
1

A Process-Graph Based Formulation of the
Syndrome-Decoding Problem

Balázs POLGÁR1, Szilárd NOVÁKI2, András PATARICZA1, Ferenc FRIEDLER2

1 Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Department of
Measurement and Information Systems, Pázmány Péter sétány 1/d. Budapest, Hungary, H-1117, Phone: 36-1-463-3579
Fax: 36-1-463-2667 Email: polgar@mit.bme.hu
2 University of Veszprem, Department of Computer Science, Egyetem u. 10, Veszprem, Hungary, H-8200

I. Introduction
Diagnostics is one of the core problems in assuring the dependability of complex information
technology systems. Nowadays diagnostics does not only a simple activity for identifying faulty
hardware resources, but more and more it is a complex activity necessitating to cover both the
hardware and software aspects. The increasing frequency of transient errors require more and more
sophisticated diagnosis technologies, which also support the subsequent phases of fault handling as
well, like damage confinement and reconfiguration. In practice, however one of the basic problems is
the proper handling of the high complexity of the diagnostic process.
One of the intrinsic assumptions behind all diagnostic algorithms is the notion of a maximum
likelihood diagnosis. Frequently this assumption appears simply as “more faults occur with lower
frequency than a few ones” . Thus, the diagnostics aims at a minimal set of faulty elements
compatible with the syndrome. Other approaches use an explicit notion of fault probabilities and
assign different probabilities to different elements.
In the present work, the diagnostics has been formulated as a maximization problem, moreover, it has
been solved by state of the art technologies from the field of operations research [5].
The well-known multiprocessor-testing problem has been considered as test bed, which is the
simplest one in its structure. However, it has to be pointed out that a similar approach can be used
even to a wider class of systems. A universal framework from this study will be provided by the
ongoing research on application of operational research methods for integrated diagnosis [4].

System-level self-checking is one of the important methods to guarantee reliability in a
multiprocessor systems [1]. Self-checking has two basic steps: in the first one processors test each
other, and testers recognize the state of the tested units to be good or faulty. Then in the second step
the set of test results – the syndrome – is processed by an algorithm, which marks each unit as good
or faulty (or unidentified). The difficulty in the second step is that any tester can be faulty
invalidating the test result. Thus, the faulty processors have to be identified rejecting test results of
these processors. This is known as the syndrome-decoding problem.

There exist many traditional syndrome-decoding algorithms, and almost all of them originate in
the model introduced by Preparata, Metze and Chien in 1967. This model has the nonrealistic
assumption that the test results of a good processor are always valid, i.e. it cannot do anything with
tests having fault coverage less then 100 percent. Furthermore it cannot handle the ‘probability of the
uncertainty’ , i.e. the probability of the good or faulty test result in the case of a faulty tester and either
good or faulty tested unit. More accurately it handles the probability, but considers it as fifty percent.
If more than one fault distribution can ‘generate’ the same syndrome, i. e. there exist multiple correct
diagnoses to a given syndrome, these traditional algorithms need further restrictions or the diagnosis
will be incomplete (set of units remain in an unidentified state).

If the syndrome-decoding problem is regarded as a process network synthesis problem, a much
more general model can be constructed without the assumptions mentioned above. An advantage of it

2

is that synthesis algorithms can choose from the possible diagnosis hypotheses the one of the
maximum likelihood without any further restriction. Another advantage is that the reliability of each
processor can be considered, i.e. it is possible to have processors in the system with different
reliability measures.

II. System-level Diagnosis
A system with system-level self-check consists a set
of intelligent units, e.g. processors, and some of
them are interconnected by links. The state of units
can be good or faulty and the collection of the states
of all of the units in the system is called fault-
pattern or fault distribution. Via the links units test
the state of each other, this determines the test
topology (e.g. ring, square lattice). Accordingly, the
tester and the tested unit (UUT − unit under test)
can be distinguished. Of course, the same unit can have different roles in different tests. The test
result can be either ‘good’ or ‘ faulty’ and it is correct or valid if it is the same as the real state of the
tested unit. The collection of all test results is the syndrome. Syndrome-decoding algorithms try to
find the states of units upon a syndrome, the result of the algorithm is called the diagnosis. A
diagnosis is complete if all the units are labeled as ‘good’ or ‘ faulty’ and a diagnosis is correct if all
labels correspond to the reality.
The traditional approach supposes that the test result of a good unit is always correct, while faulty
testers can produce incorrect results. During syndrome decoding the faulty state of a tester invalidates
its test results as defined by test invalidation relation (Error! Reference source not found.). The
most general model – called PMC – says that the test result of a faulty tester can be anything
independently from the state of the tested unit, i.e. both c and d is equal to any. Another widely used
model is the BGM, which suppose that – in the case of complex units – the probability that two units
fail in the same way is very small, hence a faulty tester will also detect the failure of the tested unit,
i.e. d=faulty while c remains any.

