
A CONSTRAINT-BASED ALGORITHM
FOR SYSTEM LEVEL DIAGNOSIS

Diploma Thesis

ifj. Petri András

Technical University of Budapest

1994.

ii

Acknowledgements

The author wishes to express his sincere gratitude to Prof. Dr. Mario Dal Cin
for enhosting him at the Institute of Mathematical Machines and Data Process-
ing at the Friedrich Alexander University of Erlangen-Nürnberg and to Dipl.-
Math. Wolfgang Hohl for supporting the organizational aids of this diploma
work.

Many thanks to Dipl.-Inf. Frank Balbach and Dipl.-Inf. Jörn Altmann who
always found enough time for consulting and their valuable ideas and pieces of
work greatly enhanced the completed task.

Special thanks to Prof. Dr. András Pataricza who made this study trip possible
and constantly inspired the author to make his best (or even more).

This diploma work was carried out under the TEMPUS JET 3815/93. project.

iii

Brief summary of the work
The latest years brought new ideas to the field of system-level self diagnosis. The

growing practical importance of massively parallel multiprocessor architectures (consist-
ing a few hundred or thousand computing elements) and the constant development of elec-
tronics made the application range of the traditional models and algorithms smaller.

Contrary to the traditional diagnosis models (like PMC, BGM etc.) which use strictly
graph-oriented methods to determine the faulty components in a system, these new theo-
ries prefer AI-based algorithms for higher efficiency and greater flexibility. Syndrome
decoding, the basic problem of self diagnosis, can be easily transformed to restrictions
(constraints) between the state of the tester and the tested components, taking the test
results into account. Well-elaborated tools from the field of AI can be used to find the pos-
sible results of these constraints, thus to find the possible fault state combinations of the
system elements.

This approach has many advantages over the classical methods:

• applicability for inhomogeneous systems (built from different components with vari-
ous test invalidation considerations) as well;

• the diagnosis algorithm itself can be practicallyindependent from the actualsystem
topologyand the test invalidation model;

• the level of diagnosis can beadaptively adjusted after receiving the test results and
extracting all the useful information from them.

Therefore, the diagnosis algorithm can be derived from a special constraint solving
algorithm. The “benign” nature of the constraints (all their variables, representing the fault
states of the components, have a very limited domain; thus the constraints are simple and
similar to each other) reduces the algorithm’s complexity so it can be converted to a pow-
erful diagnosis method, suitable also for distributed diagnosis, with a minimal overhead.
The primary goal of this diploma thesis was to evaluate these concepts in the practice.

An experimental algorithm was implemented for a Parsytec GC massively parallel
multiprocessor system at the Institute of Mathematics and Computer Data Processing at
the Friedrich Alexander University of Erlangen-Nürnberg. A simplified fault model was
used, based on the available standard testing methods developed in the Institute [4][31].
The algorithm applied centralized diagnosis due to some useful special features of the Par-
sytec hardware architecture. The low-level testing mechanism ran on the transputers of the
Parsytec system and the actual syndrome evaluation took place on a separate host
machine, on a Sun workstation. It initiated the test sequence on the Parsytec, collected the
syndrome bits and ran the CSP solver algorithm.

The Parsytec part of the diagnostic system was written in C, using the PARIX kernel.
The syndrome decoding routines were implemented in ANSI C on a Sun SPARCstation
under UNIX (SunOS 4.1.3) environment.

iv

Table of Contents

CHAPTER 1. Introduction ... 6

1.1. Basic Terms and Principles of Dependability.. 6
1.2. Methods for Creating Dependable Systems... 8
1.3. Classical Models and Algorithms in System-level Diagnosis.................. 11
1.3.1. Fault-Test Relationships and Fault Models.. 11
1.3.2. Diagnostic Algorithms... 18
1.3.3. Distributed Diagnosis... 21
1.4. Problems in Traditional Methods... 24
1.4.1. Requirements of a General Purpose Diagnosis Algorithm.................... 26
1.5. AI-based Methods... 27

CHAPTER 2. Constraint Satisfaction Problems.. 28

2.1. Formal Definitions.. 28
2.2. CSP Solution Methods.. 29
2.3. Consistency Algorithms... 30
2.4. Similarity to the Self-diagnosis Problem.. 33
2.5. Ideas from an “AI-like” Traditional Algorithm.. 34

CHAPTER 3. Implementation Environment.. 35

3.1. Classification of Multiprocessor Systems.. 35
3.2. Hardware Overview.. 39
3.2.1. The Parsytec GC/GCel Machine.. 39
3.2.2. The INMOS T9000 Transputer.. 42
3.3. Software Environment.. 45
3.3.1. Programming Model.. 46
3.3.2. The PARIX Operating System Kernel... 47
3.3.3. Development Tools.. 49
3.4. Differences between T9000 and T805 Transputers.................................. 50

CHAPTER 4. The Developed CSP-based Diagnosis Algorithm....................... 52

4.1. Fault Model... 52
4.2. Assumptions... 55
4.3. Transformation into a CSP... 56
4.4. Implementation Details... 60
4.4.1. Low-level Testing Mechanism... 60
4.4.2. CSP Solver... 61

v

CHAPTER 5. Test Results.. 65

5.1. Measurement Methods and Considerations.. 65
5.2. Preformance Curves of Typical Test Runs... 67

CHAPTER 6. Conclusions.. 69

6.1. Experiences... 69
6.2. Future Work.. 70

Bibliography ... 72

APPENDIX: Pr ogram Source Listings...

I. Low-level tester on the Parsytec transputers.. A-1
II. CSP solver on the Sun SPARCstation.. A-10
III. Common declarations... A-37

6

1 Intr oduction

1.1. Basic Terms and Principles of Dependability

One of the basic expectations on a computer system isdependability: the behavior of a

computer (the service it delivers) should be reliably identical to the specifications, from the

viewpoint of another systems interacting with it (including human users). Dependability is

a highly abstracted term and it strongly depends on the current application, as the expected

service is different.

Lack of dependability means that no reliance can be justifiably placed on the service of

the system. These impairments are the following [30]:

• a failure appears when the actual service of the system is not identical to the expected
(previously specified) service; this is the consequence of (one or more)

• errors: system states in which the possibility of a failure holds;

• faults are the phenomena in the system that are responsible for occurring of errors.

Fault
Forecasting

Fault
Removal

DEPENDABILITY

IMPAIRMENTS

FailuresErrorsFaults

latent effective

METHODS

Procurement

Fault
Avoidance

Fault
Tolerance

Validation

MEASURES

Reliability

Availability

Figure 1-1. Terms of Dependability

Maintainability

7

(An example: the pollution of the LED diodes in an opto-electronic mouse is the fault

that causes an error of mouse cursor stopping; this effect can cause a failure in an applica-

tion as its operation cannot be controlled by the mouse.)

Faults can be categorized into the following groups (fault classes):

• physical faults, results of physical phenomena within the system (internal) or its envi-
ronment (external physical faults);

• human faults, committed during system design and implementation (design faults) or
during operation and/or maintenance (interaction faults).

However, not each fault results in an immediate failure. An occurrence of a fault ini-

tiates alatent error that does not modify the behavior of the system; the error becomesef-

fective only when it is activated and only an active error may cause a failure. (In the above

example, if the mouse becomes faulty during a long calculation, it causes only a latent error

that will be activated only when the user wants to use the mouse to control a further oper-

ation of the program. A failure occurs if the desired operation cannot be activated due to

the erroneous mouse.) The actual latency of errors depends on the circumstances: the type

of the fault, the system’s utilization and other parameters.

Some effective errors still do not cause a failure due to theredundant construction of

the system (redundancy can beexplicit, i.e. previously designed specifically in order to

avoid failure, orimplicit, i.e. some unintentional features in the system may result similar

failure avoidance as explicit redundancy) or the user’sunique definition of failure (if the

user can achieve its goal despite of the error occurred, he does not judge the situation as a

failure; possibly he does not observe the error at all).

In the field of computer system diagnosis, from the two different basic approaches - the

I/O oriented (black box) and the hierarchical (white box) concept - obviously only the sec-

ond one can be used effectively. The ‘black box’ approach supportsfault pathology only in

a very limited extent. The basic rules governing the “life cycle” of faults, errors and failures

on a system are the following ones:

1. A fault creates latent error(s) in the system component(s) where it appears. Physical
faults can directly affect only the components in the physical layer; human faults can
affect any components.

8

2. A latent error becomes effective when it is activated. An error can alternate between
latent and effective state.

3. An effective error may (in the practice, usually does)propagate from one component to
others; during propagation,new errors are created.
Therefore an effective error in a component can be either a result of a latent error acti-
vation in that component or a side effect of an error propagation from another compo-
nent(s).

4. A component failure occurs when an effective error changes its delivered service
(responses to requests from interacting systems become different from the specifica-
tion).

The basic measures of dependability are based on the concept that the operation time of

a system can be divided to two parts:service accomplishment (when the system effectively

delivers the specified service) andservice interruption (when it does not). The system al-

ternates between these states; the causes of the transitions are failures and repairs. The three

basic measure qualifies the dependability by quantifying the state transitions:

• reliability is the measure of continuous service accomplishment (i.e. the time to failure
from an initial reference state);

• availability is the measure of a successful service completion with respect to the alter-
ation of accomplishment and interruption periods;

• maintainability is the measure of continuous system interruption (i.e. the time to
repair).

As the processes leading to failure and repair are stochastic, these measures can be rep-

resented only as probabilities. Their exact mathematical definition is presented in [12].

1.2. Methods for Creating Dependable Systems

Constructing dependable systems requires a combined set of different design methods

that can be grouped around two basic concepts:fault procurement to minimize the proba-

bility and/or seriousness of failures that can be resulted from faults, andfault validation to

analyze the system layout for the possibility of faults and determine the confidence level of

the system).

The main methods of fault procurement are:

• fault avoidance (prevention of fault occurrence by careful and systematic design and
implementation);

9

• fault tolerance (providing the ability of the system to deliver the specified service even
if errors have occurred, using built-in or explicit redundancy).

Fault validation includes the following methods:

• fault removal (checking for latent errors in the system and elimination of them so they
cannot activate);

• fault forecasting (calculation of the probability and possible consequences of faults).

Fault tolerance has the greatest practical importance from this methods as this is the

only active preventive action that operates during system operation; the other three meth-

ods have much more influence on the design and construction phase than the everyday run-

ning of the system. Moreover, fault tolerance can uphold (or at least reduce the loss of)

dependability even in the case when the operational circumstances of a computer system

has been altered since they were considered in design time.

Fault tolerance can be achieved bydetection andprocessing of the errors already ap-

peared in the system, desirably before they cause a failure, for preserving integrity of the

system. Processing of effective errors is the more important task as these errors may cause

failure in any moment. The possible methods of processing effective errors are:

- error recovery: replacement of the current (erroneous) state of the system with a previ-
ous, known error-free state, calledcheckpoint (backward recovery) or a new, presum-
ably error-free state that never occurred before (forward recovery)1;

- error compensation: implementing sufficient redundancy to the system component
affected by an error that it could deliver its expected service, despite of the error.

Latent errors also have to be processed to prevent their activation. In the practice it

means making them passive (i.e. excluding the erroneous component from the system) and

changing system configuration to cope with the lack of some components.

When applying error recovery, the erroneous state of the system (and the faulty com-

ponents themselves, if possible) need to be identified as soon as possible; it is the purpose

of error detection. In the case of error compensation, errors are “hidden” from the other

1. Backward and forward recovery are not necessarily mutually exclusive; they can be applied together.
(Backward recovery restores an earlier state of the system, therefore it decreases efficiency and may cause
synchronization difficulties in cooperation of other components; forward recovery does not cause efficiency
losses but careful damage investigations are required when finding the new system state.)

10

components and the user byerror masking, so error detection is optional in principle (as

long as the system components can comply with their specification, we can ignore the latent

errors in them, at least those ones that were considered possible during the design process);

however, omitting the error detection requires systematic application of error compensation

which generally results an unwanted increase of redundancy and loss of efficiency. Practi-

cal implementations of error masking therefore contain error detection as well.

After detecting the erroneous components, the obvious way to handle them is their

elimination from the system; this process is called maintenance. It can becorrective (re-

moval of the errors that became effective and already has been processed by e.g. recovery)

or preventive (immediate removal of errors in their latent state).

Fault procurement methods, however, obviously cannot protect the system from arbi-

trary error; they can achieve toleration of those error classes only which they were designed

for. The tolerable error classes can be derived from the considered fault hypotheses. More-

over, fault tolerance can be implemented only by adding new components to the system so

these components also need protection against errors, otherwise the fault-tolerant operation

itself would be unreliable. Detailed description of reliable fault-tolerance devices (replicat-

ed voters, self-checking state observers, stable memory for recovery checkpoints etc.) is

presented in [13].

The level of redundancy can be decreased if the system to be protected has special prop-

erties, e.g. some sort of structural regularity (error correcting codes, multiprocessors, spe-

cial local area networks, simple robust data structures etc. [14]); in this case the tolerable

error classes strongly depend on these system properties as the considered fault hypothesis

is also based on these features.

Another important issue of implementation is thetime overhead caused by error pro-

cessing. This overhead determines the error latency and basically affects the system perfor-

mance decrease resulting from applying fault tolerance. In the case oferror recovery, the

time overhead depends on whether an error is effective or latent (recovery from effective

errors necessitates preparation of checkpoints; the finer the user time granularity is, the

more checkpoints need to be used); when usingerror compensation, the time overhead is

constant, and the duration of compensation is generally much shorter. In general, the rela-

tion between operational time overhead and the amount of redundancy is simple: the more

redundancy is applied in the system, the less the overhead will be.

11

1.3. Classical Models and Algorithms in System-level Diagnosis

The first theoretical publications on the field of system-level diagnosis were published

in the mid-sixties. From that time, numerous studies and experiments have been made,

many implementations appeared and many practical experiences have gathered. In this sec-

tion a general overview is given on the most well-known models and methods, especially

paying attention to their known problems and limitations.

1.3.1. Fault-Test Relationships and Fault Models

A diagnostic model is a symbolic representation of erroneous states and/or components

in a system and the methods used for detecting them. Many different fault models were de-

veloped in the last thirty years; they are usually unrelated to other models so composition

of a general foundation for system diagnosis modeling is a complex task. A generalized

model, presented by Russel and Kime in [15][16], covers all the existing diagnosis tech-

niques and the contemporary approach as well. However, this model uses a slightly differ-

ent terminology than the one described in Section1.1 so the terms “fault” and “test” have

to be used with different definitions.

The model is based on a hierarchical viewpoint: it considers a hierarchy of faults in a

system. The cause of the erroneous behavior on the lowest level is aphysical defect of an

atomic component (e.g. a short circuit between the connections of a transistor). This defect

is manifested as alogical fault at the line/device level (e.g. if the defective transistor is an

input driver of a NAND gate, it causes astuck-at-0 fault at the corresponding input line of

that gate). This low-level fault results in the faulty operation of the NAND gate; it is a gate

level fault. This fault may also result a higher level fault in the unit that contains it (e.g. an

instruction decoder of a CPU) and so on (Figure 1-2.).

instruction decoder
fault

physical
defect

&

stuck-at-0 line fault

NAND gate fault CPU fault
microcomputer
fault

local
network
fault

Figure 1-2. Levels of a fault hierarchy

12

A test in complete generality can be described as the application of some input sequence

to a system element and observation of one or more of its output lines. It can take various

forms, depending on the current component under test and the testing approach selected

(e.g. single stuck-at tests of combinatorial networks can be tested by a single test pattern; a

complex sequential network needs a sequence of test input patterns and the checking of the

sequence appearing on all output lines.)

