
BEHAVIOURAL VHDL DESCRIPTION BASED
SYNTHESIS OF SELF-CHECKING CIRCUITS

András Petri, jr. - András Pataricza - Endre Selényi
Department of Measurement and Information Systems, Technical University of Budapest

E-mail: petri@mit.bme.hu

1 Introduction

This paper demonstrates an experimental implementation of a design method for embedding fault tol-

erance capabilities into high level digital system models. The method starts with a standardized be-

havioural level system description and systematically transforms it to an implementation-level circuit

design with fault tolerant parts built in. The transformation process aims to keep the changes made in

the model transparent from the viewpoint of the designer, in order to maintain compatibility between

the original system model and to minimize the manual interaction needed to implement fault toler-

ance.

The method is intended to be easily incorporated into existing digital system design environments,

therefore it applies the de facto industry standard VHDL language both as input and output format.

The implantation of the fault tolerant capabilities is performed byreplacingcommonVDHL data

typeswith alternate, self-checking capable versions. This way the initial high level modelneeds only

a minimal modification, and maintains compatibility with high level simulation and verification tools.

The code parts implementing fault tolerance are implemented as aseparate VHDL package of register

transfer level descriptions, and they are included into the result of high level synthesis automatically,

or with minimal user intervention (depending on the synthesis tool actually used).

2 Error Detection on Behavioural Level

On the behavioural level of system modelling, the most common data types arenumbers (usually in-

tegers, sometimes floating point numbers). Both the correctness of the result produced by the system

and the control flow of the algorithms themselves depend severely on the integrity of the numeric val-

ues. However, numbers are transformed to multi-bit data lines at lower levels of abstraction, so usual

physical level faults (stuck-at, bridging etc.) are represented ascorrupted values at the behavioural

level. Therefore the numeric values of the high level model need to be protected against unintentional

value changes.

There are numerous methods for this purpose [4]. The application ofresidue codes[3] has attractive

advantages: relatively low calculation requirements (resulting in low hardware and/or time overhead

in the final implementation) and good error detection capability. In our experimental system, the sim-

plemod 3 residue code was implemented for integer numbers.

Applying the mod 3 residue code involves the extension of all integer values by a separate res-

idue value, that contains its remainder modulo 3. Additionally, the consistency between the nu-

meric value and the residue must be held during the operations on the integers. This task can

be solved in a very elegant way in VHDL, due to certain syntactic properties of the language.

As all the VHDL operators are treated basically as functions, a feature calledoperator over-

loading is provided. The working of the standard VHDL operators can also be redefined by the

user, simply by writing the appropriate functions that take the operands as arguments and return

the result of the operator. This feature is demonstrated on Fig. 1:

In the above example, a data typeinteger_rc is declared as a record: its members are

value (that carries the numeric value of an integer) andrescode (that carries the residue

code). Then the function implementing the standard operators “+”, “-”, etc. are defined on

integer_rc type operands in a way that they return the result of the same operator on

integers invalue , and the residue code of this result inrescode .

package integer_rescode is

subtype res_code is integer range 0 to 3;
constant invalid_rc: res_code := 3;

type integer_rc is record
value: integer;
rescode: res_code;

end record;

function “+” (l, r: integer_rc) return integer_rc;
function “-” (l, r: integer_rc) return integer_rc;

...
end integer_res_code;

package body integer_rescode is

function rescode (arg: integer) return res_code is
variable result: res_code;

begin
result := arg mod 3;
return result;

end res_code;

function “+” (l, r: integer_rc) return integer_rc is
variable result: integer_rc;

begin
result.value := l.value + r.value;
if (rescode(l) /= l.rescode)
 or (rescode(r) /= r.rescode) then

result.rescode := invalid_rc;
else

result.rescode := result.value;
end if;
return result;

end “+”;
...

end integer_rescode;

Fig. 1: Fragment of the mod 3 residue code in VHDL on high level

The constantinvalid_rc is defined for error detection purposes: as it represents an illegal mod

3 remainder, rescode is set toinvalid_rc if the residue code of any operands was incorrect.

The illegal value ofrescode is propagated in all subsequent operations, thus ensuring that as

long as the effect of any value change caused by a fault is detectable by mod 3 residue code, it

will be observable on the affected output(s) of the system as well.

This way, embedding residue code-based fault tolerance into behavioural level VHDL circuit

descriptions is most simple: it consists of including an alternate VHDL numerical package (that

contains the declaration of the residue code protectedinteger_rc type and the definitions

of the standard VHDL operators on this type), and replacing allinteger type definitions with

integer_rc . This replacement may impose some difficulties, asinteger_rc , being a

record type, has a different set of pre-defined attributes than theinteger type; however, these

attributes are rarely used in behavioural level descriptions.

2.1. Transformation into Register Transfer Level

Modern digital circuit design systems usually offer automatic structural silicon layout genera-

tion from low level circuit descriptions. Therefore behavioural level models must be trans-

formed into a lower level. For our experiments, the AMICAL [1] system was chosen, due to its

free availability and positive past experiences [2].

