A Backward Error Recovery Scheme for the
APEmille Parallel Computer*

Tamés Barthat
Computer and Automation Research Institute

Hungarian Academy of Sciences
Kende u. 13-17, H-1111 Budapest, Hungary

Piero Maestrini
Istituto di Elaborazione della Informazione
Consiglio Nazionale delle Richerche
Via Alfieri 1, 56010 Ghezzano, Pisa, Italy

Abstract

APEmille is the third generation of the APE family of supercomputers, but the
first one to include built-in support for fault tolerance. The reasons that led to the
consideration of reliability issues come in a large part from the experiences with
the previous generations. The APE supercomputers are number-crunching engines
aimed at solving complex scientific problems. The typical duration of a computation
ranges from several days to several weeks. Due to the large number of components
built into an APEmille machine, the expected MTTF without fault tolerance may
fall into the same range. Thus, a long-running computation could be invalidated
by a system failure with high probability, and there would be no guarantee that
the results of a successfully terminated program are correct. To improve on this
situation the designers of APEmille decided to incorporate fault tolerance into the
system. They chose the error removal based approach, composed of error detection,
system-level fault diagnosis, system repair, and backward error recovery. This paper
presents a failure model of the APEmille components and develops a comprehensive
recovery scheme for the whole computer, including even the reliable storage that is
used to record the recovery information.

Keywords: fault-tolerant systems, computer architectures, parallel processors, er-
ror recovery, checkpointing, distributed databases

1 Introduction

This paper describes the proposed backward error recovery mechanism designed for the
APEmille parallel computer. APEmille is the latest generation of the APE family of
supercomputers. The APEmille project aims at the development of a number crunching
machine optimized for Lattice Gauge Theory simulations. The machine is an evolution
of APE100 (Quadrics) computer, a versatile parallel processor capable of delivering 100

*This paper was accepted for the 11th European Workshop on Dependable Computing (EWDC-11).
tThe research presented in this paper has been supported by the Hungarian Scientific and Research
Fund, grant no. OTKA T-032408.

GFlops peak performance in a 2048-node configuration. The new machine has roughly
one order of magnitude higher peak computational performance than the preceding gen-
eration (scalable from 4 GFlops to 1 TFlops). It also incorporates two main architectural
enhancements: local addressing capability at each processing element, and independent
partitioning of the system to concurrently run different user programs. The APEmille
computer is now next to the assembly and test stage before the final release and its con-
trolling software, the APEQOS operating system, is also under extensive development.

Even in such a high-performance environment, the amount of computation involved
in solving the targeted scientific problems may require several days or weeks of con-
tinuous, uninterrupted operation. On the other hand, the complex structure and large
number of devices constituting the system makes it error-prone, independent on the ex-
cellent quality of the components used. Without built-in fault tolerance one may expect
multiple fault occurrences during a single job execution. For this reason, APEmille was
chosen as an ideal test bed for self-diagnosis and error recovery strategy. Following this
idea, the APEmille processors were designed to incorporate both customary fault detec-
tion and correction features, and additional hardware support for system-level proces-
sor testing as needed by the diagnosis algorithm. Although the APEmille self-diagnosis
theory and hardware support is already mature, well formulated, and tested both by
simulation and in practice [1, 2], error recovery has not yet been elaborately studied.
This paper is the first attempt to form a comprehensive recovery concept for APEmille.

In the rest of this paper we briefly introduce the basic hardware architecture of
the APEmille machine, then describe the fault diagnostic procedure and the built-in
hardware support for diagnosis. The failure model and the assumptions on the failure
semantics of different system components are presented. Based on this knowledge we
explain the decisions behind the chosen error recovery approach. The recovery strategy
for each component is outlined, giving alternatives for tolerating single or multiple com-
ponent faults. We mention the techniques used in the recovery subsystem, and consider
the problem of providing a reliable storage to record the recovery information. For each
proposed solution the implementation-related consequences of APEmille’s unique hard-
ware and software architecture are examined. In the closing part of the paper we give
directions for further research in the area.

1.1 Hardware overview

From the user’s point of view the APEmille is a parallel computer consisting of process-
ing elements (PEs) optimized for floating-point arithmetic. The PEs are arranged in a
three-dimensional mesh topology with toroidal wrapped-around interconnections in all
the three directions. APEmille has a Single Instruction Multiple Data (SIMD) architec-
ture. Every PE executes exactly the same instruction in each step of the computation,
but they have private memory banks, thus each node can operate on its own specific
data. Moreover, the SIMD paradigm is supplemented with many enhancements, like
the broadcast and soft routing methods providing data exchange between two arbitrary
nodes, and a local addressing feature: all PEs may access their local memory with their
own local address [3]. A large APEmille machine can be split up into several, logically
independent partitions, this way multiple users can use it simultaneously.

On the hardware level, the system structure is more complicated. It is built up of
three main functional components. In addition to the application processors (referred

Tmille
J (Control Processor)

, = @
S0

(Processing Node) J

LH
Cmille

(Commuter)
(Local Host)

Figure 1: The logical structure of a Processing Board

to as Jmille), there is a central processing unit (called Tmille) performing mainly flow-
control, signal handling, and global integer operations; and a communication controller
(called Cmille) functioning as an interface between Jmille, Tmille, and the rest of the
system. The architecture is divided into three, hierarchically structured levels. On the
lowest level there is the smallest independent functional unit, called the Processing Board
(PB) or cluster. A PB contains eight Jmille processors, one Tmille control processor, and
one Cmille commuter. The arrangement of a Processing Board can be seen in Figure 1.

