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Abstract failed components in the system. In large multiprocessors
a circuit-level fault diagnosis is impractical, therefore
system-level diagnosis considers only processor faults.
Processors periodically execute tests on each other. If an
error was detected, the diagnostic procedure identifies
faulty units by analyzing the collection of the test results
(called the syndrome). Once these units were identified,
they are logically isolated and the system is reconfigured
to continue the error-free operation.

System-level fault diagnosis is a methodology to
identify the failed components in a multiprocessor system.
The traditional approach to system-level diagnosis does
not take into consideration many important aspects of
modern multiprocessor architectures. This paper
examines a special class of multiprocessors, called
massively parallel computers. As a practical example, the
Parsytec GCel system is presented. The paper describes a
new method developed for the Parsytec GCel, called local
information diagnosis. The diagnostic algorithm is based
on the generalized test invalidation model, therefore it is
applicable to a wide range of systems, including
inhomogeneous ones. Due to the employed syndrome
decoding mechanism, the space and computational
complexity of the algorithm is also smaller than in
conventional methods.

1.1. Generalized test invalidation

Fault-free tester units are assumed to test other units
correctly (tests are assumed to be complete). Still, faulty
testers may produce and distribute incorrect test results
that do not reflect the real fault state of the tested unit. In
other words, errors affect the validity of test outcomes.
This effect, modelled by test invalidation, makes the
decoding of the syndrome more difficult. The two most
frequently used test invalidation models are the symmetric
or PMC model [2], and the asymmetric or BGM model[3]:1. Introduction

− the symmetric model has a very pessimistic view
about the faulty units: test results by such units are
arbitrary, independent on the state of the tested unit.

The price to performance ratio of commercial
microprocessors rapidly decreases. Still, many
computation-intensive scientific and technical
applications require significantly more processing power
than the capabilities of single processor systems. Parallel
processing is an architectural solution to this problem. In
massively parallel computers (MPCs) several thousand
processing elements provide the necessary computing
capacity. Although modern electronic components built in
these systems have a very low permanent fault rate, their
large number and the long processing time result in
reduced overall dependability. Errors occurring during
normal operation must be tolerated, eliminating their
effect on the system. This can be achieved by a fault-
tolerant architecture.

− the asymmetric model states, that two units fail
identically with a negligible probability. Therefore a
faulty unit tests another faulty unit differently from
the symmetric model: the test always fails.

Generalized test invalidation describes practical test
invalidation mechanisms in a unified framework.
Consequently, it allows algorithms to deal with
inhomogeneous systems consisting of different units and
test invalidation. A complete description and analysis of
generalized test invalidation is covered by [1]. The model
can be outlined by Table 1.

In the model, results generated by a faulty tester unit
may take three values: always pass, always fail or pass/fail
in a non-deterministic way. These results are also denoted
by the constants 0, 1 and X. Test invalidation models are

Automatic fault diagnosis is an important part of
constructing reliable hardware. Its task is to locate the



characterized by the actual C and D values, so there are
nine possible models. The symmetric or PMC model has
TXX  invalidation, and the asymmetric or BGM model has
TX1 invalidation according to the generalized model.

uncertainty. The aim of one-step system-level diagnosis is
to select from this set the one corresponding to the actual
fault configuration. The selection is possible if further
restriction can be made on the fault model (like a
diagnostic t-limit on the number of faulty units) [11, 12].

2. Modelled system
Tester unit Unit under test Test result
fault-free fault-free 0
fault-free faulty 1
faulty fault-free C ∈ {0, 1, X} The primary target of the diagnosis algorithm

presented in this paper was the Parsytec GCel massively
parallel reliable multiprocessor (see Figure 1).

faulty faulty D ∈ {0, 1, X}

Table 1. Generalized test invalidation The processing elements are Inmos T805 transputers.
Sixteen transputers (plus one spare) are grouped together
in one cluster. Clusters are the basic building blocks of the
machine. Four of them constitute a so-called GigaCube. A
GigaCube forms a physical unit: it has its own
temperature and voltage monitoring facilities, and a
control node. They can be arranged into a 4 × 4 × 8
spatial array, so in its full configuration the system is
scalable up to 16384 transputers. Each of the transputers
is connected to the others via four data links, providing
fast (up to 20 MBit/s) serial interprocessor
communication. These point-to-point connections are
structured in a two-dimensional mesh topology, called the
Data Network.