Obviously, tests can form a similar hierarchy like faults. The levels of the fault and test

hierarchy correspond to each other. The following basic concepts define the correlation be-

tween the hierarchies:

• Tests can be generated for any level in the fault hierarchy. In the example system
(Figure 1-2.), it is possible to test all lines and devices in the CPU logic for single
stuck-at-0 and stuck-at-1 faults as a CPU is also a (high complexity) sequential net-
work. This test detects faults on the lowest level of the fault hierarchy so it corresponds
to the lowest level in the test hierarchy. On higher levels, a test program can be used to
check the registers, addressing modes, instruction execution, ALU and other features of
the CPU. It corresponds to the functional unit level (the fourth level onFigure 1-2.).

• Certain collections of lower-level tests can be replaced by a higher level test. If an
extensive set of single stuck-at tests is applied to the CPU, it will reveal all the device/
line level faults so the faulty CPU component(s) can be determined; the same result can
be achieved, however, with tests generated at functional unit level.

The inverse of this thought is also applicable: combination of the results of an appro-
priate extensive set of lower-level tests can give a higher level test information, as a
higher level fault is considered a combination of lower level faults.

• The test hierarchy corresponds closely to the diagnostic goal. Fault detection within
a microcomputer can be implemented on microcomputer level by generating pass/fail
tests for the whole system. However, in many cases this testing approach does not qual-
ify the faulty computer sufficiently; testing on lower, e.g. component level (separate
tests for CPU, RAM, ROM and other components) provides better fault localization.
Lower level test may generate detailed test results for more exact determination of
faults; this information can be lost if the test results are combined for simulating a
higher level test, and it does not appear at all if the testing was made on a high level.

However, higher detail in test result does not always result better testing mecha-
nisms; e.g. applying numerous stuck-at tests on a faulty CPU is generally useless (the
knowledge of which elementary gate is faulty in a circuit containing a few hundred
thousand gates is unnecessary). Therefore the level of testing must be adjusted to the
diagnostic goals.

A test iscomplete for a set of faults if it fails in the presence of any single fault from the

set and passes if none of the faults occur. Moreover, a complete test must detect all faults

13

on lower levels of hierarchy manifested. However, depending on the system architecture,

some lower level faults may be undetectable by high-level tests.Error coverage represents

the ratio of the faults detected by the test to all possible faults at the corresponding fault

hierarchy level.

Error coverage can be increased by the application of low-level tests; this method, how-

ever, dramatically increases the complexity of the fault model. Due to limitations of data

processing efficiency and/or human cognitive capability, the complexity of the fault model

should be kept low, therefore complete testing (100% error coverage) hardly can be

achieved in practice.

The set of possible faults is determined by the considered system granularity. The term

of fault pattern is used for notation of the erroneous states in the system, including the pos-

sibility of multiple faults. A fault pattern Fi is a vector (f1, f2, ... ,fn) representing the faults

present in the system; it is a subset of all potential faults. Similarly, the term of atest pattern

can be applied as a subset of all the generated tests in the system (including failed tests).

Vector Tj = (t1, t2, ... ,tm) represents the actually used test pattern ofm elements.

The relationship between faults and test patterns is described by thefault pattern-test

pattern event space, which specifies the test pattern(s) applicable for each fault pattern.

The event space can be generated from the fault model of the system: after determining the

set of possible fault patterns from combinations of all considered faults (taking other fea-

tures: failure rates, time interval between subsequent tests, error propagation assumptions

etc. into account), the appropriate test patterns can be selected for each fault pattern.

Many different implementations exist for the representation of the event space [17].

The most obvious form is thearray of vectors (Table 1-1.): rows of the array are associated

with the fault patterns. The entries in a row correspond to the test results for the fault pat-

tern.

This description form is quite redundant: one fault pattern requires multiple rows in the

array; some tests may have indeterminate results (they can either pass or fail); some test

patterns are correlated, have the same results. Therefore the vector array can be compressed

into atabular form (Table 1-2.) where one row represents a single fault pattern and the test

14

results are compressed by using “don’t care” entries. In this case, every test pattern with n

“don’t care” entries represents 2n different patterns.

Fault

pattern

Fault Test pattern vectors

t1 t2 t3 t4 t5
F0 - 0 0 0 0 0

F1
f1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 1

F2 f2 0 0 1 0 0

0 1 0 0 0

F3 f3 1 0 1 1 0

F4
f4

0 1 0 0 1

0 1 1 0 1

0 1 1 1 0

F5

f5 0 0 1 1 0

0 0 1 1 1

f6

1 1 1 1 0

1 1 1 1 1

1 0 1 1 1

Table 1-1. Fault pattern-test pattern event space in vector array form

Fault

pattern

Fault Test pattern vectors

t1 t2 t3 t4 t5
F0 - 0 0 0 0 0

F1 f1 0 0 0 X X

F2 f2 0 X X 0 0

F3 f3 1 0 1 1 0

F4 f4 0 1 X X X

F5 f5 0 0 1 1 X

f6 1 X 1 1 X

Table 1-2. Event space in compressed tabular form

15

Fault pattern-test pattern relationships can be formulated as aBoolean expression as

well. It can be derived either from the vector array form or directly from the behavior of the

system. The transformation is quite straightforward: Table1-1. is equivalent to the follow-

ing expression:

S = f1f2f3f4f5f6 ⋅ t1t2t3t4t5 + f1f2f3f4f5f6 ⋅ t1t2t3t4t5 + f1f2f3f4f5f6 ⋅ t1t2t3t4t5 + ...

(1st row) (2nd row) (3rd row)

This standard form can be reduced to a simpler formula by use of “don’t care” values

and of factorization:

S’ = f3f4f5f6t1 ⋅ (f1f2(t4+t5) + f1f2(t2t3 + t2t3)) +

f1f2f5f6 ⋅ (f3f4t1t2t3t4t5 + f3f4t1t2(t4t5 + t4t5)) +

f1f2f3f4t3t4 ⋅ (f5f6t1t2 + f5f6t1(t2+t5)).

The value of the Boolean expression is 1 if the given faults and test results occur in the

fault pattern-test pattern event space and 0 if not.

The fault-test relationships can be represented bydirected graphs as well. In this form

the emphasis is not on the effective test results on the fault patterns but on other relations

like test completeness for a fault and test invalidation by other faults. Directed graph-based

representations are described in detail in [18]. The two basic types of graph models (for the

example onTable 1-2.) are shown inFigure 1-3.

When creating fault models, three basic problems arise. The first istest completeness;

this problem is generally ignored (all tests are assumed to be complete).

The second problem istest invalidation: the presence of certain faults may affect the

results of tests aiming the detection of other faults. Therefore a test can be consideredvalid

if it always fails in the presence of those faults which the test is aimed to detect, and always

fails if those faults are absent. Hence in the practice some faults cause tests of other faults

to perform incorrectly; in other words, occurrence of these faultsinvalidates the result of

the corresponding test. This process must be included in a reasonable fault model.

16

The third problem is the requirement of a propercompromise between model complex-

ity and detail level of test results. A simplification in the fault model generally causes loss

of information; in our example, testst2 andt3 for fault pattern F2 can result in [0,1] or [1,0]

but their combined results appear as [X,X] instead of [X2,X2] in the compressed tabular

form (seeTable 1-1. andTable 1-2.) Correlated tests may also be uncovered; inTable 1-

1., t2 andt5 seem to be correlated in the original form and this knowledge is lost during table

compression; moreover, incorrect test patterns (e.g. [t2=1, t5=0]) appear. However, simpli-

fication is often necessary due to efficiency limitations.

The most widely known fault models are the following:

• Preparata-Metze-Chien (PMC) model [19]. This was the first published conceptual
test invalidation model in 1967; however, it is still used. The model involves system
components (units) capable to perform tests on another units. The units and the test
results are considered as binary, pass/fail-type ones. Hence every working unit per-

Fault

pattern

Fault Test pattern vectors

t1 t2 t3 t4 t5
Original

test pattern vectors

F5 f5 0 0 1 1 0

0 1 1 1 1

Compressed form F5 f5 0 X 1 1 X

Table 1-3. Effect of a correlated test pair

Non-bipartite directed graph form [15]

fi f j = fi invalidates tests tk,tl,...
tk,t l,... which are complete to fj

Figure 1-3. Directed graph representations of fault-test relationships

f3

t1 t2

f1 f2

t3

f4

t4

f5

t5

f6 f3

f1 f2

f4f5

f6

t2

t4

t4
t3

t3,t4
t3,t4

t3,t4
Bipartite directed graph form [16]
ti f j = ti is complete to fj
fi tj = fi invalidates ti

17

forms and evaluates tests independently from other units, each test is complete for a
single fault (the fault of the unit under test) and each test is invalidated by exactly one
fault (the fault of the tester unit). Test results are collected and decoded by a fault-free
central observer (hard-core).
The applied test invalidation scheme issymmetrical: a fault-free tester determines the
state of the tested unit correctly, but a faulty tester can produce arbitrary results, inde-
pendently of the actual state of the unit under test. This assumption is the most pessi-
mistic approach as it does not include any knowledge about the operation of a faulty
tester unit.
Terms are introduced for describing diagnosability of the system:

- t-fault detectability: if at least one tests will definitely fail in the presence of at least
one but at mostt faults, the system ist-fault detectable;

- one-step t-diagnosability: if every faulty units can be unambiguously determined
after evaluating the test results, considering at mostt faulty units, the system is one-
stept-diagnosable (t-diagnosable without repair);

- sequentialt-diagnosability: if at least one faulty unit can be unambiguously deter-
mined after evaluating the test results, considering that the number of faulty units in
the system ismaximally t, the system is sequentiallyt-diagnosable (t-diagnosable
with repair). The term “sequential” refers to the obvious maintenance method using
this kind of diagnosability: complete repair is achieved by subsequently replacing
the faulty units found in the last test round and repeating the tests.

Diagnosability analysis can be performed on the system to determine the effectiveness

of a given test set on the actual system structure, i.e. to find the maximalt values fort-fault

detectability (for pass/fail checking of the whole system), sequentialt-diagnosability (to

find some faulty units) and one-stept-diagnosability (for complete repair). Sufficient and

necessary conditions are given for t, the number of units and the number of tests in the sys-

tem in [18] and [19].

PMC model is the simpler and most general test invalidation model; many of the later

models are based on it.

• Barsi-Grandoni-Maestrini (BGM) model [27]. This model uses generally the same
considerations as the PMC model. The basic difference is theasymmetricaltest invali-
dation: faulty units are always tested as faulty, independently from the state of the tester
unit. It is a more optimistic (and in many cases, more realistic) assumption; it makes
mathematical formulation of diagnosability conditions easier so algorithms based on
the BGM model often result better diagnostic.

18

• Maheshwari-Hakimi model [28]. Probabilistic elements are included into this model
to cope with test completeness problem and give better description of the reality. It
involves units with statistically independent failure rates. A probability p(fi) is assigned
to each faultfi; the termprobabilistic t-diagnosability is introduced. It means that each
test patterns has one or more associated fault patterns Fi with p(Fi) > t (t is a real num-
ber in the [0, 1) range). Diagnosability analysis can be performed in this case as well.

The greatest problem with probabilistic models is that the p(fi) a priori fault proba-
bilities cannot be previously calculated in the practice: exact measures can be taken
only from experimental results and inexact preconceptions may provide totally incor-
rect diagnostic results; therefore these models have little practical importance.

• Russel-Kime (RK) model [15][16]. In their presented general fault model, Russel and
Kime introduced a new approach of the system diagnosis problem. Their model
involves a wider range of fault-test relationships, not only test invalidation. Instead of
system units and tests performed by them, just test and faults are involved. This method
allows the inclusion of some possibilities:multiple (cooperative) testing, multiple
invalidation (a test can be invalidated by more than one fault),hard-core tests (not
invalidated by other faults) etc.,that caused problems in other models.

Diagnosability analysis is also performed from new viewpoint in this model. The
theoretical basis of the analysis is the term ofclosed fault pattern: Fi is closed if no
complete test for any fault in Fi exists when Fi appears in the system. Conditions fort-
fault detectability and sequentialt-fault diagnosability (in the meaning used in the PMC
model) can be formulated from determining the cardinality of the smallest closed fault
pattern in a system (calledclosure index). An additional term,exposed fault (a fault in
a fault pattern Fi is exposed if one or more complete tests exist forfi in the presence of
Fi) makes conditions for one-stept-fault diagnosability possible by determining the
minimum of the number of exposed faults in the fault patterns (exposure index).

1.3.2. Diagnostic Algorithms

System diagnosis is generally consisting of two tasks: generation and execution of tests

according to a selected fault model, and evaluation of the collected test output patterns (syn-

dromes) to determine and locate the fault(s) in the system. This second task is calledsyn-

drome decoding; mathematical methods for performing it are diagnosis algorithms.

The simplest diagnosis algorithms are based on the fault pattern-test pattern event space

representation. If the actual result of the tests is known, the event space can be searched for

fault patterns whose corresponding test pattern matches to the syndrome, so the decoding

is transformed to a pattern matching problem. However, if a syndrome matches with mul-

tiple fault patterns, there is no way to identify the actual fault(s) without performing addi-

tional tests; therefore thistable look-up algorithm supports directly only fault detection;

for fault diagnosis, it must be extended with hierarchical test initiation.

19

The pattern matching can be performed on an “inverse” of the event space table (fault

dictionary, containing the possible syndrome values and the corresponding fault patterns)

or a tree-based data structure built from the tables (seeFigure 1-4).

Syndrome detection can also be performed by evaluating the Boolean expression form

of the event space. As this expression is built up from the fault values and test results, sub-

sequent substitution of the actual test outcomes will result a simplified expression that con-

tains only those fault patterns that matches to the syndrome. The evaluation can be finished

if the expression is reduced to a single product term; the actual fault pattern is the combi-

nation of fault values that result the value 1 of the product term.

The common problem with the above mentioned algorithms is the very low efficiency.

Testing of a large-scale system can involve hundreds of faults and thousands of tests; stor-

age and maintenance of huge fault-test tables, fault dictionaries or tree structures limits the

applicability range seriously. Similarly, evaluating Boolean expressions results efficiency

decrease above a level of complexity; moreover, it requires symbolic data manipulation.

Use of tree structures has the additional drawback that the operation of the decoding algo-

rithm depends on the processing order of syndrome bits, so the average time complexity of

searching also decreases.

Syndrome decoding can be performed on the graph-based representation of fault-test

relationships as well. A basic idea isbootstrap testing: knowing the invalidation conditions

of tests, those tests are performed first that are not invalidated (hard-core tests). Then the

Syndrome values Possible

faultst1 t2 t3 t4
0 0 0 0 none

0 0 0 1 f4
0 0 1 0 f2
0 0 1 1 f1, f2 or

f4
0 1 0 0 f3
0 1 0 1 f3 or f5

Table 1-4. Detail of a fault dictionary

...