Jmille is the processing element in the APEmille system. It supports arithmetic
operations on both integer and floating point data words. The operands and/or the
result are located in a large register file (RF) composed of 512 registers. Each Jmille node
has a local memory for its own exclusive use. Memory addresses can be global, in which
case they are generated by the Tmille processor and sent to every Jmille on the same PB;
but global addresses can also be modified with a value local to the nodes. Tmille also
has its own data memory, an integer ALU, and an Address Generation Unit (AGU). All
Tmille processors belonging to the same partition execute the same instruction stream
and are initialized with a common set of values, i.e., the whole partition behaves like
an independent SIMD computing engine. The Cmille commuter has both a simple
topological structure and a restricted set of capabilities. Each Cmille is connected to
the eight Jmille units and the Tmille residing on its PB. Additionally, it is connected to
the six nearest neighbor commuters in the three spatial directions. The Jmille, Tmille,
and Cmille devices are built into custom designed integrated circuits.

The next hierarchy level above Processing Boards is called an APE Unit. APE Units
are built of four PBs, and are connected to an external, stand-alone computer called
Local Host (LH). The host computers act as supervisors over the attached PBs and
provide local disk storage services. The hosts can read and modify the memory and
registers of the APEmille processors. On the other hand, Tmille can trigger interrupts
to signify exceptions, service requests, or local conditions. These signals are handled
by the Root Board (RB) built in the LH. The host computers have a PC-compatible
architecture, and incorporate a local disk unit on which they store the local portion of
the operating system and application-specific data. The interconnection between PBs
is routed via a synchronous network managed by the Cmille commuters on the boards.

Synchronous
Inter-PB Network

— PB - PB — PB — PB (~250 MByte/s)

PCI Bus ~—1PB —PB —PB —PB
(~133 MByte/s)

Local Host
Network
(~100 MByte/s)

Control Network

Global
Host

Mass storage

Figure 2: The APEmille crate

A configuration of four APE Units is called a crate, and it is housed in a standard
rack (see Figure 2). The rack contains a custom Compact PCI backplane with four
APE Units. There are 16 APEmille PBs on one side of the backplane, and 4 Local
Host Boards with supplemental Service Boards (Control Network controller cards, SCSI
controllers, Fast Ethernet cards) on the other side. The removable physical assemblies,
i.e., the replaceable units (RUs) are the Processing Boards, the Local Host Boards, and
the Service Boards. The hosts of different APE Units are cooperating over a general-
purpose, high-performance Control Network. Also attached to this network is a special
host computer acting as the Global Host (GH) of the entire APEmille machine. The
GH manages the global disk storage and collects the global signals like halt requests,
exceptions, if conditions, etc. Several crates can be stacked on top of each other, until
the system reaches its maximum configuration of 4096 (64 x 8 x 8) processing elements.

The APEmille machine has two main operating modes: run mode and system mode.
On power-up the machine enters the system mode. The processing units are frozen, and
the LHs can access the complete register file and address space of the Jmille, Tmille and
Cmille devices. The OS first loads the program code and data in the memory and
sets the proper registers to initial values, then generates a transition from system to
run mode. Once in run mode, the processing hardware starts executing the program.
The two operating modes are supplemented by a special diagnostic mode, called the
equal mode. The transition between the operating and diagnostic modes can be ini-
tiated by the hardware, by the operating system, and from the user console; but the
application program can also trigger this transition by a dedicated low-level instruction.
These software-generated transitions to system mode are called traps, they are useful
for signaling service requests towards the Host computers.

1.2 Hardware support for diagnosis

A novel feature of the APEmille computer is that low-level diagnostics support is in-
tegrated in the system. The testing of the Jmille, Tmille, and Cmille units is done
user-transparently on the hardware level. The main testing mechanism employed is
comparison. For this purpose self-checking comparators are integrated in the circuitry
of the Cmille communication processor. The comparators have a self-checking design
that detects single stuck-at comparator faults. The three basic components of the Pro-
cessing Boards are tested separately.

Pairs of Tmille processors or pairs of Cmille commuters can be tested by comparing
the output sequences they write on the bus. These units are controlled in a uniform way
and perform the same sequence of instructions. They operate on the global variables
and the instruction flow process identical data, which are identical due to the SIMD
execution model. For this reason, the testing of the Tmille and Cmille units can proceed
concurrently with the computation assigned to the machine.

Although the Jmille units also execute identical instructions, they normally work
with local data that varies for each node. Therefore, the testing of Jmille processors
is carried out in equal mode, in a special diagnostic session. The diagnostic session
is composed of two phases, called the Local Equal and the Remote Equal phase. In
the Local Equal phase the Jmille units are loaded with the same set of instruction
and memory values. During test program execution each Jmille memory access and
instruction fetch is routed through the Cmille comparators. In this way, the eight Jmille
processors of the same PB are pair-wise compared along a logical ring. The comparison
results are processed by a system-level diagnosis algorithm, producing a preliminary
classification of the processor fault states. This preliminary diagnostic image is extended
and refined in the Remote Equal phase. For each pair of adjacent Processing Boards two
Jmille processors are elected to be witnesses. The two witness Jmille nodes are compared
by a pair of comparators located in the Cmille commuters of the adjacent boards. The so
obtained global comparison syndrome is further analyzed by the diagnosis algorithm [2],
and finally every Processing Board is labeled as fault-free, faulty (or partly faulty), or
suspect (when the diagnosis is incomplete and the state of some PBs cannot be decided).

1.3 Failure model and assumptions

Any reasoning about recovery techniques is possible only if one has a well-defined model
of the failure behavior of APEmille components. Given this model, the most suitable
methods of backward error recovery can be selected, their applicability and charac-
teristics can be verified. This section presents an informal failure model of APEmille
components, which grabs specifically those aspects that need to be taken account in
planning the recovery actions. The model only serves as a basis for selecting the fault
tolerance mechanisms. It was derived from the system specification by purely theoretical
methods, at a later stage it shall be refined when practical experience and measurement
data will be available.