The relationship between a tester and a tested unit is
defined by one-step implication rules. The existence of a
one-step implication depends on three factors:

• the test invalidation of both units,
• the fault state of both units, and
• the actual test outcome.

One-step implication rules have four different types:
tautology, forward implication, backward implication, and
contradiction. Note, that of these four only contradiction
rules provide sure inferences (as they exclude the incorrect
fault state from diagnosis), provided that the initial model
is valid [10]. Control nodes are additional Inmos T805 transputers,

dedicated to the supervision and control of system
operation. They play an important part in fault tolerance:
they periodically test all the processing elements in the
clusters of the GigaCube, and replace the faulty transputer
with the spare. Control nodes are also responsible for
booting, job control, and dynamic configuration
management. They communicate over a separate
interconnection network called the Control Network.

Units can be classified by deriving implication chains
starting from a supposed fault state of a unit. A possible
diagnosis is a contradiction-free classification of every
unit. One-step implications are combined into implication
chains using transitivity. The collection of all valid
inferences included in the syndrome is the result of
transitive closure. Thus, the diagnostic procedure is
equivalent to the state-space search known from artificial
intelligence. Unfortunately, in most cases there are
multiple candidate diagnoses, due to diagnostic

Peripheral I/O management is done by a stand-alone
host machine (usually a Sun workstation) connected to the

Figure 1. Structural layout of the Parsytec GCel



Figure 2. (a) Elements of the implication graph model, (b) Testing graph
(PMC test invalidation), (c) Corresponding implication graph

Parsytec GCel machine. However, peripherals are also
allowed to be connected directly to the processing
elements.

symbolizes the fault-free, fi
1 the faulty state. A directed

edge connects two nodes if a one-step implication exists
between the corresponding fault states of the given units.
No distinction is made between forward and backward
rules. Loop edges representing tautology are not included
in the implication graph (see Figure 2).

3. Diagnostic model

A diagnostic algorithm must partition the nodes in F
into two disjunct sets: the set of diagnosed states D and
the set of invalid states R. The cardinality of |D ∩ ui| = 1,
|R ∩ ui| = 1 for every ui ∈ U. The fault states in D
constitute the diagnosis result. The following properties of
the implication graph can help this process:

In this paper the same assumptions are used on the
fault model, as in the traditional approach to system-level
diagnosis:

• the system consists of intelligent units able to
individually and completely test each other,

• testing is possible only via normal communication,
• the test structure is predefined, − implication chains appear in the graph as edge

sequences,• the test invalidation can be inhomogeneous, but it
conforms to the generalized model, − a contradiction exists iff there is an edge sequence

between the two states of the same unit,• faults are permanent,
• faults in communication links are not considered, − when a contradiction is detected, the fault state of

every unit being a part of the implication chain
leading to the contradiction can be surely inferred,

• the diagnosis is centralized.

The predefined testing assignment is described by a
digraph T = (U, E), called the testing graph. Here, U
represents the set of units in the system, and E
corresponds to the set of tests. Thus, a directed edge
tij  ∈ E exists, iff unit ui tests unit uj. The syndrome is a
set of aij  ∈ {0, 1} test results, where 0 indicates a passed,
1 a failed test. Test results are shown as labels on the
edges. Unit ui is a tester of unit uj if tij  ∈ E, or a tested
unit if tji  ∈ E. Testers of ui are referred to as Γ -1(ui), the
set of units directly tested by ui as Γ (ui). The collection
of tester and tested units is the set of neighbors:
ϑ (ui) = Γ -1(ui) ∪ Γ (ui).

− for two nodes ui,  uj ∈ U without sure classification,
the exists a pij  ∈ P implication iff both of them
belong the same set, either D or R (consistency),

− if a unit is not involved in any contradictions, its
fault state can be surely classified iff there is
additional information available on the fault model.

[1] presented an algorithm for system-level diagnosis
under the generalized test invalidation model. The Selényi
algorithm works with any diagnosable system topology.
The repeated applications of one-step implications (i.e. the
transitive closure) are estimated by the logical closure of
the M adjacency matrix of the implication graph. Sure
classification is obtained by the contradictions found in
the closed M*  matrix. The fault state of the remaining
unclassified units is identified on the basis of a t-limit.

