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1. Introduction

The growing complexity of information systems ne-
cessitates a complete automation in proving the confor-
mance to the functional and dependability related re-
quirements. Traditional quality assurance methods are un-
able to provide a thoroughgoing check any more. This
way, the fulfillment of the specification has to be proved
by mathematical modeling based evaluation.

However, even advanced analysis methods are unable
currently to cope with faithful models, due to the com-
putational complexity of verification problems. In large-
scale models the size of the manageable state spaces
confines to the order of magnitude of 10120. Moreover, de-
pendability analysis frequently leads to the necessity of ex-
ploring the entire state space, for instance, to prove that
the system will never reach an unsafe state.

  An alternate solution is to examine the violation of
the objective requirements in a larger, but easier to gene-
rate state space embedding the state space of the system
under evaluation as a subspace. If no counterexample is
found in the embedding space, then obviously the safety
property is fullfilled in any subspace of it, including the
state space of the target design, as well.

However, if a counterexample is found, it cannot be de-
cided, whether it belongs to the state space of the target
design (i.e. it is a true counterexample) or only a spurious
solution from the extension of the state space. This way, a
semi-decision algorithm can deliver the alternatives “Yes”
or “I don’t know”.

The current paper reports about an ongoing research to
prove the correctness of designs described in UML. The
most specific feature of the approach taken is the objective
to prove the correct functioning of the target design even
in the presence of faults anticipated in a predefined fault
model [4].

2. Transformation-based validation and
verification

One of the most accute challenges in the design of
information technology devices is the verification of

complex systems. Visual design technologies, like UML,
the Unified Modelling Language, increase the design
quality and productivity, however, they are unable to
completely exclude design errors.

Roughly speaking, these new CASE tools will play a
similar role in the development of design technologies like
the use of high-level languages instead of assembler level
programming. The semi-formal specification of the target
design in UML makes the application of mathematical
proof of correctness technologies a favorite candidate
[6,7]. Several research projects aim at an automatic
transformation and back annotation based analysis, design
validation and verification [5].

However, transformation-based analysis methods
cannot perform the evaluation of larger models than the
native approach directly building the model in the input
language of the mathematical tool. Moreover, due to the
redundancy in the automatically generated models the
manageable model size is slightly reduced. This way the
development of approximate methods that are able to
handle large scale models as well, becomes a crucial
factor in the dependability assurance process.

3. Basics of semi-decisions in Petri-Nets

One of the favorite description paradigms for automatic
transformation based analysis is the Petri-nets, the
traditional modeling paradigms for non-deterministic,
concurrent systems. When using non-interpreted modeling
[3], where data-dependencies and values are substituted
with a non-deterministic abstraction, Petri-nets are able to
model extremely large systems as well.

As already mentioned in the introduction, semi-
decisions necessitate a proper covering space for em-
bedding the solution space.  In the case of Petri-nets, such
an abstraction is provided by the state equation [2]. This
state equation summarizes the difference of the numbers
of tokens at the individual places of a Petri-net between
the initial and final markings of a firing sequence. The
state equation corresponds to a temporal compaction of
the control flow in the modeled system, as it contains only
the numbers of occurrences of the individual elementary



state transitions, but it does not define their execution
order. Moreover, if a sequence satisfies the state equation,
this is only a necessary, but not always a satisfactory
condition of its execution.

The state equation is a proper basis for semi-decisions,
as it provides the structural specification of the target
system under evaluation in a compact form. The
generation of the state equation, (a linear Diophantine
inhomogeneous equation system can be reduced to a
number of basis vectors.

Problem specific temporal constrains can be formulated
either directly in a linear algebraic [1] or in the form of a
temporal logic expression from which a similar solution
methodology can be applied [8]. If the state equation is
handled over the real numbers instead of the natural ones
(real relaxation), state spaces up to 10500 can be analyzed
as well [9].

4. Applications of semi-decisions in
dependability evaluation

A number of questions related to dependability requires
the simultaneous analysis of all possible faulty instances
of the target system in addition to the fault-free one.
Typical criteria for safety related medical equipment
require for instance the tolerance of an active and a latent
error. Similarly, an important question is the number of
faults tolerated by a system or the probability of a failure.

Semi-decisions can be used to answer to this category
of questions in the following way:

• At first, a combined model is constructed which
incorporates both the fault-free and all anticipated
faults into a single, integrated model.

• If the number of active faults is constrained, for
instance by the single fault assumption, this can be
added to the model either in a structural way (by
introducing selectors activating individual faults)
or in an algebraic form (by adding an equation
limiting the number of fault activation).

Depending on the objective of the analysis, different
algebraic analysis methods can be used:
• If a negative proof is aimed at (for instance it has

to be proven that no unsafe state will be reached),
then the unfeasibility of the state equation and
constrains has to be proven.

• If a numerical attribute has to be proven (for
instance the number of faults belonging to some
categories has to reach a predefined limit), a
proper objective function expressing the number of
faults leads to an integer programming problem.

• Similarly, searches for extremal values of pro-
babilistic measures can be solved by a MILP [10].

5. Pilot applications

In the framework of an ongoing research the
technologies sketched above are applied to the safety
validation and verification of an artificial kidney
controller, a wireless interconnection protocol and a
railway control system for which efficiency measures will
be collected.
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