The attentive reader has surely noted, that APEmille has a peculiar two-fold nature
[4]. On the one hand, it contains a computational engine with its uncommon structure of
Tmille, Cmille and Jmille processors. Further on we will refer to this part of the machine
as the SIMD part. On the other hand, it employs a network of host workstations for
delivering services and controlling and monitoring the SIMD part. These computers

Table 1: Failure model of system components

run mode
Component || Test method | Failure semantics | Undetected | Recovery
Jmille processor comparator value common-mode, checkpoint
transient
Tmille processor comparator value common-mode checkpoint
Cmille commuter comparator omission /value common-mode checkpoint
memory EDAC omission/value n-bit (n > 2) overwrite
(inter-PB) network EDAC performance n-bit (n > 2) retransmission
system mode
Component || Test method | Failure semantics | Undetected | Recovery
(Host) processor watchdog timer crash (fail-stop) value message logging
(Host) memory parity omission /value n-bit (n > 1) overwrite
(Host) disk EDAC omission multiple bit duplication
(Control) network checksum performance value retransmission

can be viewed as a special case of the Multiple Instruction Multiple Data (MIMD) class
of parallel systems, hence we will refer to them as the MIMD part of APEmille. The
two-fold nature also reflects in the operating modes: in run mode the SIMD part is
active and executes the user applications, while in system mode it is frozen and the
MIMD part delivers the requested services or supervises the machine.

We inherit the modeling methodology of Lampson [5]. The main classes of com-
ponents considered in our model are processors, memory, disk storage, and the com-
munication network. Based upon this general model, first we account for the failure
characteristics of the components in the SIMD part.

Jmille and Tmille processors conform to the general processor model with the restric-
tion that they execute only a single task. Therefore, these processors can be modeled as
a deterministic finite state automaton (FSA). We do not consider arbitrary or Byzantine
failure semantics for these processors; such failure behavior is quite improbable and hard
to handle due to the special architecture. Halting, omission and performance failure be-
haviour implies that the processor does not drive the bus in time, leaving the bus signals
in an arbitrary state. Due to the asynchronous interface the external observer sees it
as a value failure. We assume that all of the permanent value failures are detected by
the mutual comparison testing of the processors. Common-mode failures remain unde-
tected after testing, but they are uncovered at a later stage by the diagnostic algorithm.
Transient value failures of Jmille units, however, cannot be detected during run mode.

On investigating processor interactions, we assume that a Jmille processor cannot
make another Jmille to fail (in the physical sense), since there is no direct connection
between them. The communication is memory mapped: a special address signifies a
remote access to the memory of another Jmille processor. A value failure during a
memory write operation can corrupt the local or the remote Jmille memory contents,
causing cumulative errors. There are three possible erroneous memory write operations
respective to the failure affecting the address and/or the value of the written data. Of
these three, we model the ’invalid data to right address’ action as a bad write error, the
’valid/invalid data to wrong address’ actions as the combination of a bad write (to the
good address) and a spontaneous decay (at the wrong address) errors.

Tmille processors are also indirectly connected, so they cannot make each other to

fail similarly to Jmilles. There is also a very low probability of them causing cumulative
errors in Jmille processors by sending wrong instruction codes/invalid global addresses,
because apart from common-mode faults these are detected by comparison testing. The
memory of a Tmille processor contains only programs. By ruling out self-modifying
programs we can assure that this memory will never be written. Thus, ‘bad write’ errors
become impossible, leaving ‘decays’ to be the sole source of Tmille memory errors.

The Cmille commuter is the intercessor among the Jmille and Tmille processors, and
the adjacent Processing Boards. Its value failures may produce cumulative errors simi-
larly to Tmille processors by delivering incorrect data/instructions to Jmilles. However,
transmission value failures caused by transient or permanent faults in the interconnec-
tion network are either covered by the employed error detecting and correcting (EDAC)
code, or manifest themselves as ‘bad write’ or ‘decay’ errors of the destination memory
component. Furthermore, crash failures during remote communication are supposed to
be detected by the other involved Cmille commuter, which in this case raises an ex-
ception and—being unable to deliver the data—creates an omission failure. We do not
account for the fault in the comparators used for testing (although they are also a part
of the Cmille circuitry), this duty is left to the fault diagnosis algorithm.

The processors of the Global and Local Hosts fully comply with the general processor
model of Lampson. Additional considerations can be drawn from the fact that these
computers employ a multitasking, multi-user operating system. The OS (with hard-
ware support) isolates different processes from each other, and prevents accessing the
resources assigned to other processes in an unauthorized way. It provides primitives for
synchronization and mutual exclusion to support the interaction of processes and shar-
ing of resources. On this basis, we assume that a failed process will eventually raise an
exception (either due to an undesired condition such as division-by-zero or a protection
violation) and gets stopped, i.e., the hosts processes have a fail-stop failure semantics.
During the crash, processes cannot interfere with the local state of another process, but
can (and probably will) make their own resources inconsistent or corrupted. Processors
are composed of a set of processes and hence behave similarly: crash on error, and after
a period of time become fail-silent. The halted state can be detected using a hardware or
software watchdog timer, and in the case of communication by time-out on periodically
sent diagnostic <I'm alive> or heartbeat messages.