The diagnostic inferences can be expressed in a
digraph I = (U, F, P), called the implication graph (see
Figure 2). The graph is composed of the set of units U in
the system, the set of fault states F, and the set of one-step
implications P derived from the generalized test
invalidation model. These elements are represented by
boxes, nodes and directed edges, respectively. Each unit
ui = {fi

0, fi
1} is composed of two fault states: fi

0



4. Motivation of approximate diagnosis 4.1. Existing algorithms

Since fault-free units always test other units correctly, a
test outcome of value 1 indicates that either the tester or
the tested unit is faulty (i.e. the test is error detecting). A
simple algorithm can count the number of tests failed on a
unit. Formally, the ki sum of failed tests at unit ui is

computed as 
( )

k ai ji
u uj i

=
∈ −
∑
Γ 1

.

Existing system-level diagnosis algorithms attempt to
completely and correctly diagnose the whole system after
one round of testing. To achieve this goal, generally they
require some of the following restrictions on the fault
model [5]:

− a particular type of interconnection topology,
− homogeneous test invalidation,
− predetermined t-limit on the number of faults. There are two existing ways of using ki in diagnosis.

The approach described by Fussel and Rangarajan
compares ki to a predefined limit [6]. If the sum is lower
than the limit, the algorithm classifies unit ui as fault-free.
To provide asymptotically correct diagnosis, the algorithm
conducts multiple tests on the same unit. On the other
hand, the Majority algorithm by Blough et al. considers
the ki sum as the result of a majority vote for faulty
classification [7]. The paper shows, that using this simple
diagnosis strategy correct diagnosis is assured with high
probability in a class of systems that includes hypercube
architecture.

Another important issue is the space and computational
complexity of diagnosis. The diagnosis problem in its
most general form is NP-complete. In the above restricted
situations the algorithms typically have better, polynomial
complexity. Yet, taking into consideration some practical
system characteristics, even these acceptable results can be
improved:

Local complexity. MPCs use regular interconnection
topologies. Regular topologies have a uniform structure
with a small and constant local complexity. After the
occurrence of an error, its effects also appear locally. Both of the above methods take into consideration only

that a fault-free tester tests its neighbor correctly. They do
not take advantage of the additional information included
in less restricted test invalidation models, neither exploit
transitivity of implications. Therefore, their performance
is particularly poor if the faulty units are located close to
each other. A new algorithm which uses also the
additional information included in the implication graph
is presented in the next section.

System size. The traditional t-limit is independent on the
size of the multiprocessor. Using it as a diagnosability
measure gives very pessimistic and impractical results in
such large systems as MPCs [8, 9].

Fault sets. The expected amount of faults in MPCs is low
compared to the system size.  Fault sets may exist in the
following three configurations:

5. Diagnosis using local information
1. the faults are scattered in the system,
2. the faults are close to each other in one group,
3. a combination of the above two cases.

In the first iteration of the diagnosis algorithm we can
exploit the fact that certain units can be surely classified
in one step. Sure decisions come from two sources: one-
step contradiction rules included in the generalized model,
and the inferences based on formal logic shown in
Figure 4. (The two pair of inferences in one column give
the same result, they can be derived from each other.)
Implications drawn from surely diagnosed units result in
new sure classifications. This way the amount of reliable
information increases in each step, significantly
improving the performance of the algorithm.

In the first case, the syndrome contains failed test results
only at the faulty unit. These units are surrounded with
fault-free testers. There is correct diagnostic information
available on all units, so the syndrome is easy to decode,
even if the number of faults exceeds the t-limit.

In the second case, units on the border of the fault
group have fault-free testers,  so they can be diagnosed
correctly. The units inside the fault group, however, are
separated from the fault-free units. Consequently, their
fault state cannot be identified in the worst-case if the test
invalidation model contains diagnostic uncertainty. For unclassified units in the first iteration (this

includes units that can be surely classified only by
traversing the implication graph in multiple steps), an
idea similar to the algorithm Majority can be applied. The
more implications support a fault state, the higher the
probability is that selecting it as the diagnosed state will
not lead to inconsistency. So, the number of edges
constituting the edge sequences ending in a given state
can be employed as a measure for its suitability. Hence, a

A diagnostic algorithm can exploit all of these issues by
processing only the local diagnostic information.
Furthermore, the space and computational complexity of
such an approximate diagnostic algorithm is linear: O(n).
If the algorithm is executed in more iterations, the set of
diagnostic inferences is extended by transitivity (see
Section 5).



diagnosis algorithm may use the following classification
strategy:

Lemma 1. Although the algorithm using the above
construction cannot identify contradictions, it will
correctly diagnose the units having a sure classification.