01010

Figure 1-4. Tree form of Table1-4.

t1

t2

t3

t4

Fault: - f4 f2 f1,2,4 f3 f3,5

0 1

10 10

10

10

20

proven fault-free units test others etc., thus ensuring that any unit is proved to be fault-free

before it tests another units. Therefore no test will be invalidated and every failed test will

actually discover one or more faults. This method is simple and fast, but obviously appli-

cable only if the graph model of the system does not contain directed cycles (a test is inval-

idated by a potential fault that is detected - directly or indirectly - with the same test).

A more general diagnosis algorithm for PMC and BGM models, based on bootstrap

strategy, was developed by Meyer and Masson [29], supporting one-step t-fault diagnos-

ability. A fault table is built by each unit; the table contains the assumed fault state of other

units. Every unit supposes itself as good and the other units as uncertain, then executes

tests. The results of the tests are recorded in the table. Then the updated tables are sent to

all units that passed the test, tables from those units are received and merged with the local

table. The table exchange process is repeated until no new information is gained from an

exchange or thet limit of faults in a table is exceeded. The still undetermined units in the

tables are recorded as fault-free. After building up tables, an unit is assumed fault-free if it

is recorded faulty in no more thant tables, otherwise it is assumed faulty.

A very promising algorithm, allowing arbitrary test invalidation rules, was presented in

[2]. The algorithm applies two working phases:

- first all the available information is collected from the system, and some units are qual-
ified by inference. Implications are driven by the actual syndrome and knowledge of
the system structure;

- then the fault state of units unqualified in the previous phase is determined, assuming
one-stept-fault diagnosability.

The idea behind the use of implications is that some units can be qualified without any

further assumptions, merely checking the implication chain for contradiction; if an assump-

tion on the fault state of a unit leads to a contradiction then the assumption is wrong and

therefore the fault state can be unambiguously determined.

One-step implication rules between the state of the tester and the tested units are created

straightforward from the actual test invalidation model. Two- and more-step implications

can be performed by repeating one-step implications subsequently; the final state of impli-

cation chain is achieved by computing thetransitive closure of the implication set. A con-

tradiction occurs if a unit implies theopposite of its own initially assumed fault state during

the implication process.

21

In [2], one-step implication rules are represented by a2×2 hypermatrix (every element

is an Mn×n matrix (n is the number of units in the system), mij indicates the possibility of

one-step implication from the state of unit ui to the state of unit uj; the four matrices store

the good→good, good→faulty, faulty→good and faulty→faulty one-step implications).

After finishing implications, the hypermatrix contains all information about the system that

can be extracted from the syndrome without further restrictions.

The great advantage of the algorithm is the independence from the applied test invali-

dation restrictions as well as the actual system topology. These properties affect only the

generation of the initial one-step implication matrices.

1.3.3. Distributed Diagnosis

In the previous sections, collection of test results and application of the diagnosis algo-

rithms were assumed to be performed by a separate unit outside the system, acentral ob-

server. This approach requires further considerations:

• the operation of the central observer is always correct (no faults occur in it);

• test results can be delivered to the observer reliably, independently from the faults in
the system;

• the observer has facilities to maintain the system (i.e. to reconfigure and/or repair faulty
units).

Systems using a central observer as diagnostic device are calledcentralized systems.

These systems usually contain a highly reliable1 set of units (also calledhard-core), dedi-

cated exclusively to perform diagnosis and initiate recovery and/or repair actions. This ob-

server has a communication connection to each unit in the system, dedicated to transfer test

results and maintenance action messages.

However, the central observer concept arises serious problems in large-scale systems.

A higher number of units requires more tests to generate and more syndrome pieces to eval-

uate so the time and space complexity of the algorithms running on the central observer in-

creases dramatically. The diagnostic overhead also increases due to the limited bandwidth

1. “High reliability” refers to reliability that is reasonably higher than the reliability of other units in the sys-
tem (an usual requirement is the failure rate being at least by an order of magnitude lower). It can be
achieved by using special, better quality components, careful design and self-checking structures.

22

of the communication links between the observer and the units and the sequential process-

ing of test results. In scalable systems, where the architecture is expected to be expandable

by additional units for greater performance, the central observer may get overloaded. Final-

ly, the reliability of the whole diagnosis is dominated by the reliability of the central ob-

server; its failure may collapse the system or even introduce “malicious” behavior (e.g. the

diagnosis may finish detecting some faults, or may randomly signal non-existing ones).

These problems require a completely different approach of system diagnosis. Instead of

concentrating the diagnosing capability into a single central device, monitoring and main-

tenance capabilities should be distributed among all system components. Thus the limita-

tions resulting from centralization can be eliminated while preserving the diagnostic

capability.

The concept ofdistributed diagnosis obviously arises other problems. Without a cen-

tralized communication network dedicated to diagnostic purposes, all the diagnostic infor-

mation must transferred via the (potentially faulty) normal interprocessor communication

links. Moreover, direct information can be obtained only from neighboring units. Data from

any other unit must be considered as uncertain unless reliable information exists on the

source of data and the route towards the receiving unit.

Therefore each unit must be able to make localized decisions about the fault state of

other units. Moreover, each unit can take only local maintenance actions, also via normal

communication facilities. Cooperative maintenance (faulty unit removal) actions, even

supported by additional hardware, cannot be executed due to the autonomy of the units and

limitations in the communication; similarly, a single unit (or a single external hardware el-

ement) cannot be allowed to take complete removal actions as it would make the system

sensitive of the fault of that element, despite of the distributed nature of the diagnosis.

The first usable concept of distributed diagnosis wasdistributed fault-tolerance pro-

posed by Kuhn and Reddy [20][21]. The aim was to find a method for isolating faulty units

from the system without centralized maintenance. If each fault-free unit can build a correct

diagnostic image of the system independently from other units, it can simply cancel any

further interaction with the faulty elements so they will be unable to affect the operation of

the system. The proposition prefers the self-test of the units. A complete test of a unit by

another unit is hardly possible via normal communication links (especially if the units are

highly complex structures, e.g. complete microprocessors) and causes enormous commu-

23

nication overhead. The incorporation of fault-tolerant capability into each unit eliminates

the need of intensive communication; moreover, internally fault-tolerant processors can

mask or remove some faults without external testing. Thus the number of faults that must

be treated by the diagnosis algorithm can be reduced.

Tests in this scheme appear as simple checks on the other unit’s fault-tolerant equip-

ment (e.g. a dedicated watchdog processor). This structure requires only a minimal over-

head. The fault-tolerant equipment itself still needs to be tested but its complexity is much

lower than the complexity to a whole unit. Results of local tests (local syndromes) are sent

to other units via the normal communication network; faulty units are allowed, however,

either to send erroneous local syndromes or alter diagnostic information routing through

them (including the case of not forwarding the incoming messages): the model applies sym-

metric (PMC) test and message invalidation.

A new term:t-fault self-diagnosability was introduced. A system ist-fault self-diagnos-

able if every fault-free unit can determine all the faulty units, providing that the number of

faults in the system does not exceedt. Conditions fort-fault self-diagnosability can be cal-

culated from the connectivity of the testing graph (the directed graph describing which

units test which other units) [18].

The diagnosis algorithm of the model (named SELF) is similar to the Meyer-Masson

algorithm: a fault vector is generated by each unit, containing the fault states of the other

units. The fault domain, however, contains three values:good, faulty andunknown (hence

the non-neighbor nodes can be qualified only from indirect information). The initial state

of the fault vector is also similar: the node supposes itself as good and all the other nodes

as unknown. After performing local tests, the results are recorded in the vector and the up-

dated vector is distributed to the neighboring units; vectors from neighbors tested as good

is accepted and incorporated to the local fault vector. The process iterates until no more

“unknown” records stay in the local vector ort faulty units are detected; in the latter case

the remaining “unknown” units are assumed to be fault-free. The algorithm is based on the

assumption that no further faults occur during the information exchange process, thus the

analysis of the units reflects the actual and valid state of the system.

A more general model for distributed diagnosis was presented by Holt and Smith [22].

It introduces the concept ofdiagnostic information (that must be produced during the di-

agnosis process) anddiagnostic sinks (sets of units that must obtain diagnostic information

24

and act upon it); this approach allows the description of a wider range of diagnostic goals.

From the various possible aims, two of the most commonly used goals are included in the

model:

• diagnosis with repair: the aim is the determination of at least one faulty unit in the
system, and reconfiguration for the exclusion the faults. In the original model, reconfig-
uration is performed by a special device (diagnostic controller). This approach contra-
dicts to the basic concept of distributed fault tolerance as it involves a hard-core into the
system. Here the diagnostic information is the identification of the faulty unit(s) and the
diagnostic sink is the controller (or a fault-free controller if more separate controllers
are applied);

• graceful degradation: the aim is the determination of a maximal set of fault-free units
that can continue operation, instead of fault detection. In this case, both the diagnostic
information and the diagnostic sink is the set of units that are guaranteed to be good.
Reconfiguration (exclusion of faulty units) is performed by “intelligent” units of the
system (diagnostic analyzers); unlike controllers, analyzers are responsible for main-
taining only a local part of system. The exclusion algorithms is generally ignore the
faulty units because in order to avoid applying additional hard-core hardware circuitry.
In the case of graceful degradation, a limit of faulty units as a traditional measure of
diagnosability cannot be used anymore.Surviving curve is introduced instead; it
describes the minimal number of active fault-free units in the system as the function of
the number of faults. Obviously, the graceful degradation continually decreases the size
of the operational part of the system until it becomes unable to deliver the expected ser-
vice. The base of measure is to determine this point.

1.4. Problems in Traditional Methods

The majority of the methods described in Section1.3 were developed quite a long time

ago. At that time of development, practical computer systems were significantly smaller

and simpler, built from lower quality components. Therefore there methods reflect the level

of technology of an earlier time.

Nowadays, however, the development in the field of electronics and computer hard-

ware technology has dramatically speeded up. New systems, components and architectures

outdate or even invalidate the implicit considerations included in the earlier models. More-

over, the latest achievements for increasing computational power and system

dependability, especially massively parallel systems, have a much greater complexity than

other traditional systems.

25

Traditional methods and algorithms have several serious problems when applied to

modern computer systems:

- The test invalidation assumptions used in the models aretoo pessimistic. Development
in electronic circuitry technology produces computer components with lower fault
rates; sophisticated design and production methods can assure a much more determinis-
tic, and thuspredictable behavior of a faulty component than earlier system. Therefore
simple test invalidation schemes (like PMC) cannot describe real operation of a compo-
nent with sufficient precisity.

- The other consequence of the lower permanent fault rates of components is the
increased practical importance oftransient faults. The majority of existing fault models
handle only permanent faults or at least assumes a longer fault duration than the time
needed for testing. In current systems the rate of transient faults is typically by one
order of magnitude greater than permanent faults.

- As many methods are derivatives of, or based on the oldest PMC model and test invali-
dation, they preserved many limitations from it. One of the most important limitations
is the requirement that one-stept-fault diagnosability needs at least t other units to test
each unit. This approach comes from a concept of a theoretical system, with arbitrary
(practically fully connected) system topology.
This requirement becomes a serious drawback in modern multiprocessor systems, as
they apply asimple physical interconnectiontopology(generally a 2- or 3-dimensional
mesh) in order to support easier system scalability. Therefore the maximal number of
detectable faults in such systems becomes 2 or 3 (units in the corners of the structure
has only 2 or 3 neighbors) so the diagnostic power of the traditional algorithms is
strongly reduced.

- The use of anunified test invalidation modelseems to be a reasonable idea for the sim-
plification of the mathematical treatment of the model and the construction of the algo-
rithm. It implicitly assumes that all units in the system have identical diagnostic
properties so the system ishomogeneous. In the practice, however, inhomogeneous sys-
tems have a growing importance. Uniformization of the test invalidation models for
every unit in an inhomogeneous system looses the detaileda priori knowledge about
the behavior of different units.

- Thetime complexity of the traditional algorithms are fartoo high, causing unacceptable
diagnosis inefficiency. The algorithms were originally developed for systems contain-
ing at most only a few tens of units. Modern massively parallel multiprocessor systems,
however, contain several hundreds or thousands of processing units.
The worst-case time complexity of diagnosis algorithms is generally exponential, as the
diagnosis problem in its whole generality is NP-complete. Practical algorithms are
expected to show good average time complexity. Many of the available algorithms,
unfortunately, become inefficient rather quickly when the number of units increases.

26

- The level of diagnosis, i.e. the amount and type of providable diagnostic information is
determined strictly from the system structure atdesign time, before the actual syndrome
information is received. This property prevents effective information extraction and
makes involvingadaptivity to the algorithm difficult. It should be desirable that the
level of diagnosis could be adapted to the syndrome information available and not vice
versa.

- The majority of the algorithms starts syndrome decoding after receiving all the test
results. After decoding, diagnostic results are sent back in one burst. Both data transfers
require a long time and potentially cause local communication overloads. Moreover,
the time needed for the collection of syndrome bits decreases the efficiency of the diag-
nosis algorithm as well. It should be desirable that the diagnosis algorithm could supply
diagnostic information as soon as it obtains new syndrome data (diagnosis on-the-fly),
thus the average efficiency of the diagnosis increases, with a simultaneous decrease of
communication overhead.

1.4.1. Requirements of a General Purpose Diagnosis Algorithm

The requirements of a diagnosis algorithm usable on a wide spectrum of practical sys-

tems, can be concluded quite straightforward from the problems described in the previous

subsection:

• applicability ininhomogeneous systems as well, with different units and test invalida-

tions; ability to utilizea priori knowledge about the system in full extent;

• ability to handlebothpermanent and transient faults;

• effective information extraction for arbitrary topologies, i.e. the algorithm should esti-

mate not only the usual GO/NO GO type qualification for systems and its elements in

the special cases of restricted architectures, but in the very general case eventhe level

of diagnosis (one-step, sequential diagnosis or only error detection) should beadap-

tively estimated on the basis of the test results;

• use ofefficient mathematical apparatus with algorithms of low average time and rea-

sonable space complexities, evenfor a large number of(several thousand)processing

elements;

• (optional) ability to providediagnosis on-the-fly.

These requirements are only partially fulfilled by existing diagnosis algorithms. More-

over, the efficiency of these algorithms can be hardly increased, due to the limitations of

the traditional mathematical treatment.

27

System level diagnosis, however, is not the single field where the necessity of finding

algorithms with good average time complexity for generally NP-complete problems arise.

These class of problems can handled effectively in many cases by AI-bases algorithms.

1.5. AI-based Methods

The main intention of “artificial intelligence” (AI) methods is to find efficient solutions

for difficultly solvable (to be more precise, generally NP-complete) or hard to represent

problems. This gives a way to handle many practical but earlier unmanageable problems.

This aim is frequently reached by more sophisticated information management; it is of-

ten called “knowledge management” as it represents a high level of abstraction and pro-

vides more flexible and efficient information extraction from elementary data. This

approach introduces certain symbolic operations, like inference and deduction. This is ex-

tremely advantageous if the traditional quantitative methods start to exhaust and prove in-

sufficient for that particular purpose.

Many well-elaborated, efficient and practically tested AI-based algorithms have been

developed over the years. A group of them, the CS (Constraint Satisfaction) methods seem

especially useful for system level (self-)diagnosis models, as it shows a deep similarity with

some existing diagnostic approaches (see Section2.4 and 2.5).

Application of CS methods in system level diagnosis has appeared as a new idea in the

most recent years. Its practical attractiveness has already proven in closely related fields,

like automated test pattern generation [3], system safety and risk analysis, etc. These facts

motivated primarily the idea of developing a constraint-based diagnostic algorithm.