The memory components in both the SIMD and MIMD part employ an EDAC code
to detect (and possibly correct) read errors. In the case of Jmille and Tmille memories
a modified Hamming code is used, capable of detecting all double-bit (and some triple-
bit) errors and correcting all single-bit errors. Corrected errors are transparent to the
user and so they cannot be considered as failures. Yet, the number of corrected errors
is counted in a special register, because frequent recurrence of single-bit errors might
indicate an underlying permanent or intermittent fault as the cause. The host computers
add a single parity bit to each word of memory, detecting all single-bit errors (and some
multiple bit errors as well). Detected but uncorrectable errors raise an exception and
are noted by the operating system, however, the memory contents are lost and cannot
be recovered. Thus, the memory exhibits omission failure semantics. Undetected read
errors become value failures.

The communication in the synchronous inter-PB network is also guarded by EDAC.
The asynchronous Control Network uses a commodity network protocol. The validity
of messages is controlled by various checksum schemes in several protocol layers. Lost

or incorrectly delivered messages of the SIMD part are transformed into ‘bad write’ or
‘memory decay’ errors due to the memory mapped nature of the communication. In
the Control Network lost messages are assumed to be detected by the delivery control
mechanisms and retransmitted until it arrives successfully. Undetected value failures in
the messages are disasters. Consequently, both communication networks are modeled
as having a performance failure semantics.

Disk storage can be found only in the Global and Local Host computers. Its model
is quite similar to the model of the memory components. Additionally, on the basis of
the advanced manufacturing technology and the combination of EDAC and checksums
transparently managed by modern hard disks, we assume that all value failures will be
detected. Moreover, a large part of them will be corrected transparently by the disk
controller hardware, notifying the OS to avoid the unreliable disk area by adapting its
file allocation strategy. Should this assumption fail, the user can substitute a redundant
disk array (RAID) in place of a single hard disk to make the assumption true. Detected
but uncorrectable read errors manifest themselves as omission failures.

2 Error recovery

There are two main options in recovering from errors. Backward error recovery chooses
a known valid state from the system’s past. This is accomplished by periodically saving
the complete or partial system state to a reliable medium (called the stable storage)
during the failure-free execution. Then, after an error occurrence the tasks are rolled
back to the previous valid state using the information stored on the stable storage.
Forward error recovery obtains a new valid state that is not included in the history
of the system. This approach is more efficient than backward error recovery, because
a history of the valid system states is not needed, and the recovery process performs
valuable work while creating the new consistent system state. Unfortunately, forward
error recovery is also quite application-specific, and since APEmille is a general purpose
computer, rollback recovery remains as the only useful alternative.

Backward error recovery attempts to maintain the consistency of a computation by
returning the system to a previous state upon an error occurrence. Two basic services
are used in this process [6]: state recording which stores global system states to a reliable
medium, and state restoration which assembles the stored information and recreates a
consistent global restored state. These services can be either semi-automatic if they are
executed upon the invocation of the application programmer, or user-transparent if the
necessary actions are carried out automatically, without any user interaction. Recovery
techniques can be classified in three major classes according to the characteristics of the
above two services:

Checkpointing. Checkpointing saves a copy of the application state (and optionally
the state of the communication channels). Upon a failure, the checkpoint can
be used to restore a previous, failure-free state of a failed process. Independent
checkpointing methods take the checkpoints process-wise. In this case, there is
no guarantee that a consistent global state can be restored from the stored set of
process states. The state restoration service must be able to determine which the
most recent recovery line (also called as mazimum recoverable global state) included
among the set of stored local checkpoints. This makes the recovery process more

Table 2: Proposed fault tolerance techniques

Number of faulty components

Component One (k=1) | Some (1 < k < n) | (Nearly) all (k ~ n)
Jmille processor parity checkpointing | EDAC checkpointing | complete state saving
Tmille processor checkpointing

Cmille commuter checkpointing

(host) processor sender-based logging | family-based logging

(host) disk available copy replication | -

complicated, and there is the possibility of domino effect. Consistent checkpoint-
ing methods avoid these disadvantages by coordinating the checkpointing actions
among the processes to guarantee that the stored set of local checkpoints is always
a recovery line.

Message logging. In message logging the interactions between processes (denoted as
events) are saved instead of the complete global state of the system. Events drive
the transition of a process from one state to another, thus determine the course
of computation. In a piece-wise deterministic system events are limited to the
sending and receiving of messages. Recording of the relevant information about
messages is called logging. The recovery protocol must recreate the exact order
and content of each message transmitted before the failure occurred. Storing the
contents of messages in the log speeds up the recovery process. Yet, it is not
strictly necessary for a successful rollback, since the messages can be regenerated
together with the other constituents of the distributed computation.

Hybrid techniques. This is a composition of the previous two techniques which com-
bines their advantages. Although it is possible to implement backward error recov-
ery solely based on message logging, the stored log data could grow unacceptably
large over a long time span. Therefore it is customary to combine logging with
checkpointing: when a global state becomes stable among the recorded check-
points, log entries related to messages preceding the global state are no longer
meaningful, thus can be discarded.

The fault tolerance techniques proposed for the implementation of backward error re-
covery in the APEmille computer are summarized in Table 2. For each main component
class of APEmille we consider the cases when a single, multiple, or all components in the
class fail, and suggest the most appropriate method accordingly. The chosen methods
are explained and briefly described in the following sections (for more information on
recovery techniques see [7]).

2.1 APEmille processors

For the processors in the SIMD part the most suitable recovery mechanism is check-
pointing. This choice is supported by the following arguments:

o [t is difficult to implement message logging for the processing elements. The com-
munication among the PEs is memory mapped. The PE initiating the transfer
knows when a remote access takes place, but the other participant of the commu-
nication is the remote memory, and the owner processor is not notified explicitly

of the read or write operation that affected his memory. For this reason, it would
be complicated to realize the acknowledgement and bookkeeping schemes most
message logging protocols require from the recipient processor.

e The state of the PEs changes quickly, and in a large extent. The applications
are assumed to frequently access all elements of large data sets. There are many
operations that affect the local and remote states; most of them are not (and
cannot be) implemented as atomic transactions. Therefore, message logs would be
updated often and would grow quite huge. The applications would be suspended
frequently during the writing the message logs to stable storage (even if optimistic
or causal message logging is used). The local and remote states are expected to
have a complex interdependence, making it even more cumbersome to maintain
the message logs.

e Since there is only a single process running on the PEs, logging the messages user-
transparently is only possible by compiler-assisted inserting of the bookkeeping
code in the user programs. This would make the executable parts of the applica-
tions grow larger.