1. for every fault state fi
0, fi

1 in the implication graph:
compute the number of edges in all the edge
sequences leading to it,

Proof: Since there is a contradiction at unit ui, a
directed path exists between the two states fi

0 and fi
1.

Assume, that the path consists of q edges (q ≥ 1), and
leads from fi

0 to fi
1 (i.e. the fault state of unit ui can

surely be classified as faulty). Let the number of edges in
paths leading to fi

0 be equal to p. Then, the r number of
edges in paths leading to fi

1 is r = p + q > p. Thus, the
algorithm will always correctly select fi

1.  •

2. from fi
0, fi

1 select the state which has a higher
number of supporting implications. If the two
numbers are equal, select the fi

0 as the diagnosed
state.

Determining the number of edges in all the edge
sequences leading to each node of the implication graph
and generating the transitive closure have the same
computational complexity. Instead of the actual number of
implications supporting a fault state, we can estimate the
suitability of the decisions by taking into account only the
at most k length part of the implication chains (where
1 ≤ k ≤ n). In the simplest case only direct edges from the
neighbor units are counted. Essentially this is a majority
vote of the neighbor units using all of the implications in
the generalized test invalidation model. Counting paths of
length 2 takes advantage of transitivity as well. Further
extending the considered path length we get better
estimations on the number of supporting units, thus

Figure 3. Sure implications based on formal logic

Algorithm CountInferencePaths
{ initialization }
for each ui ∈ V do
Ca

0[i] ← 0, Cp
0[i] ← 0, Ct

0[i] ← -1
Ca

1[i] ← 0, Cp
1[i] ← 0, Ct

1[i] ← -1
end for
{ compute the inferences leading to fi

0 and fi
1 }

for each iteration do
for each ui ∈ U do
for each pjj ∈ P do
if pjj: fi

0 → fj
0 then

Ca
0[j] ← Ca

0[j] + (Cp
0[i] - Ct

0[i])*W[pij]
else if pjj: fi

0 → fj
1 then

Ca
1[j] ← Ca

1[j] + (Cp
0[i] - Ct

0[i])*W[pij]
else if pjj: fi

1 → fj
0 then

Ca
0[j] ← Ca

0[j] + (Cp
1[i] - Ct

1[i])*W[pij]
else if pjj: fi

0 → fi
1 then

Ca
1[j] ← Ca

1[j] + (Cp
1[i] - Ct

1[i])*W[pij]
end for

end for
for each ui ∈ U do
Ct

0[i] ← Cp
0[i], Cp

0[i] ← Ca
0[i]

Ct
1[i] ← Cp

1[i], Cp
1[i] ← Ca

1[i]
end for

Figure 4. Algorithm for counting the inferences leading to a fault state
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Figure 5. Percentage of diagnostic rounds with incorrect diagnosis in the function of faulty units

increasing the probability of consistent diagnosis. As mentioned in Section 4, two fault configurations
must be correctly identified: scattered faults, and the
borders of fault groups. Units inside fault groups are
inaccessible from fault-free units, they do not take part in
the system operation. Their fault state is not diagnosable,
so neither type of misdiagnoses on these units have
significance.

Consistency is desirable in approximate diagnosis, but
it will lead to false decisions if the multiple candidate
diagnoses have equal significance. Additional information
on the fault model can be included in the implication
graph model by introducing a weight function W on the
edges. The algorithm CountPaths (given in Figure 3)
computes in Ca

0[i] and Ca
1[i] the weighted number of l

length edge sequences ending in fault states fi
0 and fi

1 in
the lth iteration. Its advantage that it is suitable for
distributed implementation as well, since units obtain the
necessary information only from their neighbors. The
price for the simple and distributed structure is that the
algorithm gives distorted results if the implication graph
has loops. In spite of this, the diagnosis algorithm using
CountPaths gave promising measurement results (see
Section 5.1).