28

2 Constraint Satisfaction Problems

A short overview about CSPs and their mathematical apparatus is presented in this

chapter, based on [3].

2.1. Formal Definitions

A constraint satisfaction problem (CSP) can be formulated as an (X, D, C) tuple where

X = {X 1,X2,... Xn} is a set ofvariables, D = {D1,D2,... Dn} is a set of domains (each do-

main is a set associated with a variable and contains the allowed values of that variable) and

C = {C1,C2,... Ck} is a set ofconstraints. Constraints arerelations between domains of

variables, i.e. they are subsets of the Cartesian product of the affected variables’ domains

(Ci ⊂ D*= Dp× Dq× ...× Dz). They represent the allowed value combinations of the affect-

ed variables.

A solution of a CSP is a vector x = [x1,x2,... xn] of values that satisfies all the constraints

(all the constraint relations hold if we substitute the variables with the subsequent values

from x). Theconstraint satisfaction problem itself is to findone solution or all solutions of

a given CSP.

CSPs can be represented by a G(X,C) network where the elements of X are represented

by thenodes and the elements of C by theedges of the network. In a special subclass of

constraint satisfaction problems (calledbinary CSPs) every constraint affect at most two

variables so the network is a simple graph; in the general case, however, the CSP network

is a hypergraph.Loop edges represent unary constraints (affecting only one variable),mul-

tiple edges are different constraints affecting the same variables.

29

Binary CSPs are the most “benign” class of constraint satisfaction problems, i.e. they

can be handled with the simplest mathematical apparatus.

A CSP isdiscreteif every Di has enumerable cardinality, andcontinuous if some Di-s

have continuously infinite cardinality. (Restricting the term of discrete CSPs to those cases

when every Di is a finite set is quite common. The solving algorithms for CSPs with enu-

merably infinite domains are similar to the methods used for continuous CSPs1 and radi-

cally differ from the algorithms for CSPs with finite domains.) In the field of system-level

diagnosis, only discrete CSPs are used as the systems and components are supposed to have

a finite number of states.

The CSP isstaticif both the constraint network topology and the constraints themselves

are fixed anddynamic if they can change during the search for solutions.

2.2. CSP Solution Methods

Solving discrete CSPs is proved to be NP-complete [5], so simple exhaustive algo-

rithms cannot be used to generate all the variable value sets and to select the solutions. In-

telligent backtracking algorithms (backjumping, conflict-based backtracking, forward

checking etc.) must be used [9][10]; they offer much better average time complexity (their

worst-case complexity, however, is still exponential).

We can assume for simplicity without loss of generality that each of the n variable in

the CSP has a discrete domain with the same cardinality so the search space D* = Dn.

Therefore the worst-case complexity of a trivial exhaustive generate-and-test algorithm is

Ο(dn) whered is the cardinality of the domains. The complexity can be obviously reduced

by decreasingd or n.

Decreasing ofn is possible only if the CSP contains variables (e.g. the value of a vari-

able can be calculated unambiguously from the value of another variable); it never appears

in properly designed CSPs. Decreasing ofd can be achieved by preprocessing the problem

before starting the solution algorithm; these methods are calledconsistency algorithms

[5][6][7]. Consistency refers to the elimination of locally inconsistent value combinations

1. Solving continuous CSPs shows similarity to solving special equation sets; they can be handled by
numerical analysis methods [11].

30

from the variables’ domains, as they surely cannot participate in a globally consistent (cor-

rect) solution.

Consistency algorithms even reduce the number of “fruitless” backtracks made every

time when a locally inconsistent value is found. They work generally only on binary CSPs

because every variable in such CSPs can be evaluated independently. Moreover, a subse-

quent evaluation of the current value of a variable and its neighbors is always sufficient to

achieve global consistency. Therefore problem transformation to a binary CSP is prefera-

ble.

2.3. Consistency Algorithms

Consistency algorithms can be grouped according to the number of the nodes (vertices)

they consider when searching for local inconsistencies.

2.3.1. Node consistency

Node consistency considers only a single vertex at a time; it simply checks unary con-

straints and deletes all values not allowed by them. As unary constraints can be previously

eliminated from a CSP by restricting the domains, this algorithm is used only as a supple-

mentary step in more complex consistency algorithms.

2.3.2. Arc consistency

Arc consistency considers two vertices Xi and Xj at a time, connected by a binary rela-

tion Rij . It eliminates every valuex from the domain of Xi that has no value pairy in Xj

satisfying Rij(x,y). By checking appropriate vertex pairs and relations, full consistency can

be achieved.

There are three basic versions of general purpose arc consistency algorithms (in the or-

der of decreasing worst case time complexity) [3][5]:

• AC-1 updates all the variables whenever any of the variable domains has changed. Its
time complexity is O(d3nc) wherec is the number of constraints;

• AC-3 updates the domains of the variables adjacent to the changed variable. Its com-
plexity is O(d2n));

31

• AC-4 updates only those adjacent variables that are affected by the change of a vari-
able domain. It requires some bookkeeping of the relations and the variable domains
affected by them. However it is proven to be optimal; its complexity is O(d2c).

2.3.3. Path consistency

Path consistency between two vertices Xi and Xj connected by a binary relation Rij

means that all (x,y) value pairs in a solution of the CSP satisfying Rij(x,y) must be also al-

lowed by all paths between Xi and Xj; i.e. if an Xi-Xk-Xl-...-Xq-Xj path exists then there

must be valuesk ∈ Xk, l ∈ Xl, ... ,q∈ Xq satisfying Rik(i,k), Rkl(k,l), ...,Rqj(q,j). The whole

constraint network is path consistent if every pair of directly connected vertices is path con-

sistent.

Full path consistency in a complete constraint graph is equivalent to path consistency

for length 2 paths [3]. Since any constraint network can be extended to a full constraint

graph with dummy (“always true”) constraints, checking path consistency is equal to

checking only length 2 paths.

There are also three basic versions of path consistency algorithms; differences among

them are similar to the differences among arc consistency algorithms [5]:

• PC-1updates domains of every vertex, vertices along every arc and every length 2 path
if any vertex has changed. Its time complexity is O(d5n5);

• PC-2 updates domains of those length 2 paths that contain the changed vertex. Time
complexity is O(d5n3);

• PC-3 updates only the length 2 path affected by the changes of a vertex domain. It uses
similar bookkeeping about the influence of variables and edges like AC-4. It is also
proved optimal and its complexity O(d3n3).

Dj = {1,4,6,8}

Figure 2-1. Elimination of values with arc consistency

Rij

Xi

Xj

Di = {2,3,4,11}

Let’s consider that Rij := (Xi < Xj).

In this case:

• 11 can be eliminated from Di as no
value in Dj is greater than 11;

• similarly 1 can be eliminated from
Dj as no value in Di is less than 1.

32

2.3.4. k-consistency

A set Sk of k variables is considered at a time. If a consistent subset of value (k-1)-tuples

exist on Sk-1⊂ Sk (with k-1 variables) then any value from the domain of the kth variable

can be eliminated that cannot form a consistent value set with any of the consistent (k-1)-

tuples. Global consistency can be achieved by successive elimination for increasing values

of k until all variables are involved or the some of the domains become empty; in this case

the CSP is not satisfiable.

The most well-known k-consistency algorithm is theinvasion procedure [3]. Every step

starts from a consistent subgraph Gi of the CSP graph G. Thefront Fi of Gi (those nodes in

G-Gi that are adjacent to Gi) is checked in every step. All values are eliminated from the

domains in Fi that cannot form a consistent value set with the allowed value combinations

in Gi. Fi is added to Gi in the next step. This algorithm has a time complexity of O(cdf+1)

wherec is the number of constraints andf is the maximal length of the front.

Xi

Xj

Xk

Rij

Rkj
Rik

Figure 2-2. Elimination of values with path consistency

Di = {2,3,4,5}

Dj = {3,4,8,11}

Dk = {2,5}

Rij := {X j ≥ 1.5×X i};

Rik := {X i ≠ Xk};

Rkj := {0.4×X j ≤ Xk ≤ 0.5×X j}.

If X i=5, only Xj ∈{8,11} satisfies
Rij ; from these, only Xj=11 and
Xk=5 satisfies Rkj but it contradicts
Rik so the triple (Xi=5, Xj=11,
Xk=5) can be eliminated from the
domains.

Figure 2-3. The progress of the invasion procedure

Gi subgraph
Fi front

Gi+1 subgraph Fi+1 front

next step

33

2.3.5. Local Propagation

Another very simple but efficient method can be used to solve binary CSPs: it is called

local propagation of known values [8]. It originates from the data-flow representation of

constraint satisfaction. It starts with assigning a valuei to a variable Xi. Then the domain

of every adjacent variable is checked and all the values that are inconsistent withi are elim-

inated. After that, values are assigned to the adjacent variables and the process can be re-

peated until every variable in the CSP is assigned or a contradiction appears.

This algorithm is the most effective if the CSP graph has a tree topology.

2.4. Similarity to the Self-diagnosis Problem

There are many similarities between self-diagnosis and constraint satisfaction. Actually

the final goal is very similar: we want to know the fault state of the system components that

conforms to our fault model and the actual test results (syndrome pieces). These restrictions

can be represented by binary relations between the state of processors in a test pair. The

exact relation is determined by the test result, thus a set of relations can be built from the

syndrome information. CSP solution can be applied to find the possible fault states of the

system.

The main advantage of the use ofrelations instead oflogical functions is its elegant ex-

pressive power of the diagnostic uncertainty appearing (e.g. a faulty tester unit in the PMC

model). The relations can be handled by a uniform mechanism, independently from the ac-

tual invalidation rules, system topology and the considered number of faults. So this repre-

sentation is very flexible and is applicable on a wide range of systems.

Therefore a self-diagnosis problem can be very easily reformulated to a constraint sat-

isfaction problem. The variables of the CSP represent the fault states of the system compo-

nents. Constraints represent the restrictions from the test invalidation relations and the

actual syndrome pieces. If one-pass diagnosis is required, a static binary CSP is produced.

In the case of diagnosis on-the-fly each received syndrome element must be processed im-

mediately by successively inserting the corresponding constraint into the set of relations.

Every received test result reduces the solution space of possible fault states but the previ-

ously constructed relations (constraints) still remain valid, just new constraints have to be

added. Therefore a monotone dynamic CSP can represent this case.

34

This reformulation gives a way to handle self-diagnosis problems very comfortably,

with the well-elaborated toolset of CSP solution methods. With a sufficient diagnostic

model, a very flexible method can be constructed.

2.5. Ideas from an “AI-like” T raditional Algorithm

The constraint-based approach is also very similar to the approach of the Selényi algo-

rithm [2], whose syndrome decoding process consists of two phases. In the first phase all

the deterministic information is extracted from the syndrome. This information contains all

possible combinations of the fault states (CSP solution also produces this). Those units are

identified in the second phase that remained unclassified in the first phase. This means ex-

cluding the unwanted solutions from the set of all possible solutions given in the first phase.

It obviously requires further restrictions in the diagnostic model (assumptions on maximal

number of faults, exclusion of certain faults, etc.).

The information extraction is based on logical implication rules between the fault state

of the tester and the tested component. The concept of creating and using the implication

rules originates in the “heuristic” solution of the self-diagnosis problem. This method as-

sumes a fault state of a system component and starts to imply the consequences of this as-

sumption. The conclusions imply fault state assumptions for other system components; the

chain of implications can be continued further until all of the system components has and

assigned fault state (so a possible solution was found) or some components have no consis-

tent state (so a contradictory value assignment has been made during implication). In the

latter case another assignment is necessary and the implication should continue with the

new considered fault states.

The above mentioned process is implemented in [2] in a basis of complex matrix oper-

ations (e.g. computation of transitive closure). This apparatus requires very a sophisticated

implementation. Computational efficiency becomes to a crucial factor in large-scale, mas-

sively parallel systems. A CSP-based implementation can be more effective with the same

information extraction capability.

35

3 Implementation Environment

The experimental implementation of the CSP-based diagnosis algorithm took place on

a Parsytec GCel supercomputer at the Institute of Mathematics and Computer Data Pro-

cessing of the Friedrich-Alexander University, Erlangen- Nürnberg. This machine is pro-

duced by Parsytec Computer GmbH. The abbreviation GC refers to GigaCube (as it is a

massively parallel multiprocessor with a cube-like mechanical design) as well as “Grand

Challenges” (problems requiring exceptionally enormous computing power, as the Par-

sytec GC family is intended to be used for solving them).

For clearer use of terminology in this chapter, some terms and concepts about multipro-

cessors are described below.

3.1. Classification of Multiprocessor Systems

The term “multiprocessor” generally refers to systems where several computing ele-

ments (usually microprocessors, transputers or microcontrollers) cooperate for performing

a common task in a system. The main motivation behind multiprocessors is the possibility

for a simultaneous increase the computing power in and the dependability of the system.

As the cost of microprocessors decreases (especially related to the cost of other computer

components), it becomes affordable to apply more of them to multiply the capabilities of a

system. Additionally, they have several other advantages as well:

• Multiprocessors can provide better performance/cost ratios than monoprocessor sys-
tems as the price of processing elements rises exponentially with the increase of their
computation power. The processing capacity of a high-performance monoprocessor can
be reached by applying multiple inexpensive processors. Moreover, the increase of the
performance of a single processor has serious physical limitations: solid state structures
can be realized only within certain size, operating frequency and temperature ranges

36

making higher performance processors so expensive. Multiprocessors can outstretch
these limitations;

• Multiprocessors can provide a performance approximately equal to the sum of its com-
ponents’ performance by optimizing the use of shared resources in a system or separat-
ing specific sub-tasks to dedicated processors. Therefore more complex problems and
applications can be realized, with a significantly lower cost than with traditional archi-
tectures. The overall throughput of a multiprocessor, however, does not always
increases proportionally with the number of components. The increasing inter-proces-
sor communication overhead and resource allocation complexity reduce the increase of
the performance, and after a peak point the system throughput starts to decline.

• Multiprocessor systems can be easily configured for different operating environments
and tasks, thus they offer greater flexibility and higher overall utilization than monopro-
cessors;

• By applying several individual components in a system, the reliability can be increased.
A multiprocessor contains a reasonable amount of redundancy; one of the main design
objectives is fault tolerance. A higher overall MTBF can be achieved than the MTBF of
any components by proper design and error maintenance mechanisms.

Multiprocessor systems introduceparallelism: it refers to performing independent tasks

concurrently (different tasks are executed within the same time interval and they do not af-

fect other tasks unintentionally). Parallelism can appear in many levels of system hierarchy:

- at hardware level: different hardware components perform independent but related
tasks concurrently, using a coordination mechanism to prevent interference (co-proces-
sor systems);

- inside processor instructions: independent phases of machine instruction execution:
opcode fetching, decoding, operand loading, opcode execution are performed simulta-
neously by different parts of a processor (pipeline architectures);

Overall
system

throughput

Figure 3-1. System throughput as a function of the number of
processing elements

Number of processors

Proportional curve

Real curve

Peak point

37

- among processor instructions: separate processing elements cooperate linked by the
input and output data received and produced by them (data flow machines1);

- at data level: separate processing elements perform similar operations on separate parts
of consecutive data simultaneously (vector-, array- and associative processors).