The implementation of checkpointing is straightforward. The checkpointing or re-
covery procedures are invoked after the diagnostic session, when machine operation has
been switched into system mode. Due to the transition to system mode, there is no
ongoing computation or communication in the SIMD part, and the host computers have
complete control over the memory and register-file areas of the APEmille processors.
There is no need for checkpoint coordination and it is sufficient to store the state of the
application without the state of the communication channels, since all data transfers
have been carried out before the checkpointing procedure was invoked.

The checkpoint must contain the value of all variables and data structures that
describe the actual state of the application process. Hence, it is up to the system or
application programmer to decide what must be included in the set of checkpointed
information. The most simple implementation of checkpointing saves the whole address
space that belongs to the given process. Note, that this implies a huge amount of data
in the case of APEmille: all of the local memories belonging the the 8 x 4 Jmille nodes
of an APE Unit must be stored on the disk of the supervising Local Host computer.
Starting from an full initial checkpoint there are methods that reduce the extent of later
checkpoints, provided the state of the process changes “moderately.” The techniques we
propose are based on coding techniques. In the following we describe mention methods
which store a reduced checkpoint generated by error detection and correction (EDAC)
encoding of the data, and exploit the additional failure information provided by system-
level diagnosis of the application processors.

Parity checkpointing uses n + 1 parity instead of a full replica to maintain the check-
pointed global state [8]. The mechanism of parity checkpointing is as follows: the
respective memory locations (the memory bits in the same address and position) of the
n parallel processors are treated as an n-bit group. Every group of n memory bits is
supplemented by a single parity bit, and the resulting parity bit array is stored on a
central reliable storage medium. If a single-bit memory fault occurs, a new array parity
is computed using the actual state of the local processor memory contents, and the new
array parity is compared with the stored reference array parity. The difference pinpoints

10

the location of the erroneous bit, which can be corrected by a simple inversion.

A significant drawback of parity checkpointing is that it handles only a single node
failure. The problem originates in protecting a group of n memory bits with only a single
parity bit. In the EDAC checkpointing scheme [9] the parity checkpointing scheme is
combined with the multiple-bit fault-tolerant P + @ Redundancy employed in RAID
Level 6 [10]. The underlying idea is to assign an [-bit long, p-bit error detecting, g-bit
error correcting error detecting and correcting code to every group of n memory bits.
The generated EDAC code can be used to repair the corrupted memory contents of the
failed processors, provided that the number of processors to fail always remains below p.
Based on the bit-wise EDAC code the recovery algorithm can determine the quantity of
the incorrect bits in a certain memory area, and exploit the system-level diagnostic image
to find the location of errors. The memory contents can be recovered by simply inverting
the corrupted bits. To consider the space saving represented by this approach, suppose
that the system has n processors with local memories of w words, each having the size
of b-bits. Using EDAC checkpointing, a code of w x b x [bits is generated and stored in
the stable storage, instead of the total state saving which requires n x w x b bits. Clearly,
the EDAC code saves a significant amount of storage space until p < n/2. However,
large amount of incorrect memory bits (caused for example by an undetected transient
value failure propagated to several Jmille units) can only be tolerated by storing the
complete global state.

2.2 Global and Local Host computers

Unlike the processors in the SIMD part, the suggested recovery mechanism for the host
computers is message logging. The following arguments justify the preference of message
logging over checkpointing in this case:

e There are two kinds of actions that a host computer must perform: serving requests
and handling exceptions coming from the Processing Board, and executing remote
procedure calls (RPCs) of other hosts. These are a few, well-defined, complex
operations. Provided they are implemented to be atomic and/or restartable, and
their execution order/dependencies are recorded reliably, then it is possible to reset
the computer (if needed) and repeat or replay the failed operation(s).

e Since the host computers are devoted to mainly supervising and monitoring tasks,
the frequency of service and RPC requests is expected to be relatively low com-
pared to the execution speed of the PEs. Therefore, the size of the message logs
will not grow over a reasonable limit during a computation.

e The host computers offer a layered multitasking environment. The operating sys-
tem consists of many small processes. In the case of checkpointing the state of each
process should be recorded separately, while paying special attention not to vio-
late the consistency of the global state these individual process states are supposed
to form. Message logging may concentrate only on the interaction of processors
via the communication interface leaving the interaction of local processes out of
consideration.

e The recovery procedure can be realized as an operating system layer, consisting
of a separate process (or a collection of processes). By placing the Recovery

11

Layer low enough in the layer hierarchy, it can capture every incoming service
requests and exceptions signals. Then, it can perform the necessary logging and
bookkeeping actions, suspend or deliver the received messages; in other words, it
has a complete control over the communication interface. In this way, message
logging can be implemented user-transparently. Host computers may even utilize
the idle time while the machine is in run mode to write the volatile message logs
to stable storage.

e The number of host computers is small relative to the number of PEs. Each host
is independent from the other, has its own power source and disk storage. Certain
run-time transient faults causing detected errors (parity error in memory, access
protection violation, etc.) may be handled at the OS level, preventing them to
become failures. For these reasons, the MIMD part is assumed to have a higher
MUT (Mean Up Time) than the SIMD part. Fault tolerance may take advantage
of this, and we can employ techniques that tolerate only a limited number of failed
host computers, but run more efficiently than worst-case solutions.