5.1. Measurements

The diagnosis algorithm was measured using a two-
dimensional torus topology, similar to the grid topology in
the Parsytec GCel massively parallel computer. The torus
contained 16 × 16 processing elements. Results were
produced in a homogeneous system with every test
invalidation model. Two inhomogeneous systems were
also used: in the first random test invalidations were
distributed evenly, in the other homogeneous test
invalidation regions were placed randomly in it (these
measurements are referred to as ED and RB in the
figures). The edge weight function was chosen to produce
good results with homogeneous symmetric invalidation.
Four important properties of the algorithm were
examined:

Correct identification of all faulty units in approximate
diagnosis using only local information is not possible in
every situation. Two types of incorrect diagnosis exist:

− benign misdiagnosis: some of the fault-free units are
classified as faulty,

− malign misdiagnosis: some of the faulty units are
classified as fault-free.

1. incorrect diagnosis in the function of faults,
In an MPC benign misdiagnosis may be permitted.
Provided that the number of misdiagnosed units is
relatively low, surplus degradation will not significantly
affect performance due to the large inherent redundancy.
On the other hand, in many cases malign misdiagnosis is
inadmissible, as unrecognized faulty units may distribute
erroneous data corrupting the whole system.

2. incorrect diagnosis in the function of iterations,
3. diagnosis on the border of fault groups,
4. time complexity in the function of system size.

Figure 5 shows the percentage of diagnostic rounds
with incorrect diagnosis in the function of faults. The
number randomly injected faulty units was 2, 4, 8, 16, 32
and 64 (note, that the diagnostic t-limit for the employed
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Figure 6. Percentage of diagnostic rounds with incorrect diagnosis in the function of iterations

topology is only 4). The algorithm was iterated 3 times in
each diagnostic round. As the results indicate, in the
majority of test invalidation models all units are
diagnosed correctly even if 16 faulty units are present in
the system.

Figure 6 displays the effect of multiple iterations on
diagnosis performance. In this measurement, 16 faults
were injected randomly in the system. The number of
iterations was 1, 2, 3, 4, 6, and 8. As shown on Figure 6,
in more iterations transitivity and the additional
knowledge represented by the edge weight function
radically improve correctness at every test invalidation
model.

The worst results were obtained in case of the T10 test
invalidation model. This special fault model contains no
diagnostic uncertainty. Here, a global method can be used
to easily separate the units into two identically behaving
sets. Then, assuming that the majority of units is fault-
free, the set containing less elements can be surely
classified as faulty. Yet, this simple model is very hard to
handle in local information diagnosis.

The effect of fault group borders was examined using
the fault pattern on Figure 7. In this experiment only units
within the area surrounded by the dotted rectangle were
checked for incorrect diagnosis. For the test invalidation
models included in [4] (i.e. T00, T01, T0X, T11, T1X,
TX1, TXX) no unit on the fault group borders was
misdiagnosed.

The T1X and TX0 models do not provide much more
diagnostic information than the previous model. Although
their results are better, the amount of incorrect diagnoses
is still high. The syndrome in other models can always be
correctly decoded even if 16 faults are in the system.
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Figure 8. Time complexity in the function of
system size

Figure 7. Fault pattern to examine diagnosis
on the fault group borders

Figure 8 presents the total time of 1024 consequent
executions of the algorithm in 3 iterations. The size of the



system was increased from 4 × 4 units to 16 × 16 units.
The number of faulty units was 8. The curve of
measurement results is linear, justifying the theoretical
results.

Internal Report, Erlangen, Friedrich-Alexander University,
1994.

[11] J. Altmann, T. Bartha, A. Pataricza, "On Integrating Error
Detection into a Fault Diagnosis Algorithm for Massively
Parallel Computers," IEEE Int. Symp. on Parallel and
Distributed Systems, pp. 154-164, 1995.

6. Conclusions [12] J. Altmann, T. Bartha, A. Pataricza, "An Event-Driven
Approach to Multiprocessor Diagnosis," 8th Symp. on
Microcomputer and Microprocessor Applications, pp. 109-
118, 1994.

The paper has described a novel approach to efficient
approximate diagnosis of massive parallel multiprocessor
systems. The presented algorithm is based on the
implication graph representation of the generalized test
invalidation model. It uses a simple measure for the
suitability of fault states, which expresses the consistency
requirement of diagnosis. This measure is proven to
correctly characterize units which have sure classification
after the transitive closure. Additional information on the
fault model is also included in the algorithm, in the form
of an edge weight function. A simple method to compute
the estimation of the above suitability measure was
introduced. This way the new algorithm allows to scale
the diagnosis between performance and accuracy.
Measurement results were given to show the
characteristics of the algorithm.
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