The communication between processing elements can be realized in three different

ways. Elements of shared memory systems do not really communicate with each other as

data transfer is executed by reading and writing a publicly accessible memory.Common

bus systems have one publicly available communication facility (the system bus) that is

able to broadcast data from one processor to all the others; finallydedicated links can be

used to interconnect the processors: in this case each link is assigned to be used by exactly

two processors. Common memory and common bus systems also need a facility to protect

the communication medium from data collisions caused by simultaneous write operations

(memory/bus arbitration). Dedicated links are organized into an interconnection topology.

The same topologies are usual in multiprocessor systems as in computer networks: star,

ring, fully connected, hypercube2 and their combinations.

Multiprocessor systems can be also classified on the applied method of cooperation:

• Loosely coupled systems apply communication interfaces between processors, defin-
ing precise protocols for data transfer. Each processing element has its own local
resources and performs data processing locally; however they can exchange data with
other units via the communication network, so they can be arbitrarily long distances
from other elements (computer networks are a special case of loosely coupled systems).

• Tightly coupled systems apply common shared memory for communication. Other
resources are also usually shared but every processing element may have local private
resources as well. These structures are commonlysymmetrical: each processor has
identical properties and rights in the system; the resource allocation and communica-
tion coordination is supervised by a public operation system, running on the whole set
of processing elements. Synchronization is essential in tightly coupled systems due to
the common shared memory. The number of processing elements is limited by the

1. Data flow machines are special non-Neumannian architectures where the operation of the system is
driven by the processed data instead of a program execution structure; each task is initiated by the presence
of the necessary input data and the output data of a task, together with other results, initiates other task(s).
The name comes from the graphical representation of their operation. See also [23].

2. An n-dimensional hypercube is a generalization of the 3-dimensional cube: it can be obtained from the
(n-1)-dimension hypercube by duplicating it and connect the corresponding nodes with new edges (the 0-
dimensional hypercube is a single point). Hypercube topology is especially practical in multiprocessor
image transformation applications.

38

increasing complexity of resource sharing, especially memory conflict prevention.

• Distributed intelligence (moderately coupled) systems represent a transition between
loosely and strongly connected ones. In these typically asymmetrical systems a set of
different processing elements, each optimized for a specified task, divide the necessary
operations into partly independent tasks and each processor performs its specialty
cooperatively. Communication is not centrally coordinated, it is the liability of the pro-
cessors.

3.2. Hardware Overview

3.2.1. The Parsytec GC/GCel Machine

The Parsytec GC machine is a dependable massively parallel multiprocessor. Massive-

ly parallel systems are characterized by the enormous number of processing elements con-

tained by them; Parsytec GC can contain up to 16384 processors. These architectures were

introduced to completely fulfill the requirements for high-performance supercomputers:

- The processing capability of the Parsytec system isscalable: it can be easily increased
by simply adding more processing elements to the system, and the performance incre-
ment is directly proportional to the number of processors. The actual performance
range of the Parsytec GC is from 1 GFlop to 400 GFlops (containing 64 to 16384 pro-
cessors) [25].

- Due to scalability, exclusion of some (faulty) processors from the system does not lead
to system failure, only to a performance loss. Therefore the Parsytec GC, as other mas-
sively parallel multiprocessors, cantolerate a reasonable number offaulty components
by substituting faulty processors with spares or by redistributing the tasks among the
fault-free processors. The architecture of the machine includes dedicated spare proces-
sors so both of these solutions can be applied.
This increased fault tolerance compensates the side effects of the large number of pro-
cessors.

- Despite of the relatively low costs of the processing elements, the overall price of a
massively parallel system is still very high due to the huge number of processors
needed and the complicated additional hardware components (inter-processor commu-
nication facility, fault tolerance-related parts). Therefore theefficient operation of such
an expensive system is very important. In order to maximize the computing power
achievable on the system, a careful utilization of the available system resources is
needed.

The hardware architecture of the Parsytec GC system is designed to meet these require-

ments. It employs MIMD parallelism in a loosely coupled form; each processing element

is an INMOS T9000 transputer, equipped with 8 MByte local memory, executing tasks

39

separate from the other processing elements. User applications consist of several cooperat-

ing tasks, forming so-calledtask forces.

The inter-processor communication network is totally distributed, without a central

management unit. Its topology - in physical and logical sense - forms a homogeneous three-

dimensional mesh. This topology assures easy scalability as new processing elements can

be added in any of the three spatial directions. The 3-D mesh provides a good structure for

many practical applications, especially numerical analysis problems. However, the user can

interact with a computer only through one centralized interface, and global resources (file

systems, terminals etc.) should also be maintained centrally.

Therefore the Parsytec GC applies ahost computer connected to its inter-processor net-

work. This is liable for downloading and distributing user programs to the transputer nodes,

and provides peripheral handling functions (mostly terminal I/O and file system) and user

interface for the multiprocessor. The type of the host computer is indifferent; Parsytec GC

uses Sun workstations for this purpose. It is possible, however, to attach external peripheral

components directly to the Parsytec system as well.

The connection between the host and the multiprocessor is implemented physically by

a simple serial interface. The host runs a special program calledserver that provides the in-

terface between the host’s resources and the Parsytec systems.

Additionally to the standard task of providing high-speed communication between the

processing elements, the inter-processor communication system has other functions as well

in the Parsytec architecture like interfacing to other systems, performing fault detection and

maintenance. Therefore the communication network is divided into three separate subcom-

ponents:

• thedata network(D-Net) provides the data communication between the processing ele-
ments. The basic topology of the D-Net is a three-dimensional grid, although its physi-
cal implementation is different in the elementary units of the system. However, D-Net
is capable to form an arbitraryvirtual topology instead of the 3-D grid by reconfiguring
the inter-processor data links, to fit to the current application optimally. D-Net consists
of high-performance data links and programmable intelligent routing chips. Its fault-
tolerant design assures that physical defects of data lines, connectors and even routing
chips do not result in a total loss in the communication but only reduces the bandwidth
of the network;

40

• thecontrol network(C-Net) forms a separate network of processing elements (the con-
trol processors), and has dedicated connections to every application processing ele-
ment. This component monitors the operation of the processing elements and maintain
reconfiguration tasks for either optimal task allocation or fault masking. Therefore the
C-Net distributes only configuration and diagnostic information; it cannot be used for
communication between two application transputers, and it is unavailable for regular
user applications;

• theinput/output network(I/O-Net) is responsible for interfacing the global resources of
the Parsytec system (mostly the host computer).

The Parsytec system employs a hierarchical modular structure for supporting scalabil-

ity and decreasing system complexity. The basic module of a Parsytec system, aGigaCube

is a complete multiprocessor system containing 64 processing elements, their interconnec-

tion network, interface connectors to other GigaCubes, a power supply and temperature

control unit; it is able to perform stand-alone operation. Its mechanical design ensures in-

terconnection possibility of GigaCubes in three spatial dimensions. The minimal configu-

ration of the Parsytec GC contains one GigaCube; in the full configuration, 256 GigaCubes

can be combined into a 4× 8 × 8 spatial array. The interconnection between GigaCubes

provides eight data and one control lines in the 6 spatial directions.

A GigaCube is formed by four clusters of processors. A cluster contains 16 + 1 process-

ing nodes and 4 routing chips for interconnection. The four clusters are supervised by a sin-

gle control processor in the C-Net. The task of the control processor is to download user

application programs to the processing nodes, to control the I/O network, to monitor the op-

Figure 3-2. Structural diagram of a GigaCube

Cluster
#1

Cluster
#2

Cluster
#3

+X-X

+Y

-Y

+Z

-Z

Cluster
#4

Control
board

I/O
I/O

network

41

eration of the transputers as well as the power supply and temperature control system, and

to perform maintenance actions when necessary.

A cluster is the smallest operational unit of the Parsytec system. It is possible to use

partially equipped GigaCubes with only one or two clusters. It contains 16 transputers run-

ning user applications and the operating system kernel, four INMOS C104 routing chips

interconnecting the transputers and a reserve transputer for fail-safe operation. As the re-

serve transputer can replace any defective working transputer, the overall failure rate of a

cluster is lower than the failure rate of a single transputer. The spare replacement process

is driven by the control processor in the C-Net.

The internal interconnection scheme of a cluster is a fully connected graph, implement-

ed by C104 routing chips (seeFigure 3-3.). Each cluster has an external connection facility

of 8 data lines in the six spatial directions and 8 connection lines to the I/O network.

The electronic circuit design of a cluster constitutes two processor cards (with 8 trans-

puters and two routing chips each) plugged into the GigaCube backplane. The 17th reserve

transputer is placed separately on the common control board of the GigaCube.

Processing nodes of a cluster are also designed for maximal fault tolerance. To mini-

mize the number of components and thus potential faults caused by damaged inter-compo-

nent data paths and component manufactory defects, most of the supplementary functions

of the elements are integrated into an application-specific integrated circuit (ASIC). So a

processing node consists of only three active components: a T9000 transputer, DRAM

memory chips and the ASIC. Each transputer can have 4, 8, 16 or 32 MBytes of local mem-

ory (32- or 64-bit wide). DRAMs are protected fromsoft errors (nondestructive transient

faults resulting from e. g. alpha particles) by an error detection correction (EDC) logic that

is incorporated to the ASIC.

For optimizing inter-processor data communication and the cache facility of the trans-

puters, a special data link and memory usage monitor is implemented. The data collected

by it is available for user applications. Each processing element has various test functions

to allow software-based hardware fault detection.

42

3.2.2. The INMOS T9000 Transputer

The T9000 transputer is the latest member of the transputer series developed by IN-

MOS, Ltd.,especially for application in massively parallel multiprocessor systems. High-

performance communication facilities of the INMOS transputers provide the possibility to

design multiprocessor systems with extremely high overall performance.

The block scheme of the T9000 is shown inFigure 3-4. The transputer chip contains a

32-bit CPU, a 64-bit floating point unit, 16 KBytes of on-chip memory cache, a hardware

scheduler, a communication co-processor and four high-speed serial communication

links.

The 32-bit CPU unit has asuperscalar pipeline architecture. The five-stage pipeline and

the carefully selected instruction set provides a high execution speed of programs written

Figure 3-3. Structure of a Parsytec cluster

C104

C104

C104

C104

T9000

T9000

T9000

T9000

16(+1)

8

+X

8

-Y

8
+Z8 +Y

8

-X

-Z
8

I/O
8

Links to the
C-Network

43

in high level languages. Moreover, ahardware optimizer is applied to preprocess instruc-

tion groups from the running code in order to exploit the maximal pipeline performance.

Programmableaddress generators provide memory access control and privilege level

handling by memory address translation in the protected mode of the CPU. An integrated

hardware scheduler kernel supports multi-thread operation. Typical interrupt response and

context switching times are less than 1µs. Context switching operations are included in the

instruction set. These features result a peak performance of 200 MIPS of the CPU and 25

MFlops of the FPU [24].

16 KBytes of unifieddata and instruction cache is implemented on-chip for decreasing

the number of external memory operations and achieving single-cycle instruction execu-

tions. Moreover, a small additional cache is present for the most frequently used data, e.g.

Workspace
Cache

ALU

FPU

Pipelined
CPU core

Address
Generator 1

Address
Generator 2

Timer/Scheduler

16 KByte
On-chip
Cache

Programmable
Memory Interface

Phase Locked
Loops

Virtual Channel
Processor

Link 0

Link 1

Link 2

Link 3

Event 0-3

Control Unit

CLink 0

CLink 1

Figure 3-4. Block diagram of the T9000

32
-b

it
cr

os
s

ba
r

32

32

32

32

32

32

32

32

32

32

32

44

local variables (workspace cache). The peak bandwidth of the on-chip caches is 200

MWords/s.

A wide range of external memory devices can be attached to the T9000 transputer with-

out complicated external logic, via theprogrammable memory interface. It can be adapted

for the fastest DRAMs with special (paged, refresh combined etc.) addressing strategies as

well as SRAMs and even slow ROM and memory-mapped peripheral devices. Different

sets of memory control options can be switched very quickly for supporting heterogeneous

memory structures. The word width of the memory can be 8, 16, 32 or 64 bit.

The sophisticatedcommunication co-processor offers an elegant solution for incorpo-

rating data exchange facilities into application programs: communication betweenprocess-

es can be handled with the same mechanism as betweenprocessors so it is transparent for

the user: an application needs not to know if their cooperating processes run scheduled on

the same transputer or simultaneously on several transputers. Thevirtual channel processor

provides the capability of employingvirtual data links between processors, thus using an

arbitrary number of logical data channels forming variousvirtual topologies over the

physical 3-dimensional grid topology. Therefore a multiprocessor built from T9000 trans-

puters can be easily adapted to various types of problems, using the optimal virtual topol-

ogy for each of them.

The communication subsystem also contains four additional data lines. These inputs

(calledevent lines) can be used similarly to hardware interrupt lines as appearing of data

on them results a processor exception. Practically event lines applied as inputs of fault alert

signals produced by a testing circuit (e.g. the EDC logic signals an alert if an uncorrectable

memory error is detected).

The transputer’sphysical connections provide 100 MBit/s full duplex serial data

throughput. As the whole communication co-processor operates concurrently with the CPU

core and direct memory access (DMA) is used to transfer data between the data link circuit-

ry and local memory, the amount of communication has no significant influence on the

speed of program execution.

Thecontrol unit of the T9000 transputer is liable for supervision and monitoring of the

other units and it performs the general management-related functions like initialization and

configuration. The control unit can communicate with other unitsseparately from the stan-

45

dard data links, by using its dedicated control links. These links are generally reserved for

system configuration and maintenance messages, but they can be used optionally for data

transfer as well (e.g. application programs can be downloaded this way).

 Communication via the control links can be initiated either by the transputer itself or

by an external unit. Therefore a higher level of system supervision can be applied over a

multiprocessor system consisting of T9000 transputers, as a detailed status information of

the transputer is available via the control links and the control unit can receive and execute

commands from another unit as well. In the Parsytec GC system, control links of the appli-

cation transputers are connected to the C-Net.

Thephase locked loop (PLL) circuitry in the T9000 transputer is a part of the data link

and memory usage monitoring subsystem mentioned in the previous subsection.

3.3. Software Environment

Effective use of a multiprocessor system requires a sophisticated working environment

providing tools for running user applications on the processors, partitioning the multipro-

cessor among different users and applications, managing the allocation of system resources

and developing programs. The operating environment designed for the Parsytec GC ma-

chines is called PARIX (from PARallel unIX). It is a distributed UNIX-like operating sys-

tem, extended for use with parallel multiprocessor systems. It runs partly on the T9000

application processors of the Parsytec GC, partly on the C-Net control processors and partly

on the host machine.

The PARIX system can be divided into four main components:

• development environment: standard program development tools (compilers, debug-
gers, profiler) together with the server interface for downloading programs to the trans-
puters and display its output. These tools run on the host machine;

• runtime environment: a small UNIX-like kernel to provide inter-processor message
passing facilities, together with higher level communication and other support libraries
for building various applications. The kernel is linked to the application running on the
Parsytec transputers. Runtime environment also includes drivers and programmer’s
interface for various peripheral units connectable to the Parsytec machine directly,
including the host machine itself;

46

• multi-user administration : a common interface to ensure user interaction with the
active applications, management of system resources allocated by the users’ applica-
tions and controlling the application execution.