Message logging requires the operations working with system resources to be atomic,
in order to keep them always in a consistent state. An action is atomic if it has both of
two basic properties: it is unitary and serializable. Analogously, the notion of atomic
transactions can be introduced. The system guarantees that after a recovery from a crash
either all of the commands constituting an atomic transaction will have been successfully
carried out, or none of them will have been. Additionally, atomic transactions are
indivisible with respect to other transactions that may be executing concurrently; that
is their execution is always equivalent to some serial order. Furthermore, there is a third
condition (independent on atomicity) which denotes a transaction to be restartable if
the transaction can be successfully repeated during crash recovery even if it has been in
progress when the crash occurred.

Like checkpoints, the message log must also be retrieved reliably, thus it is also
stored on stable storage. Log entries are smaller but more often updated than check-
points, therefore the frequent access to the slow stable storage can create a performance
bottleneck. There is a speed/reliability tradeoff between the two main classes of logging
algorithms: the pessimistic and optimistic approach. Pessimistic methods always syn-
chronize message delivery and logging by writing each log entry immediately to stable
storage. They guarantee that the logged information is always consistent. On the other
hand, optimistic methods favor performance to consistency. They assume that failures
are rare, hence they try minimize the logging overhead during normal computation.
They record the log entries temporarily in volatile memory, and handle the inconsisten-
cies that may arise due to a failure during recovery. Another design decision is to choose
the units that perform the logging action. With receiver-based logging, the processes
participating in a distributed computation log the messages upon receipt. When recov-
ering from a failure, the failed process restarts from scratch or a previous checkpoint
and replays the messages in the log. In sender-based logging, messages are stored at the
sender process. If a process fails, the messages needed for execution replay are resent
by their originator.

Sender-based logging protocols have the favorable property of tolerating a single
host failure even in the optimistic setting, when the messages are stored in the volatile
memory of the sender process [11]. Due to its unbeatable performance and simple

12

implementation it is the method of choice when the failure rate is low, i.e., only a single
Host computer is expected to fail at a time. If multiple simultaneous host failures may
occur, an extended version of sender-based logging must be used. This approach known
as the family-based logging (FBL) protocol [12].

The underlying idea of FBL logging is that a message is partially logged by the time
is is sent and it must be fully logged by the time it is relevant. FBL is an optimal
message logging protocol in the sense that it does not send any additional messages
over those needed to mask transient link failures. FBL protocols for f > 1 failures
distribute the implementation of the recovery procedure associated with a process to a
larger degree than in the single failure case. For this purpose they need to maintain and
disseminate some dependency data about partially logged messages. The dependency
data contains a mixture of sender- and receiver-based information. This means that a
process must not only log the content of all the messages it sends, but it may also be
required to log the messages it receives and are received by its ancestors (successors in
the communication chain) up to a degree of f.

In the above discussion of rollback recovery techniques the problem of saving the
checkpoints and message logs to the stable storage was mentioned many times. In the
next section we explain the concept of a stable storage, and outline a practical approach
to realizing such a device based on the disk storage units of the APEmille Global and
Local Host computers.

3 Reliable storage

A reliable device used to store persistent information or intermediate data structures of
compound operations is called a stable storage [5, 13]. The two main properties of this
abstract device can be summarized as follows:

e Resistance against external hardware or software failures (processor failures, in-
valid storage accesses) and internal errors such as decays, and

e Atomicity of read and write operations.

The stable storage system we propose for recording checkpoints and other persistent
data resides entirely on the disk storage of the Local Host computers. Only a part of the
disk area is devoted to this purpose, the rest holds a normal UNIX file system. There
is a special process, called the Storage Manager (SM), which has an exclusive access to
the stable storage area. We assume that the resource protection and process isolation
services provided by the OS are adequate to prevent any failed process to corrupt the
data in the stable area.

Besides, the storage system must handle the following types of faults: external hard-
ware faults such as the erroneous behavior of the host processors, external software
failures that manifest themselves at the user interface of the Storage Manager, and in-
ternal errors of the SM process and the disk drive/controller. The stable storage is
designed to hold objects that can have the size of a single or multiple memory pages.
We are not interested in the internal structure of an object, but we require that a large
object of many pages should occupy a contiguous space in the memory. There are two
operations defined on the objects: a write command to create or update an object in
the stable storage, and a read command to retrieve the last written value of the object.

13

Table 3: Realization of stable storage properties

Desired property | Requirement | Realization technique
Fault tolerance of resilience careful disk operations
hardware/software failures | stability available copy replication
Replica Majority Commit
consistency access control

semantic integrity checking

Atomicity of indivisibility shadow updating
read/update operations serializability two-phase locking (in ACR)
three-phase commit (in RMC)

The techniques proposed to realize the stable properties are listed in Table 3. Soft
internal errors originated in the disk drive and controller are partly handled by the
hardware itself; modern storage systems are equipped with powerful coding mechanisms
to detect and correct decay errors. To tolerate soft errors during disk access we employ
the careful disk operations, as described in [14]. A careful read operation repeatedly
performs a normal disk read until it gets a good status or a predefined limit of retries
is exceeded. This eliminates soft read errors. A careful write operation repeatedly
performs a normal disk write followed by a read until it returns a good status with
the data being written. This eliminates null writes and bad writes to good addresses.
Address value problems are discovered by the Storage Manager process using access
control and a simple semantic check on the objects.