If multiple fault-patterns can generate identical syndromes then the diagnostic algorithm needs
more information in order to give a complete diagnosis or there will remain a set of units with label
unidentified. Deterministic algorithms give complete diagnosis with the extra information of the so
called t-bound, which suppose that at most t units can be faulty. Probabilistic algorithms try to find
the most probable fault-pattern supposing that the probability of the faulty state of a unit is smaller
than that of the good one [2].

The test topology and the syndrome can be represented graphically by the testing graph. Vertices
of testing graph are the units of the system and arcs are representing tests directing from the tester to
the tested unit. Test results are labels on arcs. Label 0 represents the good, and label 1 represents the
faulty test result. A five-unit example can
be seen on Figure 1.

State of
tester

State of
UUT

Test result

good good good
good faulty faulty
faulty good c ∈{ good, faulty, any }
faulty faulty d ∈{ good, faulty, any }

Table 1 Possible test invalidation models

A

CD

E B

0

0

01

1

11

1

1

0

Figure 1. A testing graph with five unit

3

III. Process Network Synthesis (PNS) problems
PNS problems are given by the set of desired products, available raw materials, and plausible

operating units, which units consume and produce their input and output materials, respectively.
Moreover, constraints and cost function can be defined for the process network. Our aim is to
synthesize the optimal network of operating units producing the desired products while consuming
raw materials [6].

PNS problems can be solved by mathematical programming methods, e.g. mixed integer non-
linear programming (MINLP). Unfortunately these methods does not exploit the peculiar
characteristics of the MINLP model of the synthesis problem, thus they are unnecessary complex,
while the size of solvable problems is rather small. Friedler et al. [8] developed algorithms for
enhancing the effectiveness of mathematical programming methods by exploiting these unique
features of process networks.

Conventional graphs are incapable of uniquely representing
process structures in synthesis, thus an innovative graphical
representation, process-graph or P-graph has been introduced [7]. A
P-graph is a directed bipartite graph, i.e. the set of vertexes is the
union of two disjoint sets, the set of nodes representing materials and
those representing the operating units. The direction of arcs between
these two sets determines the direction of the flows in the network.
For example, the P-graph representation of a system producing pure
components A, B and C from the mixture of A, B and C, i.e. ABC
feed stream is in Figure 2. Operating unit 1 produces pure component
A and a mixture of B and C components, while operating unit 2
produces pure component C and a mixture of A and B components.
Operating unit 3 separates the mixture of A and B and operating unit
4 separates the mixture of B and C.1

A P-graph is said to be feasible process structure if it satisfies the
five axioms (S1) through (S5) of the combinatorially feasible process
structures (see e.g. [7], [8]). Axiom (S1) implies that each product is
produced by at least one of the operating units of the system; axiom (S2), a material is not produced
by any of operating unit of the system if and only if this material is a raw material; axiom (S3), only
the plausible operating units of the problem are taken into account in the synthesis; axiom (S4), any
operating unit of the system has a series of connections eventually leading to the operating unit
generating at least one of the products; and axiom (S5), each material appearing in the system is an
input to or an output from at least one operating unit of the system.