The most important resources in the Parsytec system are the transputers themselves.
Separation of jobs is performed by creating different groups of processing elements
(called user partitions) that belong to a single user and can be used only by his/her
applications. Sharing of other resources is generally managed by the host machine as
most of the peripherals are usually attached to it instead of the Parsytec GC. The
administration tools also run on the host machine;

• control network software: the program running on the control processors in the C-
Net, responsible for initializing and starting up the Parsytec system correctly, perform-
ing regular supervisory and maintenance tasks, ensuring the fault-tolerant operation
and reconfiguring the transputers according to the actual partitioning required by the
administration software.

The collection of these tools provides maximal exploitation of the potential capabilities

of the Parsytec system while offering a comfortable user access.

3.3.1. Programming Model

Hence the system architecture of parallel multiprocessor systems radically differs from

the traditional monoprocessor machines, theprogramming model is also obviously differ-

ent. Multiprocessor systems, however, have also completely different architectural proper-

ties so many different programming models were developed for various architectures.

 The model applied by the Parsytec GC machine is quite common in massively parallel

systems. Its primary intention is to cope with the extremely high number of processing el-

ements without making application development uncomfortably complicated. The main

characteristics of Parsytec’s programming model are the following:

- Thesame binary program code is downloaded to each transputer when an application
is started. This method simplifies program development - there is no need to write sev-
eral versions of the program for different processors. The PARIX kernel initializes cer-
tain pre-defined global system variables identifying the processor at load time; a
processor can determine its spatial position by examining this data and is able to per-
form different tasks according to its place in the topology.

- Besides of self-identification, each processor can obtain information on thesize of the
actual user partition, thus providing the possibility of automaticsoftware scalability so
an application can adjust its internal configuration to the actual number of processors
involved.

47

- Hence the T9000 transputer has a hardware implemented timer/scheduler facility,
application of multitasking is also possible within a single processor node. For maximal
performance, the Parsytec system supportsmulti-threaded programming. (Threads -
also referred to aslightweight processes - are special processes sharing a common par-
tial context, therefore switching between them in a multitasking environment requires
less time and data transfer than switching between “heavyweight” processes when the
full process context must be saved and restored.)

- The hardware scheduler supportspriority handling. Actually two priority levels exist.
Low priority threads are scheduled normally so they are periodically interrupted; high
priority threads run uninterrupted until they terminate. (This feature is a source of
potential danger as infinite loops within a high priority thread cannot be terminated
from within the transputer (even hardware interrupts are disabled); breaking such a
loop is possible only via the control links of the transputer.)

- Additional user programs can be loaded and executed from within an application, with
full control on program placement (i.e. the group of the transputers where the new
application will run can be also selected). Every new application constitutes a full pro-
cess context; therefore direct interaction between different contexts is not possible.
Threads of the additional application are scheduled together with threads of the original
program; the thread initiating the load and execute activity, however, will be suspended
until the loaded new application terminates.

Programs developed under this model can exploit the advantages of the massively par-

allel multiprocessor architecture of the Parsytec GC machine. With additional support of

the PARIX operating system kernel and the provided development libraries, it is possible

to create powerful applications with relatively small effort as the model allows program-

mers to concentrate on implementing the effective application algorithms instead of taking

care of the architectural details of the system.

3.3.2. The PARIX Operating System Kernel

In a regular UNIX system, the kernel of the operating system is a separate program run-

ning continuously on the machine, handling the hardware components of the system and

offering various system services to application programs. Due to the different structure of

the Parsytec GC system, many of the tasks of a traditional operating system kernel are han-

dled by the host computer. Therefore the kernel of the PARIX is oriented to provide stan-

dard UNIX services (system calls) and other extended services related to the Parsytec

architecture. It works together closely with the standard development libraries.

The kernel itself is a binary object module that is linked to each application program.

Its static code size and dynamic memory allocation was minimized to allow the highest pos-

48

sible application performance. (Probably this is the cause of that a few well-known and

widely used UNIX features were left out from the current version of the kernel.)

The most important set of services provided by the PARIX kernel and the libraries is

the support for inter-processor communication. The following features are available for the

applications:

- As mentioned in Section3.2.2, inter-processor and inter-process communication is han-
dled by anunified mechanism so the implementation of the inter-process data exchange
in a user application can be independent from the physical location of the communicat-
ing processes.

- Virtual data links (bidirectional unbuffered logical data connections) can be set up
between arbitrary processors and processes, totally independently from the actual phys-
ical interconnection system. Creation and termination of virtual links is possible at run
time as well.

- Sets of virtual links often used for creating a specific interconnection scheme can be
organized to avirtual topology. Virtual topologies can be established in one step to save
the time-consuming effort to build all the necessary virtual links every time when they
are needed. A set ofpre-defined virtual topologies are supplied with the PARIX com-
munication libraries, implementing the most common topologies (grid, torus, tree, pipe
and hypercube) scalable to the actual application, with optimized virtual data link map-
ping to physical data links. However, every user can easily build a private virtual topol-
ogy library. An application can usemore than one virtual topology at the same time for
adjusting the interconnection scheme optimally for different parts of its algorithm.

- Threebasic communication modes are available:

• synchronous link-bound communication; it is the fastest method, directly sup-
ported by the transputer hardware and the routing chips. A virtual link is needed for
the communication (it can be a link of a virtual topology but can be created ad hoc as
well) or random routing can be applied (in this case a set of temporary virtual links is
automatically created between the two communicating processors). The communi-
cationblocks any of the involved processes if the other process is not ready: they
must execute the communication requests cooperatively and their operation resumes
only after the data exchange has been finished.

• asynchronous link-bound communication. In this case the sender process can ini-
tiate the communication request and continue its operation immediately. Actual data
exchange takes place only when the receiver process is ready. Buffering of the data
during the wait period can be performed either by the user program or by the kernel,
on both sides of the communication. Asynchronous communication requires a vir-
tual link between the communicating processes.

Asynchronity is implemented in the libraries by using the synchronous communi-

49

cation facility and starting a new thread dedicated to the communication (so the ded-
icated thread will be blocked instead of the user process).

A time-out value can be assigned to asynchronousreceive requests as well for
automatic termination of the dedicated communication thread if no data has been
sent within a given time period. So accumulation of inactive communication threads
in the system (consuming valuable resources) can be avoided. Unfortunately, there is
no way to terminate an asynchronoussend thread after it was initiated.

• mailbox-based communication, when messages are passed from the sender
towards the receiver using a software router. There is no need for any direct connec-
tion between the communicating processes at the time of communication; the soft-
ware router, however, needs to be initialized on both processors at boot time. This
communication mode does not require any form of handshaking: the sender process
continues immediately after sending a message, the receiver process can regularly
check its own mailbox for incoming messages.

Besides of the communication, the PARIX kernel and libraries provide standard UNIX

peripheral handling functions as well. As a Parsytec machine seldom has peripheral units

attached directly to itself, handling of the peripheral devices of the host machine is imple-

mented by a Remote Procedure Call (RPC) mechanism. An RPC is initiated by opening a

special data link from a process to the server interface running on the host and sending an

appropriate message; the server processes the message, activates the corresponding system

service on the host machine and sends the result back to the process.

 Most of the standard UNIX terminal and file I/O library functions are available via this

method; however, due to the need of synchronous communication between the process and

the host, response time of an RPC is limited by the transfer speed of the serial connection

between the Parsytec and the host machine. Therefore extensive use of RPC-based library

functions decrease the efficiency of the application seriously.

The PARIX kernel includes some extra debugging facilities as well to support the op-

eration of the parallel debugger. These functions are only partially implemented in the ker-

nel version 1.1 which was available at the time of the development.

3.3.3. Development Tools

The development process of user programs for the Parsytec machines is based on the

cross-platform developmentconcept: the effective development tools reside and run on a

separate machine and only the binary code is transferred to the Parsytec system. This con-

cept has the obvious advantage that programmers can use their own well-known and cus-

50

tomized working environment (text editors, source code management tools etc.) hence only

the binary code generation parts of the development system needs to be changed. As use of

Parsytec GC systems requires the application of another computer system by default, cross-

platform development is the only logical way to develop applications.

Compilers for various high level languages (C, Fortran, Pascal, Modula-2) are available

or are under development for Parsytec systems. These compilers are developed by ACE

B.V., a Dutch software company. At the site of the development in Erlangen only the ACE

EXPERT C (an ANSI C compliant C compiler) and the ACE EXPERT Fortran-77 were

available. Use of the assembly language of the T9000 transputer is also possible through

the common T9000 assembler of the compilers.

Both assembly level and source level debugging is supported by the PARIX operating

system. Debugger programs has two parts: a small stub is loaded into the memory of the

T9000 transputers (it performs the effective debugging tasks using the ‘ptrace’ functional-

ity of the PARIX kernel) and the front-end user interface running on the host machine (it

communicates with the debugger stub via RPC calls). Due to development delays, source

level debuggers were not available at the time of the development, only a simple one offer-

ing the functions of the ‘adb’ UNIX debugger, with some parallel extensions.

A performance analysis and profiling tool called PATOP, developed at München Uni-

versity of Technology for optimizing application efficiency in highly parallel systems, is

also available for Parsytec GC machines.

3.4. Differences between T9000 and T805 Transputers

The constraint-based diagnosis algorithm was developed on a partially equipped Par-

sytec GCel machine with only one clusters and 16 processing elements. As the machine

was installed in 1992, its processing elements were INMOS T805 transputers. (The T9000

series is the successor of the older INMOS T800 transputer family; due to development

problems with the new processor design, T9000-based Parsytec systems were not available

yet when the development has started.)

The T805 transputer is strongly similar in its internal structure to the T9000 what was

described in the previous sections. However, it lacks some new features that were designed

specifically for the T9000 series. The most significant difference is that the T805 has no

51

virtual channel management and it cannot cooperate with C104 routing chips. The func-

tions of the routing chips are emulated by software components incorporated into the

PARIX kernel.

Moreover, T805 transputers cannot run in protected mode and their memory manage-

ment unit has no any protection facilities; therefore an extreme care must be taken of using

pointers as writes to the memory via an invalid pointer can effectively destroy the PARIX

kernel and thus cause total failure of the system.

For maximal portability, the architecture of Parsytec GCel system and the Parsytec de-

velopment tools were designed in such a way that every piece of software written for earlier

Parsytec systems (with T805 transputers) can be simply recompiled, without any source

code modification, for use on Parsytec machines equipped with T9000 transputers. There-

fore application developers do not need to wait until T9000 appears and their work will run

on later Parsytec systems as well.

52

4 The Developed CSP-based Diagnosis
Algorithm

4.1. Fault model

The primary goal of this diploma work was to validate the concept of constraint-based

testing in the practice. Therefore no effort was made to produce a full-featured, commercial

quality product, only a small experimental system.

During development of the fault model, aParsytec GC system - equipped withT9000

transputers andC104 routing chips - was considered for demonstration of the diagnosabil-

ity of a non-homogenous system, in spite of that the effective algorithm ran on a GCel ma-

chine with T805 transputers (as mentioned in Section3.4). The difference in the hardware

structure did not cause significant changes in the algorithm, it affected only the implemen-

tation.

The test mechanisms used on the Parsytec processors are simply periodicalmutual

<I’m alive> messages between neighboring processors. A test passed if the next <I’m

alive> message was received within a given time interval and it was correct; failed if the

message was not sent by a neighbor within the time-out limit, or the internal format of the

message was incorrect (the correctness of <I’m alive> messages was checked with a check-

sum field). Therefore a test could produce three possible results:good (test passed),faulty

(test failed due to invalid <I’m alive> message) anddead (test failed due to time-out).

More accurate test methods were not available at the time of development. However,

as testing is performed via the normal inter-processor data connections, efficiency of a

more accurate test may be undesirably low (see Section1.3.3 and [20],[21]). Alternatively,

53

the application transputers can be tested from the C-Net of the Parsytec system (see

Section3.2.2); this kind of test mechanisms are still under development at University of

Coimbra.

Besides of the obviousprocessorfaults, defects appearing ondata lines between pro-

cessors and routing chips and faults of therouting chips themselves are also included into

the fault model. This makes the model more realistic and the diagnosis more effective.

Determination of the fault states of a processor can be based on considerations of its

internal structure. As the faults on the transputer level are assumed to be consequences of

lower-level faults, investigation of the possible faults on a lower level helps creation of high

level fault states.

Fortunately, the fault-tolerant structure of a Parsytec computing element provides the

possibility to detect a considerable amount of faults for an external device (e.g. the control

processors in the C-Net) [4]. The detectable physical fault classes of the T9000 transputer

are the following:

Fault class Physical cause(s) Effect on the transputer

PMI Error internal defect in the programmable
memory interface unit

lockup

VCP Error internal defect in the virtual chan-
nel processor unit

lockup

CPU Configuration Error
- Hardware Exception

internal defect of CPU configura-
tion registers, illegal memory
access, illegal instruction etc.

the NullTrap
routine (a spe-
cial part of the
PARIX kernel)
is activated

lockup (intentional,
caused by NullTrap
routine)

divide by 0, floating point excep-
tion, other software-related faults

NullTrap routine han-
dles the fault, opera-
tion continues

Link0...Link3 Communi-
cation Error

mechanical contact problems, line
noise, router faults

no communication via the faulty data
link

CLink 1 Error mechanical contact problems, C-
Net processor faults

lockup

CLink 0 Protocol Error

CLink 0 Command Error

Event0...Event3 Signal various (e.g. unrecoverable mem-
ory error alert from EDC ASIC)

depends on the origin of the signal (in
the case of EDC memory fault, random
behavior)

Table 4-1. Fault classes of the T9000

54

These faults are detectable if the appropriate functional unit performing internal fault

detection and report (i.e. the control unit of the T9000) is still operational. In the case of a

fault in the control unit, no information can be received about the fault state; however,

hence the control unit is liable to coordinate the whole operation of the transputer, it can be

assumed that the fault of the control unit implies thetotal disfunction of the T9000.

Moreover, as neither the CPU working registers nor the on-chip cache memory is pro-

tected against soft errors, external physical phenomena, like alpha particles from cosmic ra-

diation can cause stochastic temporary faults in these units; these faults are manifested in

random behavior of the transputer (i.e. unpredictable changes in the data or in the control

flow).

Not each of the above mentioned lower level faults manifests as an unique fault state at

transputer level. Some of the lower level faults areequivalent (they give identical results

for the tests aimed to detect them) and some of the faults maydominate other faults (tests

for the dominated fault always fail in the presence of the dominating fault). These relations

must also taken into account when creating the fault model [32]; the applied testing method

affects the selection of significant transputer-level faults.

Therefore the T9000 transputer can be modeled with three significant fault states:fault-

free (it operates correctly),faulty (it operates incorrectly, gives improper results but its

communication facilities are good) anddead (it does not communicate with other transput-

ers). These fault states correspond to the three possible results of testing with <I’m alive>

messages; this simple test mechanism does not make more sophisticated fault pathology

possible.

 Fault states of data links are obvious. Routing chips consist of data port circuits con-

necting to the data link pins of the chip and an internal routing logic. It is assumed that only

a single data port is faulty in a given time; faults in the routing logic, however, cause com-

plete failure of the routing chip so no further communication is possible through it.

The complete fault model, including the notations used in Section4.3, is shown in

Table 4-2.

Due to the simple, almost pass/fail style tests, PMC (symmetrical) test invalidation was

used (a fault-free transputer tests its neighbors well, a faulty transputer delivers random test

55

results, a dead tester neither executes tests not it gives any result). More sophisticated tests

are needed for using other invalidation schemes; however, changing the test invalidation

rules requires only minimal effort and does not affect the operation of the diagnostic algo-

rithm significantly.