The techniques that help the Storage Manager process to detect the interaction errors
at its user interface we inherit from [13]. The purpose of these detection techniques
are two-fold: (1) they ensure a proper initialization of the transactions by checking
that the first access to the object is valid, and (2) they enforce that the read and
write transactions respect their predefined semantics. The checking of the first access
is performed by a key control mechanism. Any transaction that changes an object
must first provide a key, which is inspected by the SM. For the purpose of the key we
suggest to use a checksum, generated from the entire data content of the object. The
checksum mechanism should be inexpensive with respect to the computation, but must
be capable of verifying the integrity of the object. The checksum is stored together
with the object. At the beginning of the transaction the SM compares the stored and
the provided checksums. If they match, then the access to the object is granted to the
requesting process. When the transaction successfully terminates, the Storage Manager
computes a new checksum based the changed data contents and stores it as the new key
to the object. On the next access the requesting process must present the new key to
gain control of the object.

After passing access control the requested transaction can take place. Interaction
problems during the execution of the transaction are detected by checking the semantics
of the performed operation. The following two properties characterize the semantics of
atomic read and write transactions:

P access: any access to an object implies accessing all of the pages it is composed of
once and only once. This property encompasses the unitary (“all or nothing”)
characteristic of the atomic transactions on the object.

14

C access: all the pages that constitute an object are accessed in the ascending order
of their logical address. This property helps to filter out incorrect accesses to the
object.

These properties fit well the purpose of storing checkpoints in our stable storage, since
the scientific computations running on APEmille typically use large contiguous data
structures such as vectors and arrays. Although the semantic checking power they
provide is not very strong, they detect the most common malfunction during the stable
storage access [13], the address value failure. And they can be verified quite easily by
a simple counter. More powerful semantic checking mechanisms (such as application-
specific data acceptance tests) can be developed with a deeper knowledge of a certain
application.

In order to implement stability, there must be at least one intact and up-to-date
instance of the data deposited in the stable storage at any time. Permanent internal
faults and external hardware/software failures can make the disk storage of any host
computer unavailable. Therefore, the stable data area must be maintained at multiple
host computers. The different copies of the stable data area are called replicas, they
a supervised by a replica manager (in the APEmille the Storage Manager process can
fulfill this role) which uses a replica control protocol to keep the available copies up-to-
date and organize the accesses to the replicated objects user-transparently, as if it would
be a single, highly available storage system. Two protocols were selected for APEmille
depending on the system configuration: the available copy replication (APC) for smaller
systems, and the Replica Majority Commit (RMC) protocol for complex configurations.
Details of these replica control protocols are presented in the next section.

The atomicity of the read/write transactions can be guaranteed by fulfilling two
basic conditions. The simplest method for ensuring the unitary or indivisibility property
of write transactions is shadow updating [15]. This technique allocates two buffers of
identical size to record the object. One of the buffers has the actual data of the object,
the other one is called the shadow buffer. A binary pointer indicates which buffer plays
the active/shadow part at a certain point of time. A write operation is carried out in two
steps: (1) the new value of the object is written in the shadow buffer; (2) the pointer is
inverted, i.e., the role of the active/shadow part is exchanged. If an error occurs during
the first step, then the second step is omitted, thus the changes are not reflected in
the state of the object. The second step is so simple, that it can be implemented as
an atomic action using a read-modify-write (RMW) or test-and-set (TAS) instruction
found in most modern processors.

The serializability property means that atomic transactions must always be carried
out according to a serial schedule, or in other words, there must exist a partial ordering
of read and write events. This property also plays an important role in the multiple
copy update problem, therefore serializability is inherent to the replica control protocols
mentioned above: available copy replication employs the two-phase locking technique,
while Replica Majority Commit contains a modified three-phase commit protocol.

3.1 Management of the replicated data

An ideal replication control protocol should guarantee the consistency of the replicated
data in the presence of any arbitrary combination of non-Byzantine failures, while pro-
viding the highest possible data availability and requiring the lowest possible overhead.

15

Data consistency in a replicated storage system means that the distributed processes
accessing the stored information experience an identical view of the global state of the
replicated data at any point of time. This notion incorporates two aspects: the mutual
consistency of different copies, and the internal consistency of each copy. Copies of the
data are mutually consistent if they are identical; since this is impossible to achieve
for every instant of time this constraint is relaxed to require that multiple copies must
converge to the same final state as all access activities cease.

Internal consistency of the data refers to the information content and involves both
the semantic integrity of the stored object and the atomic property of the update op-
erations. Semantic integrity stresses the need for the stored data to reflect accurately
the state of the real world object it describes. Atomic transactions guarantee that the
storage system reflects either none or all of the actions caused by a create/update trans-
action. Since the transaction is committed only if it does not violate semantic integrity,
atomic transactions guarantee the internal consistency of the data, and so does any se-
rial schedule of atomic transactions. Thus for a replicated storage with the possibility of
concurrent transaction processing, mechanisms must be provided to generate serializable
transaction schedules.

In the absence of network partitions the consistency of the replicated data can be
ensured by the available copy replication (ACR) protocols [16]. These replication control
protocols were designed to provide better fault tolerance characteristics than voting
methods in environments that preclude partial communication failures. The operation
of ACR protocols is based on: (1 imposing a total ordering on all writes so that all
replicas receive these requests in the same order, (2) broadcasting these writes to all
available replicas, and (3) requiring that replicas residing on nodes recovering from a
failure remain unavailable until they are brought up-to-date. Using this mechanism
read requests never need to access more than one available replica, because all available
replicas are ensured to be valid and contain the latest version of the data. Furthermore,
the replicated data can be accessed as long as there is at least one available replica.