The complete set of combinatorially feasible process structures or solution structures can be
generated via algorithm SSG, i.e. solution structure generator. Algorithm SSG maintains a set called
‘materials to produce’ which is initially the set of desired products. In the first step the algorithm
selects an arbitrary material from this set, and produces it every feasible way. For example if both
operating units 1 and 3 can produce material A, then the structure generation can continue on three
feasible branches: A is produced by operating unit 1; A is produced by operating unit 2; or A is
produced by both operating unit 1 and 2. In the second step the previously selected – and already
produced – material is extracted from ‘materials to produce’ set, and the input materials of operating
units which was chosen to generate the selected material are included into set ‘materials to produce’ .
After second step algorithm SSG recursively calls itself. The algorithm halts on a branch if the set of

1 The structure and logic properties of P-graphs strongly resemble to Petri-nets. The merging of the
theoretical foundations of this two mathematical fields is subject of an ongoing research.

B

BCAB

A C

ABC

3 4

21

Figure 2 P-graph for
separating components from

mixture

4

‘materials to produce’ is empty – which means the structure generated is a combinatorially feasible
structure – or the selected material cannot be produced – in this case the branch does not lead to
solution structure.

IV. Syndrome decoding based on P-graphs
The idea to use the process network synthesis algorithms for syndrome decoding is that

information can be regarded as material and the transformation of information as the function of an
operating unit.

Information in a syndrome-decoding system is associated with the states of the units (‘unit A is
good’ , denoted by AG, or ‘unit A is faulty’ , denoted by AF) and the test results, (e.g. ‘ the tester unit A
reports that the tested unit B is faulty’ , denoted by ABF), while the transformations are implication
rules, which determine the possible test results depending on the states of the tester and tested unit
(e.g. ‘ IF unit A is good AND unit B is faulty THEN A says that B is faulty’) depending on the actual
test invalidation model. In the P-graph representation each row in Error! Reference source not
found. determines one or two ‘operating units’ , i.e. one or two transformations. The input of the
transformation is the states of the tester and the tested unit, while the consequence of it, the test result
is its output. If the test result is any, i.e. it can be either good or faulty, then two operating unit will be
generated for a single row.

The P-graph representation of the PMC model can be
seen on Figure 3. If BGM model is considered (i.e.
d=faulty), then just rule d0 should be discarded. Similarly
if d=good, then rule d1 is superfluous, and so on. Figure
4 shows the simplified − but equivalent − P-graph
representation of the transformations of the BGM model.
If no a priori information is available on the probability of
failing, the diagnostic object is the minimum number of
faulty units.
Each operating unit has cost, the probability of generating
the given test result. The cost of operating units belonging to rows in Error! Reference source not
found. containing a single test result (i.e. not any) is 1, while the cost of operating units representing
non-deterministic test results (like in case of BGM model rules c0 and c1) is 0.5, because it can be
either good or faulty with equal probability.
It seems to be redundant to have for example two operating unit for generating ABG on Figure 4,
because it is independent from the state of A, but these cannot be merged, because they have different
costs.

So thus, the elements of the process network are the following ones:

BFAF

ABF

BFAF

ABG

BGAF

ABF

rule a0 rule d1rule d0rule c1rule c0rule b1

BGAG

ABG

BFAG

ABF

BGAF

ABG

Figure 3 P-graph representation of the consequence rules of PMC model

BgAg

ABG

Af

ABF

Ag Bf Af Bg

Figure 4 P-graph representation of the
BGM test invalidation

5

• raw materials: information of the state of each processor (AG, AF, BG, BF, etc.),
• products: information of each test result (ABG, ACF, BCF, BDF, etc.),
• operating units: all transformations representing consequence rules that can ‘produce’ one of the

test results (rule a0, c0, d0 for ABG, the adequate rule b1, c1, d1 for ACF, etc.).
Constraints should also be formulated in order to guarantee the consistency of the states of units, i.e.
not to allow both good and faulty states of a unit in the result. Mathematically:

AG ∈ {0,1}, AF ∈ {0,1} and AG + AF =1

The aim of the synthesis algorithm is to determine the states of the processors, which means the
decoding of the syndrome, that is to find the set of raw materials that can produce the given products.
The algorithm first executes SSG. It generates all of the combinatorially feasible process structures.
Subsequently, the inconsistent ones – which contains two different states of a single unit – are
filtered out from the feasible structures, remaining the set of solution structures. If this set consists
multiple elements then the most probable one will be selected, the one with maximum cost. This
means that the fault pattern will be chosen, which generates the syndrome with maximum
probability.

