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Abstract

System-levelfault diagnosis is a methodology to
identify thefailed componentén a multiprocessosystem.
The traditional approachto system-levetiagnosisdoes
not take into considerationmany important aspectsof
modern multiprocessor architectures. This paper
examinesa special class of multiprocessors, called
massivelyparallel computersAsa practical examplethe
ParsytecGCelsystemis presentedThepaperdescribesa
new method developed for the Parsy®#cel,calledlocal
informationdiagnosis.The diagnosticalgorithmis based
on the generalizedestinvalidation model,thereforeit is
applicable to a wide range of systems,including
inhomogeneousnes. Due to the employed syndrome
decoding mechanism, the space and computational
complexity of the algorithm is also smaller than in
conventional methods.

1. Introduction

The price to performance ratio of commercial
microprocessors rapidly decreases. Still, many
computation-intensive  scientific  and  technical
applicationsrequire significantly more processingpower
thanthe capabilitiesof single processoisystemsParallel
processings an architecturalsolutionto this problem.In
massivelyparallel computers(MPCs) several thousand
processingelements provide the necessarycomputing
capacity.Althoughmodernelectroniccomponentsuilt in
thesesystemshavea very low permanenfault rate, their
large number and the long processingtime result in
reducedoverall dependability. Errors occurring during
normal operation must be tolerated, eliminating their
effect on the system.This can be achievedby a fault-
tolerantarchitecture.

Automatic fault diagnosisis an important part of
constructingreliable hardware.Its task is to locate the

failed componentsn the system.In large multiprocessors
a circuit-level fault diagnosisis impractical, therefore
system-leveldiagnosis considersonly processorfaults.

Processorperiodically executetestson eachother. If an

error was detected,the diagnostic procedureidentifies

faulty units by analyzingthe collection of the testresults

(called the syndromg Once theseunits were identified,

they arelogically isolatedand the systemis reconfigured
to continue the error-free operation.

1.1. Generalized test invalidation

Fault-freetesterunits are assumedo test other units
correctly (testsare assumedo be completg. Still, faulty
testersmay produceand distribute incorrect test results
thatdo not reflectthe real fault stateof the testedunit. In
other words, errors affect the validity of test outcomes.
This effect, modelled by test invalidation, makes the
decodingof the syndromemore difficult. The two most
frequentlyusedtestinvalidationmodelsarethe symmetric
or PMC model [2], and thasymmetricor BGM model[3]:

- the symmetricmodel has a very pessimisticview
aboutthe faulty units: testresultsby suchunits are

arbitrary, independent on the state of the tested unit.

— the asymmetricmodel states,that two units fail
identically with a negligible probability. Thereforea
faulty unit testsanotherfaulty unit differently from
the symmetric model: the test always fails.

Generalizedtest invalidation describespractical test
invalidation mechanismsin a unified framework.
Consequently, it allows algorithms to deal with
inhomogeneousystemsconsistingof different units and
testinvalidation. A completedescriptionand analysisof
generalizedestinvalidationis coveredby [1]. The model
can be outlined byable 1.

In the model, resultsgeneratecdy a faulty testerunit
may take thregalues:alwayspassalwaysfail or pass/fail
in anon-deterministiavay. Theseresultsare alsodenoted
by the constant®, 1 and X. Testinvalidationmodelsare



characterizey the actualC and D values,so thereare
nine possiblemodels.The symmetricor PMC model has
Tyx invalidation,andthe asymmetricor BGM modelhas
Ty, invalidation according to the generalized model.

Tester unit Unit under test Test result
fault-free fault-free 0
fault-free faulty 1
faulty fault-free co{o, 1,X}
faulty faulty DO{0, 1,X}

Table 1. Generalized test invalidation

The relationshipbetweena testerand a testedunit is
definedby one-stepmplication rules The existenceof a
one-step implication depends on three factors:

» the test invalidation of both units,
» the fault state of both units, and
» the actual test outcome.

One-stepimplication rules have four different types:
tautology.forwardimplication, backwardimplication,and
contradiction.Note, that of thesefour only contradiction

uncertainty.The aim of one-stepsystem-levetiagnosiss
to selectfrom this setthe one correspondindo the actual
fault configuration. The selectionis possibleif further
restriction can be made on the fault model (like a
diagnostic-limit on the number of faulty units) [11, 12].

2. Modelled system

The primary target of the diagnosis algorithm
presentedn this paperwasthe ParsytecGCel massively
parallel reliable multiprocessor (sEigure 1).