The situation is quite different when network partitions (i.e., normally connected
and logically coherent parts of a network are separated by a communication failure)
must be taken into account [17]. This situation may occur in APEmille when two
complete configurations are connected together to form an even more potent computing
environment. A major limitation of the available copy replication strategy in this case
is that it requires reliable failure detectors. As network failure detection is usually
implemented by time-outs (which is an unreliable failure detection method), partitioning
may lead to falsely suspect a correct but inaccessible process. For such a case we propose
the use of the RMC (Replica Majority Commit) replication control protocol [18]. The
RMC protocol was introduced to solve the update majority problem in the presence of
unreliable failure detectors. The update majority problem is the task of updating a
replicated object according to the majority voting strategy. Majority voting refers to
a replication protocol where a read or write operation on a logical object must always
access some majority of the replicas:

e On reading the object: the transaction accesses some majority of the replicas,
chooses the one with the highest version number, and returns the contents of the
selected replica.

e On writing the object: the transaction accesses some majority of the replicas,

16

determines the highest version number in the majority, generates a new version
number by increasing the highest version number, and updates all replicas in the
accessed majority with this new version number.

The update majority problem consists for a set of replica managers to agree on the
outcome of a transaction. A proper algorithm for solving the update majority problem
has the following three properties: (1) uniform agreement: no two failure-free replica
managers decide differently, (2) non-blocking: every failure-free replica manager that
starts the protocol eventually decides, and uniform validity: every failure-free replica
manager decides identically.

4 Conclusions

This paper has described a practical application of the backward error recovery theory.
A detailed failure model of the target system has been presented. We have shown how
the developed failure model can be used in selecting the appropriate recovery methods
for the different system components. The reasons behind dividing the system structure
into SIMD and MIMD parts have been explained. Recovery techniques for both parts
have been selected and briefly described. Finally, an implementation of a stable storage
was proposed. The chosen methods take into account that modification of the present
hardware is unreasonable, and therefore are primarily software-based solutions.

Future work in the presented topic will mostly be related to the physical evaluation
of the abstract model. We need to collect practical experiences and measurement data
about the real failure behaviour of the various system devices. Based on the collected
data the model will be refined, and the assumptions will be validated to select the
most suited rollback technique from the given alternatives. We also need to adapt the
algorithms to the particularities of APEmille, and minimize the intrusion of the recovery
subsystem by locating the possible performance bottlenecks.

References

[1] P. Maestrini and P. Santi, “Self diagnosis of processor arrays using a comparison
model,” in Symposium on Reliable Distributed Systems (SRDS’95), (Los Alamitos,
Ca., USA), pp. 218-228, IEEE Computer Society Press, Sept. 1995.

[2] S. Chessa, B. Sallay, and P. Maestrini, “Diagnostic model and diagnosis algorithm
of a simd computer,” in Proc. of the Third European Dep. Comp. Conf. (EDCC-3),
Lecture Notes in Computer Science, pp. 283-300, Springer Verlag, Sept. 1999.

[3] F. Aglietti and et al. (The APEmille Collaboration), “An overview of the APEmille
parallel computer,” Nucl. Instr. and Meth. in Phys. Res., vol. A 389, pp. 56-58,
1997.

[4] F. Aglietti, A. Bartolini, C. Battista, and S. Cabasino, “The teraflop parallel com-
puter APEmille,” Lecture Notes in Computer Science, vol. 1225, pp. 991-998, 1997.

[6] B. Lampson, M. Paul, and H. Siegert, eds., Distributed Systems - Architecture
and Implementation. An Advanced Course, vol. 105 of Lecture Notes in Computer
Science, (New York, NY), Springer-Verlag, 1981.

17

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. Chandy and L. Lamport, “Distributed snapshots: Determining global states of
distributed systems,” ACM Transactions on Computer Systems, vol. 3, pp. 63-75,
Feb. 1985.

T. Bartha, “Rollback recovery in distributed systems,” Technical Report IEI:B4-
12-06-98, TEI CNR, June 1998.

J. Plank, “Efficient checkpointing on MIMD architectures,” Tech. Rep. TR-406-93,
Princeton University, Computer Science Department, June 1993.

T. Bartha, “A proposal for the recovery subsystem of the APEmille parallel com-
puter,” technical report, IEI CNR, 2000. Accepted for publication.

G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage. PhD
thesis, University of California at Berkeley, Dec. 1991. also available from MIT
Press, 1992.

D. Johnson and W. Zwaenepoel, “Sender-based message logging,” in 17th Int.
Symp. on Fault-Tolerant Computing (FTCS-17), (Washington DC, USA), pp. 14
19, IEEE Comput. Soc. Press, 1987.

L. Alvisi and K. Marzullo, “Message logging: pessimistic, optimistic, and causal,”
in Proc. of the 15th Int. Conf. on Distributed Computing Systems, (Los Alamitos,
CA, USA), pp. 229-36, IEEE Comput. Soc. Press, 1995.

M. Banatre, G. Muller, and J. Banatre, “Ensuring data security and integrity with
a fast stable storage,” in Proc. IEEE Intl. Conf. on Data Eng., (Los Angeles, CA),
pp- 285-293, Feb. 1988.

B. Lampson, “Atomic transactions,” in Distributed Systems—Architecture and Im-
plementation, vol. 105 of Lecture Notes in Computer Science, pp. 246-265, New
York, NY: Springer-Verlag, 1981.

F. Cristian, “Understanding fault-tolerant distributed systems,” Communications
of the ACM, vol. 34, pp. 5678, Feb. 1991.

J.-F. Paris and D. Long, “The performance of available copy protocols for the
management of replicated data,” Performance Evaluation, vol. 11, pp. 9-30, 1990.

J.-F. Paris, “The management of replicated data,” Lecture Notes in Computer
Science, vol. 774, pp. 305-311, 1994.

R. Guerraoui, R. Oliveira, and A. Schiper, “Atomic updates of replicated data,” in
European Depend. Comput. Conf. (EDCC-2), pp. 365-381, LNCS, 1996.

18

