistor pair, and still in the magnitude of nanoamperes for a whole complex CMOS circuit.
The most common class of the physical faults in CMOS circuits are the leakage faults, appearing as shorts or
conductances between various points of the circuit. These parasitic conductances increase IDDQ with a few or-
ders of magnitude. This phenomenon makes the detection of physical faults possible by measuring IDDQ while
‘activating’ the fault in question; that is, ensuring that current is flowing through the faulty conductance.
As the quiescent current of CMOS circuits is extremely low, its measurement is possible only by indirect tech-
niques. The most common method [6] involves applying power onto the circuit under test then removing it
abruptly. After then, the time function of the voltage is recorded on the VDD pin.
The circuit is considered as an RC couple in which R represents the overall isolation resistance of the circuit
(including shorts and parasitic conductances) and C represents the capacitance between the circuit’s power sup-
ply lines (including any external capacitors attached). If the circuit has IDDQ-detectable faults, the time constant
of this RC couple is significantly shorter than in the case of a fault-free circuit.

3.2. Benefits of IDDQ Testing

The IDDQ based fault detection methodology has many significant and attractive advantages over the traditional
value based methods:

• Test vector generation for IDDQ testing is much simpler and more efficient. As the observation of the
test vector’s effect is made always on the power supply line, the effect of an activated fault is not necessary
to propagate towards the outputs. This feature results in a drastic reduction of the search space in systematic
test generation algorithms.

• The range of considered faults is significantly wider. Additionally to the classical stuck-at faults, IDDQ
testing is able to detect the following fault types as well:

- faults related to semiconductor manufacturing technology: gate oxide defects, parasitic junctions,
shorts between the transistors’ terminals, etc.;

- hidden defects that does not affect the operation of the circuit under normal circumstances, but de-

crease its reliability under extreme conditions. These faults have special importance as they are
completely undetectable by logic value based methods, but their detection and elimination is es-
sential in high reliability circuits.

• Multiple faults can be detected simultaneously by a single test vector. Contrary to the traditional meth-
ods, when the propagation and observability requirements of dif ferent faults may be contradictory, each
IDDQ test vector will detect every fault that was activated by it, as the ef fects of all activated faults in the
circuit is summed up.

These advantages make IDDQ testing applicable in many areas where value based testing is difficult or even im-
possible, like silicon prototype testing and circuit reliability analysis.

4. Integration of IDDQ Techniques into BudaTest

Although the IDDQ testing methodology is seemingly closely related to the lowest level of digital circuit descrip-
tions, while the BudaTest tool operates on a much higher level of abstraction, it is a reasonable idea to combine
them in order to enhance the test generation capabilities, as many features of IDDQ testing fit well to the structure
of BudaTest:
- The faults detectable by IDDQ methods are either considered in the BudaTest ATPG tool, or strongly related

to the physical level manufacturing technology (e.g. gate oxide faults, hidden defects) and thus they have
no practical importance from the point of view of high level test generation.

- As IDDQ testing applies the same fault sensitization technique as the classical methods, all value based test
vectors generated by BudaTest can be considered as IDDQ test vectors as well.

- Pre-calculated IDDQ test vectors of individual components, generated by low level TPG systems or supplied
by the component manufacturers, can be exploited by BudaTest when generating tests for complex circuits,
as they can be considered as local test scenarios (see Section 2.1).

Due to the structure of the constraint based test generator of BudaTest and the carefully designed C++ object
oriented implementation, incorporation of new test methodologies is rather simple, and requires usually only
minor code modifications.

4.1. BudaTest as an IDDQ ATPG

The incorporation of IDDQ capabilities is feasible in many different parts of the BudaTest system. First of all,
the original value based test generator can be used in a very straightforward way for generating IDDQ test vectors
as well, without modifying the core ATPG engine itself! This feature can be implemented by applying an alter-
nate node labelling algorithm during the circuit description preprocessing phase.

