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Introduction

The goal of automatic test pattern generation (ATPG) is to find a method for searching of test
patterns systematically for a given error, from the set of all possible input patterns. This generic task is
NP-complete, so simple brute-force exhaustive search algorithms are completely hopeless for larger-
scale practical systems. It is necessary to apply some kind of heuristic search algorithms. An attractive
attempt was made earlier to build an automatic test generator based on high-level VHDL descriptions, in
the frame of the FUTEG project [4]. This test generator contains some heuristic search enhancement
ideas.

Fine-tuning of these heuristic algorithms requires experimental evaluation, with respect to the fault
coverage properties of the test generation process, as it provides the comparison base with classical low-
level ATPG methods.

One of the most important features implemented in the FUTEG ATPG is the support of
hierarchical test generation, i.€. tests generated for the (relatively simple) individual components of a
great complex circuit can be re-used when generating test for the whole system, further improving the
overall fault coverage of the test generation (TG) process. Traditional fault coverage calculation
methods, however, do not consider this hierarchical structure very well; usually the complex system
must be re-evaluated completely in order to obtain coverage measures, even if the measures of the
components are already available from previous experiments.

A recently developed method — called stratified sampling [1,2] - seems to work around this
problem. It considers the fault space to be divided into disjoint classes or strata, and it provides global
fault coverage information by combining the measures calculated in the different strata. Confidence
limits of the results are also calculated.

These fault coverage measures can be used in different phases of ATPG for enhancing heuristic
algorithms:

» During systematic TG, single faults are placed into the system in a specific order. The
scheduling of the faults can determine whether information obtained from previous test pattern
calculations can be re-used for generating tests for subsequent faults, thus decreasing the
computation requirements. A better scheduling can be achieved if the interaction of different
faults is estimated from the fault coverage measuses.

» From statistical calculations, correlation between different parts of the system is also revealed.
This type of information can be exploited both for generating correlated tests (tests that detect
more than one fault, due to correlation between the faults) and identifying hard-to-test faults
(faults in parts which are only loosely correlated with other parts).

» Test patterns are checked by fault simulation in order to find further faults tested by the same
pattern. During fault simulation, coverage measures can help finding “almost tests”, i. e. input
patterns that do not result in an observable discrepancy on an output, but the effect of the fault
is propagated relatively far. These input patterns are perfect candidates for subsequent test
search sessions, as they can very probably be modified to get a good test with minimal effort.
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Definitions

For ecasier understanding of stratified sampling, the problem of determining the fault coverage of a
test generation algorithm on a given system is presented in an alternate form, as the problem of
determining the fault coverage of a system from fault injection experiments. It is obvious that the two
problems can be derived from each other.

The input space of a system is considered as the Cartesian product of the set of possible faults and
the set of input sequences that activate them. This set will be denoted as G. The fault handling capability
of the system can be described as a variable H# with a value of 1 if the system can handle the fault
correctly and 0 otherwise. Therefore the probability of handling a fault correctly, called coverage factor
(c), is actually a conditional probability of H=1 if a given fault g [J G occurs. If H is considered as a
discrete random variable, h(g) denotes the value of H for a specific g 0 G and p(g) denotes the

probability of g, the coverage factor can be formally defined as ¢ = Zh( g)p(g); 1t 1s actually the
glG

expected value of H over the set G.

It is trivial that the knowledge of the probability of the single fault/activation sequence pairs, p (g2),
is essential for making any meaningful estimations about the coverage factor. If no such knowledge
exists, only a rough approximation — that all fault/activation pairs are equally probable — can be made;
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in this case, a coverage proportion ¢ 2@

Zh( g) can only be calculated that gives a very rough
glG

estimate about the system's fault tolerance.

The relation between the coverage proportion and the coverage factor of a given system is
determined by the correlation between the random variable H and the random variable P, that has the

value p(g) for a given g [J G. From the definition of covariance, it can be shown that ¢ =¢ —|G|S e I

means that the coverage proportion is optimistic with respect to of the coverage factor if the correlation
between H and P is positive (e.g. if the fault-tolerant mechanism of the system is designed in a way that
it handles the most probable fault/activation pairs better), and pessimistic if the correlation is negative.

Sampling

As it was stated earlier, testing all g U G and observing the value of A(g) is hopeless. Practically, a
sample subset G* of G can be only used. The subset is created by assigning a selection probability,
denoted as #(g) to each element of G, such that Ug UG, #(g) > 0 and z t(g) = 1. If t(g) = 1/|G], the

glG

sampling is uniform; if t(g) = p(g), the sampling is representative.
If I"; denotes the ith from the » elements of G*, for ¢ the following unbiased point estimator [2] can

: A 1< I, . . R .
be given: ¢(, ---.") =— z h(r,.)M . In the case of representative sampling, ¢ =— z h(l";) , which
’ n i t(T;) niS
is equal ’;co the ratio of faults in G * that were handled properly.* In this case, the fault coverage estimated
from G~ equals to the global fault coverage, so the sample G~ actually represents the behaviour of the

whole system.