V. Generalisation of the Test Model
The traditional test invalidation models (see Error! Reference source not found.) can be

generalised in order to relax their intrinsic restrictions. In this section we show that the approach
sketched above can be used to relax the assumption of 100 percent fault coverage thus to get closer to
the real system behaviour.

In the generalised model probabilities are associated to the possible test results. For instance a
good tester will detect a fault in the testing unit with a
probability of pb0, and a fault will escape with a probability
pb1 (pb0 + pb1 = 1) (see Table 2). Similarly a faulty tester will
report a good unit as good or faulty with probabilities pc0 and
pc1, where pc0 + pc1 = 1, and so on.
Assumed that both pa1 = pb0 = 1 and pc0 = pc1 = pd0 = pd1 = 0.5
then this is just the case of the PMC model. With the same
probabilities by changing pd1 to 1 (and accordingly pd0 = 0)
we get the BGM model. By assigning these probabilities to 0
and 1 all of the meaningful test invalidation models can be reconstructed. In this sense the
generalised test invalidation model covers the traditional one.
However, the use of explicit maximisation algorithms allows using probabilities in between 0 and 1.
In this case the probability pb1 can represent fault coverage, while pc0, pc1, pd0 and pd1 the distortion of
the test results by a faulty tester.
The mathematical model allows to set pa1 to nonzero thus covering the case of fault alarms (a good
tester finds a good unit to be faulty). This case is not very realistic, but in some test models it can be
used to model a non-deterministic test process with a potential
fault alarm as outcome.
In case of the generalised model the P-graph described above is
extended by two more implication rules in order to cover all
the cases (Figure 5). Rules a1 and b0 indicate imperfect but
good testers. As previously, probabilities pxy (x∈{a,b,c,d},
y∈{0,1}) are assigned as cost to corresponding operating unit,
which generates the given test result.
The failing probability pf of processors can also be taken into
account. It will modify the cost of operating units with the

State of State of Test result
tester UUT 0 1
good good pa0 pa1

good faulty pb0 pb1

faulty good pc0 pc1

faulty faulty pd0 pd1

Table 2 Generalised test model

rule a1 rule b0

BGAG

ABF

BFAG

ABG

Figure 5 Extra rules for the
P-graph of the extended model

6

probabilities of the states of the tester and UUT (Table 3). This way the differences between more
and less probable states of units will be much more emphasized (if pf = 0.1 then (1- pf)

2 = 0.81, (1-
pf) ⋅ pf = 0.09 and pf

2 = 0.01).
Consider now the situation when we have processors with failing probability 0.1, operating according
to the PMC model and have the test result that unit A finds unit B to be good. The possible states of
A-B can be 0-0, 1-0 and 1-1. The differences between costs of operating units − generating the given
result from possible states of A-B − depending on the consideration of pf can be seen on Table 4.

VI. Example
One advantage of the adaptation of algorithm SSG is that more generalised syndrome-decoding

problems can be solved, i.e. problems having more than one correct diagnosis upon a given
syndrome. For example, the testing graph in Figure 1 yields two correct diagnoses in the BGM test
invalidation model. One diagnosis can be A, B and C units are good units; D and E units are faulty
(see Figure 6.a); other correct diagnosis can be that only B and C units are good and units A, D and E
are faulty (see Figure 6.b).

In order to solve syndrome-decoding problem via the adapted SSG algorithm we define the set of
products, which is the set of test result, i.e. P={ ABG, ACG, BCG, BDF, CDF, CEF, DAF, DEF, EAF,
EBG} . Moreover, the set of raw materials is defined to be the set of feasible unit states R={ AG, AF,
BG, BF, CG, CF, DG, DF, EG, EF} . The set of operating units contains all feasible transformation
between the unit states and the test results (see Figure 7). For example, the test result ABG can be
generated in two feasible ways, i.e. from unit states AG and BG, and from AF and BG in BGM test
invalidation model. Consequently, test result CEF can be generated in three feasible ways, i.e. from
unit states CG and EF; from unit states CF and EF ; and from unit states CF and EG.
We define constraints and cost as
described above; constraints like AG, AF

∈{ 0, 1} , AG+AF=1 for each unit to
establish a consequent structure, i.e. no
unit has state good and faulty at the same
time. Costs of operating units in BGM
test invalidation model are described in
previous chapters. The cost of network is
the product of the cost of operating units.