4.2. Assumptions

The developed diagnosis algorithm itself runs on the host machine and only the lower-

level tester functions run on the Parsytec transputers; in other words, the algorithm is based

on the concept ofcentralized diagnosis. This approach was selected primarily due to the

difficulties with implementing the constraint solver on the T9000 transputers. Centralized

diagnosis, however, can be considered usable on a Parsytec machine, due to the following

reasons:

- Despite of its symmetrical distributed nature, the host machine is still a centralized ele-
ment of the Parsytec GC machine so the failure of the host definitely implies the failure
of the whole system; therefore centralizing diagnosis into the host does not decrease the
overall dependability of the system;

Unit Fault state and its
notation

Behavior Possibly faulty compo-
nents(s)

Processor fault-free 0p correct operation -

faulty 1p incorrect test result
evaluation

memory

dead cp no communication CPU configuration,
virtual link, C-Net-
work, hardware excep-
tions

Data link live Lp,R correct message trans-
fer

-

broken Lp,R no message transfer wires/connectors,
CPU data link circuit

Routing
chip

fault-free - correct operation -

single port
fault

LR,p no message transfer
via the faulty port

router data port circuit

dead mR all ports are faulty internal routing
scheme, clock

Table 4-2. The applied fault model

56

- Although the tests between processing elements are performed via normal data links,
each transputer has a separate data connection: the control links attached between the
application transputers and the control processors in the C-Net, so test initialization
commands and test results can be transferred separately from the standard inter-proces-
sor connections. As the control links are parts of the C-Net, their reliability can be con-
sidered higher than data links as they are reliable (among others) for the fault tolerant
operation of the Parsytec machine; in this algorithm, they are considered fault-free.

The asynchronous communication mode is applied for exchanging <I’m alive> mes-

sages. Obviously, the mailbox-based mode is unusable for diagnostic purposes as it is based

on software routing (thus implicitly on the correct operation ofall transputers). The syn-

chronous communication mode would be ideal due to its high speed. The communication

libraries available at the time of development contained time-out option only for receive

operations, therefore an occurrence of a dead transputer - that did not attempt to commence

the synchronous communication - would block all the sender threads on the neighboring

processors, thus bringing the whole system into a halt. The use of asynchronous communi-

cation solves these problems, but arises another one: termination of failed asynchronous

send requests (or, to be precise, the dedicated threads that implement asynchronity) is not

possible in version 1.1 of the PARIX kernel.

Finally, the algorithm developed assumes a single routing chip between any two trans-

puters, as it is within a cluster. Thisintra-cluster approach, however, can be easily extended

hierarchically to achieve a system-wide diagnosis; as routers of a cluster are tested good,

they can be eliminated from the diagnostic model, i.e. replaced with a set of direct data links

and their fault state needs not to be considered again.

4.3. Transformation into a CSP

The developed algorithm is based on the concept of representing the diagnosis problem

as a constraint satisfaction problem. This transformation involves creating implication rules

on the basis of the system structure, the applied test invalidation model and the actual syn-

drome bits. These implication rules can then be represented by constraints.

Some of the implication rules can be generated before starting tests as they are indepen-

dent from test results. Some others must be generated at run time, from the incoming syn-

drome bits. Therefore the resulting constraint satisfaction problem will be a special

dynamic CSP (it special property is that the restrictions in it can only grow stronger; a con-

57

straint never loosens after it is constructed once). This feature makes application ofstatic

CSP solution methods (with only marginal modifications) possible.

All constraints arebinary to achieve maximal simplicity in their treatment: they repre-

sent implications between fault states of components only. Test results are not included in

the constraints as variables, as these are already known when the syndrome decoding be-

gins. Syndrome bits are used for creating run-time constraints instead.

The implication rules resulting from the system structure (fault domination rules) and

the PMC test invalidation are shown in the figure below:

The above implication rules are interpreted quite straightforward (e.g. the implication

Sp,R,p’ = c ⇒ Lp,R ∧ mR denotes that if a processing element tests an other processing el-

ement as non-dead, then the data link from the tester processor to the involved routing chip

and the routing chip itself are good). The constraints representing these rules are created at

start-up of the diagnosis algorithm.

Syndrome-
dependent
backward
implica-

tions

Syndrome-
dependent

forward
implications

Tester processor

Σ (Sp,R,p’ =c) < 16 ⇒ mRLR,p ⇒ Lp,R
mR ⇒ Lp,R

Sp,R,p’ = c ⇒ Lp’,R ∧ mR

Sp,R,p’ = c ⇒ Lp,R ∧ mR

Figure 4-1. The syndrome-independent implication rules

p

p’

R

Routing chip

Tested
processor

Lp,R ⇒ LR,p ∧ mR
Lp,R ⇒ LR,p ∨ mR

58

Some of the above implications express the fault dominance between faults of different

units; e.g. LR,p ⇒ Lp,R represents that the data port fault of a routing chip implies the fault

of the corresponding data link.

The implication rules depending on the test results are the following:

• Forward implication (from the fault state of the tester to the fault state of the tested
processor)

• Sp,R,p’ = 0 ∧ 0p ⇒ 0p’ (i.e. if the tester processor is fault-free and the result of the
test is good, then the tested processor is good);

• Sp,R,p’ = 1∧ 0p ⇒ 1p’;

• Sp,R,p’ = c∧ 0p ⇒ Lp,R ∨ mR ∨ Lp’,R ∨ cp’ *.

• Backward implication (from the fault state of the processor under test to the fault state
of the tester processor)

• Sp,R,p’ = 0∧ 1p’ ⇒ 1p;

• Sp,R,p’ = 1∧ 0p’ ⇒ 1p;

• Sp,R,p’ = c ∧ cp’ ⇒ Lp,R ∨ mR ∨ Lp’,R ∨ 0p *.

These implication rules are created upon the receive of syndrome bits.

It must be pointed out that some of the constraints (denoted with an asterisk) are not

pure binary constraints. Fortunately, these constraints are all related tomR, the dead state

of a routing chip; asmR can be quickly eliminated from the possible fault states (due to the

constraintΣ(Sp,R,p’ = c) < 16⇒ mR, the first non-dead test via a router impliesmR), it does

not cause serious problems during constraint solving.

The CSP corresponding to the above implication rule set contains 20 variables in the

implemented algorithm: 16 variables describe the fault state of the 16 processors and their

data links and the other four ones represent the routing chips. The ‘processor’ variables

have an initial domain of 48 fault states: the transputer itself can be either fault-free, faulty

or dead, and any of its four data links can be live or broken, it results 3×24 = 48. The ‘rout-

ing chip’ variables have 18 possible fault states: a router can be good, one of its 16 data

ports can be faulty or the router can be dead.

59

The operation of constraint generation is shown in an example. In Figure4-2., four pro-

cessors and three routers are involved in test relations. Domains of the variables are simpli-

fied (fault states of the data links are not shown). The figure shows the processing of the

first three test results, demonstrating the application of the pre-generated constraints and

creation of the run-time constraints based on the test results.

p1 p3p2

R1R0 R2

p0

p1 p3p2

R1R0 R2

p0

p1 p3p2

R1R0 R2

p0

p1 p3p2

R1R0 R2

p0

Figure 4-2. Operation of the diagnosis algorithm

Initial state:

D(p0) = D(p1) = D(p2) = D(p3) =
{0p,1p,cp};

D(R0) = D(R1) = D(R2) =
{0R, LR,p0,LR,p1,...,mR};

the constraint set is empty.

p0 tested p1 as good:

D(p0) = D(p1) = {0p,1p};
D(R0) = {0R, LR,p2,LR,p3,...};
new constraints:
0p0 → 0p1;

1p1 → 1p0.

p0 tested p2 as faulty:

D(p2) = {0p,1p};
D(R1) = {0R, LR,p1,LR,p3,...};
new constraints:
0p0 → 1p2;

0p2 → 1p0.

p0 tested p3 as dead:

no restriction can be made on variable
domains;
new constraints:
0p0 → Lp0,R2∨ Lp3,R2∨ mR2 ∨ cp3
cp3 → Lp0,R2∨ Lp3,R2∨ mR2 ∨ 0p0

60

4.4. Implementation details

4.4.1. Low-level Testing Mechanism

The low-level testing parts of the diagnosis algorithm runs on the Parsytec T9000 trans-

puters. It is written in ANSI C language and compiled with the ACE EXPERT C compiler.

The standard communication libraries supplied with the compiler are applied for managing

virtual topologies.

The communication scheme is based on a 2-dimensional grid virtual topology, as it can

be mapped directly to the existing physical interconnection network. Use of a virtual topol-

ogy is necessary as the selected asynchronous communication model requires previously

created virtual links between the processors and the continuous creation and deletion of

temporary virtual links would require a serious overhead. Hence an arbitrary number of vir-

tual topologies can be used at the same time in the Parsytec GC system, an additional virtual

topology does not interfere with other applications.

The communication protocol developed by T. Bartha and F. Balbach [18] is applied.

Although it is a deadlock-free synchronous protocol, its main feature - the minimized com-

munication delay - makes it usable in the case of asynchronous communication as well, to

keep the memory overhead caused by the blocked communication threads low.

The Parsytec part of the program communicates with the CSP solver running on the

host machine via standard UNIX sockets (the UNIX file I/O library for the PARIX kernel

provides this possibility).

Besides of its obvious tasks, the low-level testing mechanism is also responsible for

fault injection . Developing an appropriatephysical fault injection method has proved to

be exceptionally difficult due to the slight but - from this point of view - basic difference

between T805- and T9000-based Parsytec systems. The main problem is the “emulation”

of a dead transputer. The trivial solution for the T9000 is an infinite loop in a high priority

thread; as it is impossible to interrupt, it effectively causes the transputer to ignore all com-

munication. In T805 systems, however, an important part of the communication network -

the routing chips - are emulated by software; therefore the high priority loop not only kills

a transputer but causes a serious, mostly fatal failure in the whole inter-processor commu-

nication.

61

To overcome this problem,logical fault injection was employed. The injected faults

does not force the actual processors to act as if they were faulty but they alter the operation

of the tester mechanism. Fault patterns are generated by a program running on the host ma-

chine and they are sent to the low-level tester during initialization of the tester.

If a transputer is marked asfault-free in the fault pattern, its low-level tester operates

correctly: sends and receives correct <I’m alive> messages, evaluates them and reports cor-

rect results to the host machine. A transputer markedfaulty sends deliberately incorrect

<I’m alive> messages to other transputers and reports random test results to the host; finally

a transputer markeddeaddoes not perform any communication with its neighbors and does

not send any test results.

Another problem that is not completely solved is the clean-up after a test round (the

complete exchange of <I’m alive> messages and sending reports to the host). As it was

mentioned earlier, there is no way (at least no documented way) to terminate communica-

tion threads created by cancelled asynchronous communication requests. So at this moment

the developed algorithm requires a complete reinitialization (global termination and restart

of the tester application) after every test round.

4.4.2. CSP solver

The CSP solver part of the diagnosis algorithm runs on the host machine of the Parsytec

GC, a Sun SPARCstation. It is written in ANSI C language and compiled with the GNU C

compiler (V2.4.1) available under SunOS 4.1. GNU C was selected for its better code op-

timization and the application’s greater performance compared to the standard C compiler

of SunOS, and for its unique feature to optimize a program while retaining full symbolic

and line number information for debugging purposes.

The CSP solver is based on a public domain CSP library [9]. This library is supplied in

source code and is intended for solving static binary CSPs. Its practical properties, howev-

er, makes it usable for the kind of dynamic CSP that appears in the developed model. More-

over, it is written in C language so its adaptation into the algorithm is straightforward.

 As a diagnostic purpose CSP solver is expected to be run fast and require a relatively

small amount of resources, it should be written in a practically lower level, effectively com-

pilable language. Due to the “benign” nature of the employed special class of CSPs, there

is no need to apply a full-featured, general purpose CSP solver system. As the majority of

62

the known constraint-oriented languages and systems (CLPR, CONSTRAINTS, etc.) are

strongly related to resource-hungry, interpreter-based languages like Prolog or LISP, their

use does not seem to be reasonable in a diagnostic algorithm - a solver for special CSP

classes, written in a more effective language like C, is much more promising.

The CSP library has an extra advantage for experimenting: over a dozen different back-

tracking strategies are implemented and they can be easily replaced for comparison bench-

marks.

Constraints are represented by matrices. Each constraint is a Ck×k matrix wherek is the

size of the variable domains; cij is 1 if theith value of the first variable can coexist with the

jth value of the other variable and 0 otherwise. The solver operates on a fully connected

constraint graph; the dummy edges can be replaced by “always-true” constraints. Therefore

the full space requirement of the constraint graph is n2×k2 elementary storage units (it de-

pends on the element type of the array containing the constraints; in the developed algo-

rithm, the elementary storage unit isbyte to avoid time-consuming bit-field operations)

wheren is the number of the variables.

The solver engine has some enhancements to exploit the special properties of the actual

CSP. It considers only those variables that represent system components already engaged

in a test relation for limiting the number of variables in the actual constraint problem (ob-

viously considering those components that we have no information about is unnecessary)

Moreover, it filters out those solutions that does not provide valuable information, although

they conform with the actual set of constraints. For example, as long as a data link of a pro-

cessor has not been involved in a test, it is unnecessary to care with its state; all the values

representing a faulty state of this link can be left out from the domain of the variable rep-

resenting the processor. Similarly, the state of the links of a dead processor is irrelevant.

There are equivalent fault classes: no additional information is provided if each of them ap-

pears in the solution, so they can be left out, except one representant. (An example is illus-

trated inFigure 4-3.).

Another important enhancement in the CSP algorithm is the possibility of incorporating

assumptions on the number of faulty components in the system. Although the constraint-

based test diagnosis has no definitet limit for diagnosability, assuming a maximal number

of faults (based on a priori knowledge about the system) can improve the effectivity of di-

63

agnosis by vastly decreasing syndrome decoding time. This assumption generates aglobal

contradiction if the actual number of faulty units is higher than the assumed value, i.e. the

CSP becomes unsatisfiable. This property can be used for implementation ofadaptivity: the

testing can be started with the assumption of a single fault and the limit can be increased if

global contradiction was detected. Thus the algorithm becomes faster for low numbers of

faulty units while preserving its diagnostic capabilities.

Besides of the effective CSP solution, the program part running on the Sun host is re-

sponsible for coordinating the test sequence. It communicates with the low-level tester via

UNIX sockets. Upon initialization, aGET_CONFIG message is sent to each transputer; it

queries the actual size of the Parsytec user partition and adjusts the number of CSP vari-

ables for the real number of transputers. A test sequence starts with generation of a fault

pattern; it can be fixed for debugging purposes or random with a given maximal number of

faults. The fault pattern is downloaded to the low-level part withSET_ERROR messages;

deaddead

?

?

?

??? ???

???

?

live

live

livelive

≡...

0

0

001

1

1

1 1

1

110

0

0

0

1

0

010

0

1

1

≡

≡

Figure 4-3. Examples for equivalent solution classes

64

the routines running on each transputer adjust their operation according to the actual fault

setting.

The Sun component initiates the exchange of <I’m alive> messages with a global

START_TEST message and starts to receive test results from the Parsytec transputers. Each

incoming syndrome bit is processed immediately: new constraints are generated and do-

mains are adjusted, then the CSP solution runs again, displaying the possible solutions. Af-

ter receiving the last test result and showing the final solutions, the low-level tester part is

restarted with anABORT message.