The processingelementsare Inmos T805 transputers.
Sixteentransputergplus one spare)are groupedtogether

in onecluster. Clusters are the basic building blocks of the

machine. Four of thermonstitutea so-calledGigaCube A
GigaCube forms a physical unit: it has its own
temperatureand voltage monitoring facilities, and a
control node They can be arrangedinto a 4x4x8
spatial array, so in its full configurationthe systemis
scalableup to 16384transputersEachof the transputers
is connectedo the othersvia four datalinks, providing
fast (up to 20 MBit/s) serial interprocessor
communication. These point-to-point connections are

rules provide sure inferences (as they exclude the incorrectructuredn a two-dimensionameshtopology,calledthe

fault statefrom diagnosis) providedthatthe initial model
is valid [10].

Units can be classifiedby deriving implication chains
startingfrom a supposedault stateof a unit. A possible
diagnosisis a contradiction-freeclassification of every
unit. One-stegmplicationsare combinedinto implication
chains using transitivity. The collection of all valid
inferencesincluded in the syndromeis the result of
transitive closure Thus, the diagnostic procedure is
equivalentto the state-spacsearchknown from artificial
intelligence. Unfortunately, in most cases there are
multiple candidate diagnoses, due to diagnostic
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Control nodesare additional Inmos T805 transputers,
dedicated to the supervision and control of system
operation.They play animportantpartin fault tolerance:
they periodically test all the processingelementsin the
clusters ofthe GigaCubeandreplacethe faulty transputer
with the spare.Control nodesare also responsiblefor
booting, job control, and dynamic configuration
management. They communicate over a separate
interconnection network called tidontrol Network

Peripherall/O managementis done by a stand-alone
host machine (usually @unworkstation)connectedo the
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Figure 1. Structural layout of the Parsytec GCel
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Figure 2. (a) Elements of the implication graph model, (b) Testing graph
(PMC test invalidation), (c) Corresponding implication graph

ParsytecGCel machine. However, peripheralsare also
allowed to be connecteddirectly to the processing
elements.

3. Diagnostic model

In this paperthe sameassumptionsare usedon the
fault model,asin the traditionalapproacho system-level
diagnosis:

» the system consists of intelligent units able to
individually and completely test each other,

 testing is possible only via normal communication,

 the test structure is predefined,

» thetestinvalidation can be inhomogeneoushut it
conforms to the generalized model,

» faults are permanent,

 faults in communication links are not considered,

» the diagnosis is centralized.

The predefined testing assignmentis describedby a

digraph T=(U, E), called the testing graph Here, U

representsthe set of units in the system, and E

correspondsto the set of tests. Thus, a directed edge
tij U E exists,iff unit y; testsunit y;. The syndromeis a

setof a; [ {0, 1} testresults,where0 indicatesa passed,
1 a failed test. Test resultsare shown as labels on the

edgesUnit u; is a testerof unit u if t; [ E, or a tested
unitif tj; O E. Testers ofy; arereferredto asl” '1(ui), the

setof units directly testedby u; asl” (u;j). The collection
of tester and tested units is the set of neighbors

9 u)=r Yuwor ).

The diagnostic inferences can be expressedin a
digraph | = (U, F, P), called the implication graph (see
Figure 2). The graphis composedf the setof unitsU in
the system, theetof fault stated~, andthe setof one-step
implications P derived from the generalized test
invalidation model. These elementsare representedoy
boxes,nodesand directededges,respectively.Each unit
Uj :{fio, f; 1y is composed of two fault states: fio

symbolizesthe fault-free, fil the faulty state.A directed
edgeconnectstwo nodesif a one-stepimplication exists
betweenthe correspondindault statesof the given units.
No distinction is made betweenforward and backward
rules.Loop edgesrepresentingautologyare not included
in the implication graph (seggure 2).

A diagnosticalgorithm must partition the nodesin F
into two disjunct sets:the setof diagnosedstatesD and
the setof invalid statesR. The cardinalityof [D n uj| = 1,
Rnuyl=1 for every y; DU. The fault statesin D
constitutethe diagnosigresult. The following propertiesof
the implication graph can help this process:

— implication chains appearin the graph as edge
sequences,

— a contradictionexistsiff thereis an edgesequence
between the two states of the same unit,

— whena contradictionis detectedthe fault state of
every unit being a part of the implication chain
leading to the contradiction can barelyinferred,

— for two nodesy;, uj O U without sureclassification,
the exists a p;; O P implication iff both of them
belong the same set, eitligror R (consistency

— if a unit is not involved in any contradictions,its
fault state can be surely classified iff there is
additional information available on the fault model.