The embedded fault tolerant features of the behavioural models must also be transformed. As

most high level synthesis systems transform behavioural level operations into pre-defined low

level functional units (FUs), this transformation necessitates the re-implementation or modifi-

cation of FUs representing the overloaded operators. Obviously, the high level synthesis tool

must accept the modifiedinteger_rc type and convert it appropriately to a lower level data

type. As this data type is usually the standardbit_vector or std_logic_vector types

with a globally defined size (which is a user-supplied design parameter), it can be easily ex-

tended with the two extra data lines needed by the mod 3 residue code. In the case of AMICAL,

a set of FUs is supplied in low level VHDL description format, so their modification is just as

simple as the modification of the behavioural model. The register transfer level equivalent of

the integer_rescode package was implemented as a straightforward modification of the

IEEE_1164std_logic numeric operation package.

2.2. The GCD example circuit

The sample circuit used for demonstration of the embedding of fault tolerance was the GCD

(Greatest Common Divisor) example supplied with AMICAL. The circuit realizes the tradi-

tional Euclidean algorithm for calculating the greatest common divisor of two integer numbers

as a sequential digital circuit. The behavioural level VHDL description is shown below. Com-

ments starting with--!! denote the changes necessary for embedding fault tolerance.

package synchro is
function rising_edge(signal horloge:bit) return boolean;
procedure delay(temps:time);

end synchro;
package body synchro is

function rising_edge(signal horloge:bit) return boolean is
begin
return(horloge’event and horloge=’1’ and horloge’last_value=’0’);
end rising_edge;
procedure delay(temps:time) is
begin

wait for temps;
end delay;

end synchro;
use work.synchro.all;
use work.integer_rc.all; --!! new line inserted

entity gcd is
port(clk : in bit;

reset : in bit;
start : in bit;
din : in bit;
xi, yi : in integer_rc; --!! instead of integer
dout : out bit;
ou : out integer_rc); --!! instead of integer

end gcd;

architecture behavior of gcd is
begin

process
variable x,y: integer_rc; --!! instead of integer

begin
wait until (start = ’1’ and rising_edge(clk));
dout <= ’0’;
calculation : loop

wait until (din = ’1’ and rising_edge(clk));
x := xi;
y := yi;
while (x /= y) loop

if (x < y) then y := y - x;
else x := x - y;

end if;
end loop;
delay(250 ns);
ou <= x;
dout <= ’1’;
wait until (din = ’0’ and rising_edge(clk));
dout <= ’0’;

end loop;
end process;

end behavior;

3 Conclusions

During the experiments, the embedding of mod 3 residue code protected data values into the

behavioural level circuit description has been successfully solved. The modified description

was still accepted both by the VHDL analyzer subsystem of the AMICAL synthesis tool and

the ModelTech V-System VHDL simulator that was used for validation. The functional equiv-

alence of the original and the modified description was ensured due to the simple and system-

atic changes.

After porting the mod 3 residue code implementation into register transfer level, and modifying

the AMICAL RTL functional unit library appropriately, AMICAL was able to produce an RT

level VHDL description that proved to be functionally equivalent with the behavioural level

description. Minimal user intervention was required to circumvent certain problems with the

AMICAL version used (it involved trivial modifications of the output VHDL files).

Attempts were made to generate a gate level VHDL circuit description from the RT level de-

scription. According to the targeted implementation architecture, a Xilinx FPGA development

tool was used to convert the RT level VHDL model into a Xilinx FPGA wiring. The overhead

in the number of equivalent gate inputs was 48% with 8 bit wide integers and 42% with 32 bit

wide integers. These values are significantly higher than the expected values according to the

literature [5]. The actual overhead value, however, is severely affected by the following factors:

- the sub-optimal implementation of the residue code checker (it was necessary to re-imple-

ment it almost completely due to the different VHDL subset used by the FPGA design en-

vironment);

- the sample circuit was mostly data dominant, with a very simple control sequence;

- the FPGA synthesis tool generated the checker as a combinational circuit, optimized for

speed. A slightly slower, sequential implementation would have resulted in a smaller hard-

ware overhead;

- the target architecture applied in AMICAL resulted in the gate level implementation of the

residue code checker in each functional unit. If the residue code checker is implemented as

a separate unit, and is shared between the FUs of the circuit, the overhead with respect to

the whole circuit is obviously smaller.

The hardware overhead, based on these assumptions, can be estimated as about a half magni-

tude smaller with a better fitting low level synthesis technique.

References

[1] JERRAYA, A. A. et al: AMICAL: Interactive Architectural Synthesis Based on VHDL. Internal Report,
INPG/TIMA System Level Synthesis Group, Grenoble, April 1994.

[2] SALLAY, B., PETRI, A., TILLY, K., PATARICZA, A., SZIRAY, J.: High Level Test Generation for VHDL
Circuits. Proceedings of the IEEE European Test Workshop ‘96, June 1996, Montpellier, pp. 201-205.

[3] SAYERS, I. L., KINNIMENT, D. J.: Low-cost residue codes and their application to self-checking VLSI sys-
tems. IEEE Proc. E, 132(4): pp. 197-202, 1985.

[4] THOMA, Y.: Coding techniques in fault-tolerant, self-checking and fail-save circuits. In: D. K. Pradhan (ed.):
Fault Tolerant Computing, Theory and Techniques. Vol. 1, pp. 336-416. Prentice-Hall, 1986.

[5] WATTERSON, J. W., HALLENBECK, J. J.: Modulo 3 residue checker: New results on performance and
cost. IEEE Trans. on Comp., C-37, pp. 608-612, May 1988.