Adapted algorithm SSG then
generates two consequent networks of
good or faulty processors. Each network
produces desired products, i.e. the

Indices of
op. Units

0 1

A pa0 ⋅ (1- pf)
2 pa1 ⋅ (1- pf)

2

B pb0 ⋅ (1- pf) ⋅ pf pb1 ⋅ (1- pf) ⋅ pf

c pc0 ⋅ pf ⋅ (1- pf) pc1⋅ pf ⋅ (1- pf)
d pd0 ⋅ pf

2 pd1 ⋅ pf
2

Table 3 Costs of operating units including
failing probability pf

op. unit without pf with pf

a0 1 0.81
c0 0.5 0.045
d0 0.5 0.005

Table 4 Costs of operating units generating
0 test result in PMC model (pf = 0.1)

��� ���
A

CD

E B

�

�
��

	

�
�

�

A

CD

E B

�

�
��

�

��
�

�
�

������� "!
#%$�$'&(') $'*,+'-,-,$) -,.

Figure 6 Correct diagnoses for system represented by
testing graph in Figure 1

7

syndrome. The cost of network in Figure 6.a is 0.25, while the cost of network in Figure 6.b is
0.125. The adapted SSG algorithm chooses the structure with the highest cost, i.e. structure with the
most probable fault pattern, which is represented by Figure 6.a.

VII. Conclusion
With process-graph based representation of syndrome decoding problem, it is possible to solve

much more generalised problems that can be solved with previous algorithms. The assumption of one
hundred percent fault coverage can be eliminated; moreover, the solution can be generated in any test
invalidation model. The proposed algorithm does not need additional information to determine
between fault patterns when more than one correct diagnosis can be established.

These highly desired properties of the algorithm achieved by the recognition, that any information
in a system can be regarded as a material; and any transformation of the information can be
represented as an operating unit in a process network. The combinatorial algorithms for solving PNS
problems are based on rigorous mathematical foundation; therefore, the adapted SSG algorithm
provides an effective solution of the generalised syndrome-decoding problem. The preceding
recognition may also be established in the modelling of integrated diagnostics, which is the subject of
our future work.
As mentioned above the syndrome-decoding problem in multiprocessor systems has a special
structure, namely the direct manifestation of internal fault states in the syndromes. In more complex
problems obviously the states of the system control logic have to be taken into account in the model
to be analysed [3]. These straightforward extensions can be well incorporated into the process-graph-
based models due to the strong analogy to Petri-nets. Current work aims at generalisation of the
results into this direction.

Acknowledgement
The research has been supported in part by the Hungarian National Research Foundation Grants
OTKA T030804 and T029309.

BgAg

ABG

Af CgBg

BCG

Bf

CDF

Cg Df Cf Dg

BDF

Bg Df Bf DgCgAg

ACG

Af

BgEg

EBG

Ef

EAF

Eg Af Ef Ag

DAF

Dg Af Df Ag

DEF

Dg Ef Df Eg

CEF

Cg Ef Cf Eg

Figure 7 Operating units in adopted SSG algorithm for testing graph in Figure 1

8

References
/10325476�8 9�:�;=<?>?:�@BAC6ED�FHG3IBG�J"KBL M N=KBOPM Q3IRQ�S3N=T=N?OUG3VWL G�X'G�LYNZG�L SP[]\Y^BG_\=`=M I�aBD�b?cBdRefc�6�g=< gihkjml7nE03o�p�qBr
/Ps�254trvuwr%xzy_c�6�g=c�{wyBA"<|D}4tr%~�r��By��'< ��<|D%��I�h�Q���G�L N�SPQ�Jt�wM K�a�IBQ3N'K��BL G5�?T=NZOPG3V�NRK�IB�5�7J�Q3��K��EM L M N?OUM \R��KB��L O%��M K_a�IBQ3NZM NZr