[1] presentedan algorithm for system-leveldiagnosis
under the generalizadstinvalidationmodel. The Selényi
algorithm works with any diagnosablesystemtopology.

The repeated applications of one-step implications (i.e. the

transitiveclosure)are estimatedby the logical closureof
the M adjacencymatrix of the implication graph. Sure
classificationis obtainedby the contradictionsfound in
the closedM" matrix. The fault state of the remaining
unclassified units is identified on the basis oflianit.



4. Motivation of approximate diagnosis

Existing system-leveldiagnosisalgorithmsattemptto
completelyand correctly diagnosethe whole systemafter
oneroundof testing.To achievethis goal, generallythey
require some of the following restrictionson the fault
model [5]:

— a particular type of interconnection topology,
- homogeneous test invalidation,
— predeterminedlimit on the number of faults.

Another importantissueis the spaceand computational
complexity of diagnosis.The diagnosisproblem in its

mostgeneralform is NP-completeln the aboverestricted
situationsthe algorithmstypically havebetter,polynomial
complexity. Yet, taking into consideratiorsomepractical

system characteristics, even these acceptable results can

improved:

Local complexity. MPCs use regular interconnection
topologies.Regulartopologieshave a uniform structure
with a small and constantlocal complexity. After the
occurrence of an error, its effects also appear locally.

System size. Thetraditionalt-limit is independenbn the
size of the multiprocessor.Using it as a diagnosability
measuregives very pessimisticand impracticalresultsin

such large systems as MPCs [8, 9].

Fault sets. The expectecamountof faultsin MPCsis low
comparedo the systemsize. Fault setsmay existin the
following three configurations:

1. the faults are scattered in the system,
2. the faults are close to each other in one group,
3. a combination of the above two cases.

In the first case,the syndromecontainsfailed testresults
only at the faulty unit. Theseunits are surroundedwith
fault-free testers.Thereis correctdiagnosticinformation
availableon all units, sothe syndromeis easyto decode,
even if the number of faults exceeds tiienit.

In the secondcase,units on the border of the fault
group have fault-free testers, so they can be diagnosed
correctly. The units inside the fault group, however,are
separatedrom the fault-free units. Consequentlytheir
fault statecannotbe identifiedin the worst-casef the test
invalidation model contains diagnostic uncertainty.

A diagnosticalgorithm can exploit all of theseissueshy
processing only the local diagnostic information.
Furthermore the spaceand computationalcomplexity of
suchan approximateadiagnosticalgorithmis linear: O(n).
If the algorithmis executedn moreiterations,the set of
diagnostic inferencesis extended by transitivity (see
Section 5).

4.1. Existing algorithms

Since fault-free units always test other ucitsrectly,a
testoutcomeof value 1 indicatesthat either the testeror
the testedunit is faulty (i.e. the testis error detecting).A
simple algorithm can count threimberof testsfailed on a
unit. Formally, the k; sum of failed testsat unit u; is

computed ak, = Zaji :
w0 (w)

Thereare two existing ways of usingk; in diagnosis.
The approach described by Fussel and Rangarajan
compares; to a predefinedimit [6]. If the sumis lower
than the limit, the algorithm classifiesit u; asfault-free.
To provide asymptotically corrediagnosisthe algorithm
conductsmultiple testson the sameunit. On the other
ﬁ.‘gnd,the Majority algorithm by Blough et al. considers

e ki sum as the result of a majority vote for faulty
classification[7]. The papershows,thatusingthis simple
diagnosisstrategycorrectdiagnosisis assuredwith high
probability in a classof systemsthat includeshypercube
architecture.

Both of the abovemethodgsakeinto consideratioronly
thata fault-freetestertestsits neighborcorrectly. They do
not takeadvantagef the additionalinformationincluded
in lessrestrictedtestinvalidation models,neitherexploit
transitivity of implications. Therefore,their performance
is particularly poorif the faulty units are locatedcloseto
each other. A new algorithm which uses also the
additionalinformationincludedin the implication graph
is presented in the next section.

5. Diagnosis using local information

In thefirst iteration of the diagnosisalgorithmwe can
exploit the fact that certain units can be surely classified
in one step.Suredecisionscomefrom two sources:one-
step contradiction rules included in the generalinediel,
and the inferences based on formal logic shown in
Figure 4. (The two pair of inferencesn one column give
the sameresult, they can be derived from each other.)
Implicationsdrawn from surely diagnosedunits resultin
new sureclassificationsThis way the amountof reliable
information increases in each step, significantly
improving the performance of the algorithm.