The node labelling for IDDQ test generation (Figure 2) is a simplified version of the one described in [2]. As fault
propagation towards the circuit’s outputs and thus the distinction of ‘potentially active’ nodes is unnecessary in
this case, the selection of an ‘active’ output node is omitted, and ‘potentially active’ nodes are qualified as ‘don’t

a: active

x: don’t care

nodesi: inactive

x

x

i
i
i

i

i

i

x
x

i

a

x
x

i

i

i

fault location

x

x

x

Area removed from search space

Fig. 1. Node labelling for IDDQ testing

care’ instead.This simple change enhances the speed of the test generation algorithm dramatically, and it can be
implemented as an additional option of the ATPG engine while all the appropriate existing heuristics remain
applicable.

4.2. IDDQ Based Algorithmic Enhancements

 As the IDDQ test techniques have certain discouraging features besides its advantages, they are often applied in
a combination with traditional value based testing to exploit the best from both methodologies. Similarly, the
BudaTest system can be used not only for IDDQ test vector generation, but as a general framework for various
combinations of value based and IDDQ based testing methods.
So far, the following I DDQ based algorithm enhancements have been elaborated, and partially implemented
within BudaTest:
- As it was mentioned in the beginning of Section 4, every value based test vector of BudaTest is also an IDDQ

test vector for the same fault. Moreover, every test vector potentially activates many other IDDQ-detectable
faults as well.

- The number of activated IDDQ faults can be used as a heuristic measure for decision support [1] and for
qualification of test vectors, as the more faults are activated by a single test vector, the greater is the quies-
cent current in a faulty circuit, and thus the easier is the fault detection. Therefore those decisions should
be preferred that activate the maximal number of IDDQ faults.

- The number of detected IDDQ faults can also be supplied to the end user for use outside of the BudaT est
system, for scheduling and organization the circuit test process. Due to the extensive time requirements of
a single IDDQ measurement, the application of selective IDDQ testing [6] is a common practice that consists
of running a value based test set at normal operation speed, “paused” at certain test vectors in order to per-
form IDDQ measurements. The most suitable test vectors can be chosen by their IDDQ detection capability.

In order to enhance the effectiveness of testing, it is practical to combine individual test vectors, generated for
single faults, into compact test vectors that are able to detect multiple faults simultaneously. Two test vectors
can be combined only if they are compatible, that is, they do not contain contradictory value assignments and
do not imply value contradictions in the circuit when applied simultaneously. Compaction of the generated test
vector set can be done by determining the maximal compatible clusters of the vectors. IDDQ test vectors con-
fine significantly smaller parts of the circuit than value based ones, and thus the probability of incompatibility
between any two vectors is much lower. Moreover, due to the cumulative effect of activated IDDQ faults, com-
pact IDDQ test vectors have better fault detection capability.

References

[1] : An Artificial Intelligence
Based Approach to VHDL-Level Test Pattern Generation. Technical Report FUTEG-4/1994 (FUTEG
PECO Project 9624), 1995, Budapest.

[2] B. Sallay, A. Petri, A. Pataricza, K. Tilly: BudaTest: An architectural level heuristics-driven test gen-
eration tool. Description of the prototype. Technical Report FUTEG-8/1996 (FUTEG PECO Project
9624), 1996, Budapest.

[3] E. Gramatova, J. Gaspar, H. Manhaeve: Test Pattern Generation for IDDQ/Voltage Testing Based on
Fault Simulator for Combinational Circuits. Proc. of DDECS’98 Workshop, September 1998, Szc-
zyrk, Poland.

[4] B. Sallay, A. Petri, K. Tilly, A. Pataricza, J. Sziray: High Level Test Pattern Generation for VHDL Cir-
cuits. Proceedings of the IEEE European Test Workshop ‘96, June 1996, Montpellier, pp. 201-205.

[5] Y. K. Malaiya, S. Y. H. Su: A New Fault Model and Testing Technique for CMOS Devices. ITC, pp.
25-34, November 1982.

[6] J. Soden, C. F. Hawkins, R, K, Gulati, W. Mao: IDDQ Testing: A Review, Journal of Electronic Test-
ing: Theory and Applications, 1992, pp. 5-17.

[7] A. A. Jerraya et al: AMICAL - Interactive Architectural Synthesis Based on VHDL. INPG/TIMA Sys-
tem Level Synthesis Group, Grenoble, 1994.