�P>7>7>ievA"y�:�gZr3�_:��w�����B�3�1r3�7��8�r3�w�]s_qBD3����s�s�p_�]s����ED�03o����Er
/P��25�tr%b?y��UyEAC< �=�=yBD%b7r��wA" �¡�:BD}l¢\=Q3V��BM I�KBOPM Q3I£Q�S��7G_OUJ�M ["IBG�O NRK�IB�5L M IBG3KBJ�¤BJ]Q3aEJCK�V�VkM I�a�M I���G¥NZM a_I�SUQ_Jt��G3¤EG3IB�3K��EM L M O TZr

ef6��=c_:�< �'y�8ZAC6_���BAC�1D3ev�w¦7D�03o_o�pBr
/P§�25¨ir©�wg=6BA"�U¡_:BD©�trBb?y��UyEAC< �=�=yBD�y�:�@ª>7r©476_8 9�:_;=<|DB�wG3¤BG3IB�¥K��BM L M O T«K_I�KBL T=NZM N¬M Iª­¯®«[��t®°\=Q_[]��G3N?M a�IErB� :��P>7>7>±�%�_�²�B�¥�U6BA

b?6BA"³U�BA"�²y_:��=6�y�:�@RdB6���6�:_@�y� �< 8 < �P;´47;'�²���_g=<|�¥�kD��Pb7dB47µ o�qBD¥��y�¶�6�gH��·_���]�B0¥qBD�03o�o_qBr
/Pq�25�tr¸b?y��PyBAC< �=�=yBDZltL aBG3�BJ"KBM \¹VºQ���G�L L M I�a»Q�S¸��M K_a�IBQ3NZOPM \¹¤BJ�Q3�BL G3V²N¼M I½^B¾w[CNZ¾¿\'Q���G3NZM a�IBr¸� :»dwr?�7ÀZA"6�g=�=;Áy�:�@Â¦7r7�B�BACg'�ÃD

6�@�< �P�BACgZDtd}< ¶�6�g'�z��³z�7 �g'�ÃA"y��=�Pg±�_³z�Uc_6¿�P>7>7>Ä� :_�U6BA":�y��P< �_:�y�8vÅ½�BAC�'g=c����Â��:Æ>?�� �6�@_@�6�@ÆÇ�yB�38 �P�]ef��8 6BACy_:��t47;=g'�U6���gZD
dBy�8 8 y�g?D3ef6�È=y�g?D3476����1r�03o�o_�Br

/P��2�ÇfAC< 6�@�8 6BA�D_ÇfrPD_~�r=evr_Ç�y�:BD=y�:�@¬¦7rZ� �ºAC6�cED_�7J]Q_\=G3N=NÊÉwG�OP¾wQ�J]`¯�?T'IBO ^EG3NZM NZËZ�7J�Q3�BL G3V°�%G_SUM IBM OUM Q3IBD?uB6��U{w�BA"�=gZD's�p�Ì�s�ÍÎD?0�03o��
03s�§�ÌY03o�o�p�ÍYr

/P��2�ÇfAC< 6�@�8 6BA�DtÇfrPDtÏ7r7efyEA Ð�y�:BD7ÑtrvÅÒr´�w�3y�:�¶ED�y�:_@Ó~�rvevrÔÇ�y�:EDÔFHJCK_¤�^B[Îjm^EG�Q�J]G_OUM \kl7¤�¤BJ�Q3KB\Y^ÕOUQÖ�7J�Q�\=G3N'N��?T=IBO ^BG3NZM NZË
l7×ZM Q3V�N´K_IB�Rjm^BG�Q�J�G3V²N?D3�wc�6��ºr�>?:�¶�:�¶�47�=<�rPD3§���Ì�p�ÍÎD�0¥o������Y03o�p�p�ÌÎ0¥o�o�s�ÍYr

/Pp�2�ÇfAC< 6�@�8 6BA�D´ÇfrPDHÏ7r�efyBA Ð�y�:BD�Ñtr%ÅÒr¹�w�3y_:�¶BD%y�:�@Ø~�r%evr¹Ç�y�:ED¹Ù%Q¥V²�BM I�KBOPQ�J�M KBLEltL aBQ�J�M O ^�V�NÚSPQ�J��7J]Q_\=G3N=N¿�?T=IBO ^BG3NZM NZD
�w�����B�3�P6BACgH�wc�6��ºr�>?:�¶�:_¶BD�03�BD¥47�B03������s�·�ÌÎ03o_o�s�ÍÎr