For unclassified units in the first iteration (this
includes units that can be surely classified only by
traversingthe implication graph in multiple steps),an
idea similar to thelgorithmMajority canbeapplied.The
more implications supporta fault state,the higher the
probability is that selectingit asthe diagnosedstatewill
not lead to inconsistency.So, the number of edges
constitutingthe edge sequencegndingin a given state
canbe employedasa measurdor its suitability. Hence,a



diagnosisalgorithm may use the following classification
strategy:

1. for every faultstatefio, fil in theimplicationgraph:
compute the number of edgesin all the edge
sequences leading to it,

2. from £,0, 1 selectthe state which has a higher
number of supporting implications. If the two
numbersare equal, selectthe fio as the diagnosed
state.

CH O O
o O CH

Unit 1 Unit 2 Unit 1

Unit 2

Unit 2 is surely fault-free Unit 2 is surely faulty

a. b.

Figure 3. Sure implications based on formal logic

Lemma 1. Although the algorithm using the above
construction cannot identify contradictions, it will
correctly diagnose the units having a sure classification.

Proof: Since there is a contradiction at unit u;, a
directed path exists betweenthe two statesf;0 and f;1.
Assume,that the path consistsof q edges(q= 1), and
leads from fio to fil (i.e. the fault stateof unit u; can
surely be classifiedasfaulty). Let the numberof edgesin
pathsleadingto fio be equalto p. Then,the r numberof
edgesin pathsleadingto fil is r=p+q>p. Thus, the
algorithm will always correctly selet;tl. .

Determining the number of edgesin all the edge
sequenceteadingto eachnodeof the implication graph
and generatingthe transitive closure have the same
computational complexity. Instead the actualnumberof
implicationssupportinga fault state,we can estimatethe
suitability of the decisionsby taking into accountonly the
at most k length part of the implication chains (where
1< k<n). In the simplestcaseonly directedgesfrom the
neighborunits are counted.Essentiallythis is a majority
vote of the neighborunits usingall of the implicationsin
the generalizedestinvalidationmodel. Countingpathsof
length 2 takesadvantageof transitivity as well. Further
extending the considered path length we get better
estimationson the number of supporting units, thus

Al gori thm Count | nf erencePat hs
{ initialization }

for each u; OV do
coil < o, Cpo[i] - 0, GOi
Cllil « o, Cpl[i] - 0, G1i

end for

for each iteration do
for each u; O U do
for each Pj | 0 P do
i . 0 0
if pe-)j. fy - f.¥Y then
Colil

{ conpute the inferences |leading to fio and f; -~}

- GOl + (O]

else if pj: in_.fjlthen
Cullil < GlUjl + (il
else if pj;: fil_.fjothen

Coil « GOLil + (GMil

else if pj: f,0 - f; 1 then
Cllil « GMil + (GMil
end for
end for
for each u; O U do
GOl « GOLil, GOil « ¢Oli]
GHil - GUil, Uil « il
end for

GOLil)*Wp;l
GOLil)*Wp;l
Gl *W Pl
Gl *W Pl

Figure 4. Algorithm for counting the inferences leading to a fault state
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Figure 5. Percentage of diagnostic rounds with incorrect diagnosis in the function of faulty units

increasing the probability of consistent diagnosis.

Consistencys desirablein approximatediagnosisbut
it will lead to false decisionsif the multiple candidate
diagnosesiaveequalsignificance Additional information
on the fault model can be included in the implication
graphmodel by introducing a weight function W on the
edges. The algorithm CountPaths(given in Figure 3)
computesin Cao[i] and Cal[i] the weightednumberof |
lengthedgesequencesndingin fault states‘iO andfi1 in
the Ith iteration. Its advantagethat it is suitable for
distributedimplementatioraswell, sinceunits obtainthe
necessaryinformation only from their neighbors. The
price for the simple and distributedstructureis that the
algorithm gives distortedresultsif the implication graph
hasloops. In spite of this, the diagnosisalgorithm using
CountPaths gave promising measurementresults (see
Section 5.1).

Correctidentificationof all faulty unitsin approximate
diagnosisusing only local information is not possiblein
every situation. Two types of incorrect diagnosis exist:

— benignmisdiagnosis: some of the fault-frepitsare
classified as faulty,

- malign misdiagnosis:someof the faulty units are
classified as fault-free.