If the number of unhandled faults, called deficiency number, is denoted as X, the estimator for the
_ . ~ X :
non-coverage factor ¢=l-c can be easily formulated as ¢(X)=—. As the non-coverage factor is
n

easier to deal with, it will be used instead in the following.



Stratification

Stratification means partitioning the input space G into M disjoint classes (or strata). The definition
of coverage factor can be rewritten into the following form:

e=3 3 M) =3 ps DG,-)gé_h(g)p(g |g0G,) = ;pici

i=1 gl0G;
where p; is the relative probability of fault/activation pairs in class G ; and ¢; is the coverage factor in
class G;. If the p; values are grouped into the vector p and the non-coverage factors are grouped into the
vector €, the overall non-coverage can be formulated as ¢ =p [€" .

In a stratified fault injection experiment, faults and activation sequences are injected in the different
strata independently and the deficiency numbers X; are composed to a deficiency vector X. One of the
important issues is the distribution of the injections among the strata if the overall number of injection
experiments is fixed.

The result of the experiment can be described with two vectors: n = [n, ..., 1y, is the number of
injections in each stratum and X = [X}, ..., X,] is the observed deficiency numbers. The most common
injection number distributions (or sample allocations) are the ny homogenous allocation where n; =
n/M, and the ny representative allocation, where n; = pn.

The overall deficiency number can be estimated from the values of X;; the most common estimators

M M
are the arithmetic (Y, =1 ZX .) and the weighted (Y, = Z&X .) average estimator. Combining
ni=

i=1 %
these possibilities, the following techniques can be considered for estimating the overall non-coverage:
. S 1Z X .
« Yywithng ¢,,(X)=— z X, =— (naive estimator?),
n n

i=l
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N 1Y X
- Yyor Yypwithng: ¢ (X)=—% X, == (stratified estimator).
n& n

It can be proven [2] that the variance of the stratified estimator, 5R (X), is never greater than the

variance of the estimator ¢ (X) for simple sampling. Thus, stratification provides an estimation that is

not weaker than the simple one (in terms of variance) but requires significantly less computation due to
the smaller input space sizes.

Confidence Limits

In the previous sections, (non-)coverage factor is treated as a random variable with some
distribution and its value is estimated. Therefore the validity of these estimations must be evaluated and
confidence measures must be determined.

An 100y % upper confidence limit EyT (X) for the non-coverage factor ¢ can be defined as a value

that is in 100y % of the time greater than ¢, supposed a large number of concrete values for X are
considered.

The problem with confidence calculation is that the distribution of the coverage factor is not
known. Based on the central limit theorem, the classic method in this case is the approximation with a
normal distribution around of the expected value. Thus the upper confidence limit can be formulated as

2t is called aive' since it results in a biased estimation.



&) (X) =E(X) + 2, Var{E ()}

where z, is the 100yth standard normal percentile. In the case of stratified sampling, the individual

¥
non-coverage factors can similarly be approximated with normal distributions.

These confidence limit estimations, however, are valid only for very large total sample sizes.
Moreover, the higher the coverage factor is, the higher is the probability that the deficiency number in
one or more classes becomes zero. The above formula implies that these classes do not contribute any
uncertainty to the overall estimate, which is practically untrue.

A more accurate confidence estimation can be created if the original sampling distribution is used
instead of the approximated one. In this case, however, the mentioned definition of the upper confidence
limit cannot be used; the new term of confidence region must be defined.

A 100y % confidence region for the non-coverage vector € =[c,,....C,,] is defined as a function
1, (X) of the deficiency vector X such that for any given value of ¢, ,(X) will contain the value of ¢

with a probability of y. The upper confidence limit then can be defined as the upper frontier value of the
confidence region. From the formula for overall non-coverage in the case of stratified sampling, a 100y

% upper confidence limit is EyT X)= 713}234{)@ [€"). Thus the calculation of upper confidence limit is
cy

converted to a maximization problem.

Simulation experiments on theoretical systems [3] with pre-determined fault coverage measures
show that this maximization problem can easily be solved with appropriate numerical methods, and the
estimated and the pre-determined fault coverage factor is in a good agreement in most of the cases. The
incorporation of stratified fault coverage calculations into the FUTEG ATPG system is currently under
development.

Conclusions

In this paper, a concept of stratified sampling was described. This method provides fault coverage
measures for a complex system from measures given for the individual components, using statistical
estimation techniques. It fits very well to the hierarchical test generation scheme used in the FUTEG
high-level ATPG program, and, according to the currently running experiments, it can be used for
evaluation and optimization of test generation heuristics.
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