65

5 Test Results

5.1. Measurement Methods and Considerations

Performance evaluation of a diagnostic algorithm is always a complex task. The actual

number of faults, the momentary workload of the diagnosed system and the system topol-

ogy affect the quantitative characteristics of the diagnosis seriously. Consistent, correct and

informative evaluation can be achieved only from a great volume of experimental results

under various operational circumstances. Comparison with other reference algorithms is

also necessary.

These requirements could not be completely fulfilled during the development. As ref-

erence algorithms with similar structural properties were not available, comparison exper-

iments were impossible to perform. Due to the limited time of development and the

difficulties resulting from the differences between the considered and the actual system

(Section3.4 and 4.4.1), only a limited number and spectrum of experiments could be per-

formed. Moreover, theoretical analysis of the used CSP methods [10] became available

only after finishing the evaluation.

In spite of these problems, some statistical and performance information was gathered

from the experiments. The CSP solver part of the algorithm collected the data about the

progress of the diagnosis and produced formatted reports (Figure 5-1.). These data - al-

though they have only a limited value in absolute qualification - demonstrate the operation

of the CSP solver and emphasize the advantageous properties of the whole algorithm quite

well.

One of the greatest problems was to find an appropriatetime base for the evaluation of

the experimental results. As the processing of the incoming syndrome bits is performed se-

66

quentially, in the order of receive, the actual operating time of the constraint solver fluctu-

ates between rather wide limits. The syndrome bit processing time is dominantly affected

by the variable workload of the host machine and the relatively slow (4800 baud) serial

connection between the host and the Parsytec system, which transferred the messages from

the transputers to the CSP solver. The actual usable bandwidth of the serial connection was

frequently decreased by the various terminal output messages that were also sent through

the same connection. Moreover, the time-out limit of <I’m alive> messages applied for test-

ing the Parsytec transputers was needed to be kept extremely high (2 seconds!) due to the

performance limitations of the complex software-based router emulation on the T805 trans-

puters.

The generated fault pattern: Processor #5 is faulty

(2) 3 solutions found in (0.52) 5.11 seconds, 4 consistency checks
(4) 4 solutions found in (0.31) 3.60 seconds, 30 consistency checks
(5) 3 solutions found in (0.31) 1.79 seconds, 43 consistency checks
(6) 2 solutions found in (0.30) 3.62 seconds, 54 consistency checks
(6) 1 solutions found in (0.29) 1.64 seconds, 30 consistency checks
(7) 1 solutions found in (0.30) 1.86 seconds, 38 consistency checks
(8) 1 solutions found in (0.30) 3.74 seconds, 67 consistency checks
(8) 1 solutions found in (0.31) 1.67 seconds, 67 consistency checks
(9) 1 solutions found in (0.31) 1.87 seconds, 78 consistency checks
(10) 1 solutions found in (0.30) 3.81 seconds, 85 consistency checks

...

(10) 1 solutions found in (0.31) 1.73 seconds, 85 consistency checks
(14) 1 solutions found in (0.31) 3.67 seconds, 136 consistency checks
(15) 1 solutions found in (0.30) 5.24 seconds, 161 consistency checks
(15) 1 solutions found in (0.32) 3.61 seconds, 159 consistency checks
(15) 1 solutions found in (0.31) 4.87 seconds, 157 consistency checks
(15) 1 solutions found in (0.30) 3.72 seconds, 156 consistency checks
(16) 1 solutions found in (0.31) 5.28 seconds, 183 consistency checks
(16) 1 solutions found in (0.02) 3.67 seconds, 183 consistency checks
(16) 1 solutions found in (0.01) 5.08 seconds, 183 consistency checks
(16) 1 solutions found in (0.02) 3.88 seconds, 183 consistency checks
(16) 1 solutions found in (0.04) 3.85 seconds, 183 consistency checks
(16) 1 solutions found in (0.01) 4.98 seconds, 183 consistency checks
(16) 1 solutions found in (0.02) 3.91 seconds, 183 consistency checks
(16) 1 solutions found in (0.01) 3.89 seconds, 183 consistency checks
(16) 1 solutions found in (0.01) 5.09 seconds, 183 consistency checks
(16) 1 solutions found in (0.02) 3.96 seconds, 183 consistency checks
(16) 1 solutions found in (0.02) 3.98 seconds, 183 consistency checks
(16) 1 solutions found in (0.01) 5.27 seconds, 183 consistency checks

Average scores:(48 syndromes)
1.25 solutions, (0.25) 3.81 seconds, 126.75 consistency checks

Figure 5-1. Details from a log file of a test run

Number of processors involved CPU and real time of CSP solution

67

Finally the number of the received test results was selected instead of a time base as it

provided the most realistic base for characterizing performance.

The efficiency of a CSP algorithm could not be represented by the solution time, due to

the above mentioned causes and the not-so-optimistic implementation. Therefore, as it is

usual in the analysis of constraint solving algorithms, thenumber ofthe performedconsis-

tency checks was used for efficiency measures.

5.2. Performance Curves of Typical Test Runs

The progress of the CSP algorithm can be traced on the next graphs. They illustrate the

number of processors involved, the number of found solutions and the number of consis-

tency checks versus the number of received and processed syndrome bits.
Processors handled

Number of syndrome bits

Number of syndrome bits
0 10 20 30 40 500

5

10

15

20

0 10 20 30 40 500

1000

2000

3000 Consistency checks

Number of solutions

Figure 5-2. Progress curve of the CSP algorithm (1 processor was dead)

68

In Figure 5-2., the generated fault pattern consisted of a single dead processor. The fi-

nal number of solutions is 5 (one processor is dead, or a combination of its own data links

and its neighbors’ data links is broken so one processor is isolated from the system; the na-

ture of the testing mechanism does not make differences between these cases). The fast

convergence of the CSP algorithm is showed clearly.

In Figure 5-2., the fault pattern contained a single faulty processor. The convergence

of the CSP solver is more intensive because all the links were proven live.

Processors handled

Number of syndrome bits

Number of syndrome bits

Consistency checks

Number of solutions

Figure 5-3. Progress curve of the CSP algorithm (1 processor was faulty)

0 10 20 30 40 500

5

10

15

20

0 10 20 30 40 500

100

200

300

400

69

6 Conclusions

6.1. Experiences

In this diploma work, a new concept of constraint-based system diagnosis was intro-

duced. For validation of the theories, an experimental diagnosis algorithm was developed

for multiprocessor systems and implemented on a Parsytec GCel machine. During devel-

opment, emphasis was taken primarily on the following factors:

• maximal diagnostic efficiency (minimal diagnosis time);

• coverage of the widest possible range of faults;

• minimal communication overhead on the inter-processor communication lines;

• small memory requirements on the processors under diagnosis;

• minimal disturbance of other applications running on the same multiprocessor
machine.

These factors are considered to improve the practical usability of the diagnosis algo-

rithm. Experiences and usable ideas from earlier researches on the Parsytec system and

from the studied literature were also intended to incorporate into the work where it was pos-

sible. A limited range of measurement and statistic facilities were also applied for collect-

ing data about algorithm efficiency.

The constraint based diagnostic algorithm was extensively tested on the Parsytec GCel

machine. During the tests, it proved its correct and effective operation and thus the correct-

ness of the concepts behind it. The average syndrome processing time of the developed al-

gorithm was about five times lower than a trivial exhaustive diagnosis, due to the

70

sophisticated backtracking techniques. Comparisons with algorithms based on different

concepts, however, could not be performed.

Unfortunately, limitations of the Parsytec GCel system and its PARIX kernel could not

be completely ignored. Due to the relatively low number of processing elements in the used

system, efficiency could not be verified for greater systems.

6.2. Future work

Naturally, the developed diagnostic algorithm is far from being perfect. Some of the en-

hancement possibilities are proposed here:

- Testing of the algorithm on areal T9000-based Parsytec system, using an appropriate
physical fault injection mechanism. (The technical conditions for this process was not
available at the time of the development; however, hardware and software development
efforts are being made towards it.)

- Implementation of the constraint-based algorithm in afully distributed environment
(the CSP solution is also performedon the transputers). This involves the new theo-
retical problem: distribution of test and inference results as well (due to the limited
number of physical neighbors in the communication network, syndrome bits and
optionally CSP results are necessary to send to/received from other processing ele-
ments);

- Implementation of the constraint-based algorithm in ahierarchical partially distributed
environment(the CSP solution is performed bythe control processors in the C-Net).
This approach is very promising as it exploits the full range of fault tolerant capabilities
of a Parsytec machine. Moreover, the hierarchical view is consistently present in the
structural layout of a Parsytec GC: the C-Net itself can be also considered as a separate
multiprocessor that needs some kind of (self-)diagnosis as well;

- Employment ofmore sophisticated test facilities, for the ability to use aless pessimistic
test invalidation scheme instead of PMC. It requires further studies about the internal
properties of the transputer and other system components;

- Determination of thepractical diagnostic capabilities of constraint-based diagnosis. In
the theory, it is proved in [2] thatall the deterministic information from the test
results is exploited during implication. Although it does not makes formulation of exact
upper limits for the number of faults, it should be desirable to estimate the maximal
number of diagnosable faults in this particular system topology;

71

- Selection of theoptimal backtracking strategy for the CSP solver. The “graph-based
backjumping” used in the current version of the algorithm was chosen only for its best
experimental performance; a deeper theoretical analysis of the problem (what was
impossible to perform within the very limited time period of development) may result
the selection of an even better algorithm;

- Decreasing thememory usage of the constraint solver. In the current algorithm the
static data storage representing the constraints required about 1 MByte; it was one of
the main obstacles of CSP solver implementation on the Parsytec transputers. The
space complexity should be reduced to an acceptable level while preserving the speed
of the solution algorithms.

72

Bibliography

[1] A. Pataricza, K. Tilly, E. Selényi, M. Dal Cin:A Constraint Based Approach to
System Level Diagnosis

[2] E. Selényi:System Level Fault Diagnosis in Multiprocessor Systems with a General
Test-invalidation Model, Thesis, Technical University of Budapest, 1975.

[3] K. Tilly: Constraint Based Logic Test Generation (Ph.D. Thesis under preparation)

[4] J. Altmann:Structure of the Fault Diagnosis Algorithm in the Esprit Project FTMPS,
Esprit Project Review, Aachen, Oct. 1993.

[5] U. Montanari:Networks of Constraints: Fundamental Properties and Applications to
Picture Processing, Information Sciences vol. 7, 1974, pp. 95-132.

[6] R. Mohr, T. C. Henderson:Arc and Path Consistency Revisited, Artificial
Intelligence, vol. 28 (1986), pp. 225-233.

[7] A. Mackworth, E. C. Freuder:The Complexity of Some Polynomial Network
Consistency Algorithms for Constraint Satisfaction Problems, Artificial Intelligence,
vol. 25 (1985), pp. 65-74.

[8] R. Seidel:A New Method for Solving Constraint Satisfaction Problems, IJCAI '81,
pp. 338-342.

[9] D. Manchak and P. van Beek: A Binary CSP Solution Library for C Language
(Available by FTP from ftp.cs.ualberta.ca: /pub/ai/CSP)

[10] Grzegorz Kondrak: A Theoretical Evaluation of Selected Backtracking Algorithms,
M.Sc. Thesis, University of Atlanta, Edmonton, 1994.

[11] E. Hyvvnen:Constraint Reasoning Based on Interval Arithmetic, IJCAI 1989, pp.
1193-1198

[12] M. Dal Cin: Fault Tolerance: Theory and Practice (lecture text), IMMD III, FAU
Erlangen-Nürnberg

73

[13] M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand, J. Hönig, W. Hohl, E. Michel
and A. Pataricza:Fault Tolerance in Distributed Shared Memory Multiprocessors,
Springer Lecture Notes on Computer Sciences, 1993.

[14] D. K. Pradhan: Fault-Tolerant Multiprocessor and VLSI-based System
Communication Architectures, Fault-Tolerant Computing: Theory and Techniques,
Prentice-Hall, New York, 1985, pp. 467-569.

[15] J. D. Russel and C. R. Kime:System Fault Diagnosis: Closure and Diagnosability
with Repair, IEEE Trans. Comput., vol. C-24, no. 11., pp. 1078-1088, Nov. 1975

[16] J. D. Russel and C. R. Kime:System Fault Diagnosis: Masking, Exposure and
Diagnosability Without Repair, IEEE Trans. Comput., vol. C-24, no. 12., pp. 1155-
1161, Nov. 1975

[17] C. R. Kime:System Diagnosis, Fault-Tolerant Computing: Theory and Techniques,
Prentice-Hall, New York, 1985, pp. 577-623.

[18] T. Bartha: Diagnosis Algorithms of Multiprocessor Systems. Diploma Thesis,
Technical University of Budapest, 1993

[19] F. Preparata, G. Metze, R. Chien:On the Connection Assignment Problem of
Diagnosable Systems, IEEE Trans. Comput., vol. EC-16, no. 6., pp. 848-854, Dec.
1967

[20] J. G. Kuhl and S. M. Reddy:Distributed Fault Tolerance for Large Multiprocessor

Systems, Computer Architecture News 8, pp. 23-30, 7th Intl. Symposium on
Computer Architectures, 1980.

[21] J. G. Kuhl and S. M. Reddy:Some Extensions to the Theory of System Level Fault

Diagnosis, IEEE Proceedings 10th Intl. Symposium on Fault-tolerant Computing, pp.
291-296, 1980.

[22] C. S. Holt and J. E. Smith:Self-Diagnosis in Distributed Systems, IEEE Trans.
Comput., vol. 34, no. 1., pp. 19-31, 1985.

[23] G. Bóna, I. Erényi and F. Vajda:Többmikroprocesszoros rendszerek. Müszaki
Könyvkiadó, 1986.

[24] INMOS, Ltd.: The T9000 Transputer Product Overview Manual(preliminary
information), April 1991

[25] Parsytec Computer GmbH:Parsytec GC Technical Summary, V1.0, 1991.

[26] Parsytec Computer GmbH:PARIX V1.1 Programmer’s Reference, 1992.

[27] F. Barsi, F. Grandoni and P. Maestrini:A theory of diagnosability in digital systems,
IEEE Trans. Comput., vol. C-25, no. 6., pp. 585-593, Jun. 1976

[28] S. Maheshwari and S. Hakimi:On models for diagnosable systems and probabilistic
fault diagnosis, IEEE Trans. Comput., vol. C-25, no. 3., pp. 228-236, Mar. 1976

74

[29] G. Meyer and G. Masson:An efficient fault diagnosis algorithm for symmetric
multiple processor architectures, IEEE Trans. Comput., vol. C-27, no. 11., pp. 1059-
1063, Nov. 1978

[30] J. C. Laprie (ed.):Dependability: Basic Concepts and Terminology, IFIP WG 10.4:
Dependable Computing and Fault Tolerant Systems Vol. 5, Springer-Verlag, Wien,
1992, pp. 11-44.

[31] F. Balbach:Entwurf und Effizienzuntersuchungen von Fehlerdiagnoseverfahren für
massiv parallele Rechnersysteme, Diploma Thesis, Friedrich-Alexander Universität
Erlangen-Nürnberg, 1993.

[32] M. Abramovici, M. A. Breuer and A. D. Friedman: Digital Systems Testing and
Testable Design, Computer Science Press, 1990.