In an MPC benign misdiagnosis may be permitted.
Provided that the number of misdiagnosedunits is

relatively low, surplusdegradationwill not significantly

affect performancedueto the large inherentredundancy.
Onthe otherhand,in many caseamalign misdiagnosigs

inadmissible as unrecognizedaulty units may distribute
erroneous data corrupting the whole system.

As mentionedin Section 4, two fault configurations
must be correctly identified: scatteredfaults, and the
borders of fault groups. Units inside fault groups are
inaccessiblérom fault-freeunits, they do not take partin
the systemoperation.Their fault stateis not diagnosable,
so neither type of misdiagnoseson these units have
significance.

5.1. Measurements

The diagnosisalgorithm was measuredusing a two-
dimensional torus topology, similar te grid topologyin
the ParsytedGCel massivelyparallelcomputer.The torus
contained 16 x 16 processing elements. Results were
produced in a homogeneoussystem with every test
invalidation model. Two inhomogeneoussystemswere
also used: in the first random test invalidations were
distributed evenly, in the other homogeneoustest
invalidation regions were placed randomly in it (these
measurementsare referred to as ED and RB in the
figures). The edgeweight function waschosento produce
good resultswith homogeneousymmetric invalidation.
Four important properties of the algorithm were
examined:

1. incorrect diagnosis in the function of faults,

2. incorrect diagnosis in the function of iterations,
3. diagnosis on the border of fault groups,

4. time complexity in the function of system size.

Figure 5 showsthe percentageof diagnosticrounds
with incorrect diagnosisin the function of faults. The
numberrandomlyinjectedfaulty unitswas?2, 4, 8, 16, 32
and64 (note,that the diagnostict-limit for the employed
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Figure 6. Percentage of diagnostic rounds with incorrect diagnosis in the function of iterations

topologyis only 4). The algorithmwasiterated3 timesin
each diagnostic round. As the results indicate, in the
majority of test invalidation models all units are
diagnosectorrectly evenif 16 faulty units are presentin
the system.

The worstresultswereobtainedin caseof the T test
invalidation model. This specialfault model containsno
diagnosticuncertainty Here,a global methodcanbe used
to easily separatehe units into two identically behaving
sets. Then, assumingthat the majority of units is fault-
free, the set containing less elementscan be surely
classifiedasfaulty. Yet, this simplemodelis very hardto
handle in local information diagnosis.

The T1x and Ty modelsdo not provide much more
diagnosticdnformationthanthe previousmodel.Although
their resultsare better,the amountof incorrectdiagnoses
is still high. The syndromein othermodelscanalwaysbe
correctly decoded even if 16 faults are in the system.

Figure 7. Fault pattern to examine diagnosis
on the fault group borders

Figure 6 displaysthe effect of multiple iterationson
diagnosisperformance.Iln this measurementl16 faults
were injected randomly in the system.The number of
iterationswasl, 2, 3, 4, 6, and 8. As shownon Figure 6,
in  more iterations transitivity and the additional
knowledge representedby the edge weight function
radically improve correctnessat every test invalidation
model.

The effect of fault group borderswas examinedusing
the fault pattern oRigure 7. In this experimenbonly units
within the areasurroundedby the dotted rectanglewere
checkedfor incorrectdiagnosis.For the testinvalidation
modelsincludedin [4] (i.e. Too, TOl' Tox, Tll' TlX'
Tx1, Txx) no unit on the fault group borders was
misdiagnosed.

90.0s
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70.0s 1
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0 50 100 150 200 250 300

Number of units in the system

Figure 8. Time complexity in the function of
system size

Figure 8 presentsthe total time of 1024 consequent
executionof thealgorithmin 3 iterations.The sizeof the



systemwas increasedirom 4 x 4 units to 16 x 16 units.
The number of faulty units was 8. The curve of
measurementesultsis linear, justifying the theoretical
results.

6. Conclusions

The paperhasdescribeda novel approachto efficient
approximatediagnosisof massiveparallel multiprocessor
systems. The presented algorithm is based on the
implication graph representatiorof the generalizedtest
invalidation model. It usesa simple measurefor the
suitability of fault stateswhich expresseshe consistency
requirementof diagnosis. This measureis proven to
correctly characterizaunits which havesureclassification
after the transitiveclosure.Additional informationon the
fault modelis alsoincludedin the algorithm,in the form
of an edgeweight function. A simple methodto compute
the estimation of the above suitability measurewas
introduced.This way the new algorithm allows to scale
the diagnosis between performance and accuracy.
Measurement results were given to show the
characteristics of the algorithm.
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