
Towards an XMI{based Model Interchange Format

for Graph Transformation Systems

D�aniel Varr�o Gergely Varr�o

Andr�as Pataricza

Budapest University of Technology and Economics

Department of Measurement and Information Systems

August, 2000

Abstract

Tools developed to demonstrate the practical applicability of the mainly theoretical foundations
of graph transformation systems are of immense importance. Therefore, the interaction (more-
over, integration) of these tools is a major challenge for the graph transformation (GraTra)
community in order to increase the eÆciency of international (academic or industrial) research.

A �rst step towards integration is a standardized, common model interchange format pro-
viding a uniform graph description and rule representation that is capable of handling the most
fundamental concepts of graph transformation. A potential candidate is the novel standard
the web, the Extensible Markup Language (XML), which allows the interchange of models in a
distributed environment (i.e. Internet).

In this report, we demonstrate on several examples that

� a common, XML{based GraTra model interchange format should be constructed from a
metamodel following the concepts of the Meta Object Facility standard;

� XMI (XML Metadata Interchange) is the most suitable XML{based language for such a
format;

� the proposed XMI format can be derived automatically from the corresponding GraTra
metamodel.

Chapter 1

Major Modelling Concepts

1.1 Introduction

Traditionally, theoretical research �elds under an extensive development in practical applications
(like graph transformation systems themselves) are characterized by a rapid tool development
of various complexity (from simple demonstrations to complex systems with visual language
support).

As each of these tools (made by individual research groups) has its own speciality (and
the loss of generality as side e�ect); they di�er from each other not only in the applied graph
transformation approach (e.g. single pushout [4] or double pushout [3]) but in the underlying
data structures and rule representations as well.

In addition, the number of international research projects in the EU grew at an immense
rate in the last decade providing �nancial support for academic areas of practical relevance.
Such international projects (e.g. Appligraph [2] and Getgrats [5] in the �elds of graph
transformation) with di�erent research groups from several countries require a good coordination
between the partners. However, this coordination also necessitates the eÆcient integration
and/or interaction of individually developed tools.

The starting point of such a wide interaction is a common standardized exchange format
(including the most fundamental concepts) intended to serve as an underlying data structure
for software modules of di�erent tools.

Moreover, it is desirable to construct such a format that supports the distributed develop-
ment of tools and the interchange of tool data via the Internet. As a result of its immense
development and
exibility, the attention was turned to the novel, structured language of the
web, the Extensible Markup Language (XML). XML combines the advantages of its predecessors
(the simplicity of HTML and document structure description of SGML) into an easily parsable
and veri�able language which is desired to play a major role in the next generation of Internet
applications.

As a result of its growing relevance, industrial and academic research communities set up
committees to agree on an XML{based interchange format of their �eld.

� The semantics of the Uni�ed Modeling Language (UML) was de�ned by means of a meta-
model from which an XML (or rather XMI) based description can be derived [9].

� At the Petri 2000 meeting, the Petri Net community settled on the major principles of
a standard data exchange format for Petri Nets.

1

During her panel statement at GraTra 2000 [11], G. Taentzer lanced an initiative for the
development of such a standard for graph transformation in order to achieve that peripheral
tools (graph editors, rule analyzers) could independently be developed using the functionality of
a common kernel machine. As a result, graph transformation tools would be easier to connect
to each other and to other software applications. She also outlined potential future projects in
the direction of a common programming interface (e.g. CORBA).

In the current report, we introduce a very �rst attempt for a common model interchange
format for graph transformation systems based on the powerful metamodelling standards of Meta
Object Facility (MOF) and XML Metadata Interchange (XMI), the special dialect of XML |
both developed by the Object Management Group (OMG). Following the MOF concepts, an
abstract metamodel of graph transformation is de�ned by a visual language which is a subset
of UML, thus, its description is easy to understand both in academic and industrial research
communities. Moreover, the corresponding XMI format can automatically be derived from a
well{formed MOF metamodel.

1.1.1 The Structure of the Report

Our report is structured as follows.

� The rest of Chapter 1 summarizes the most fundamental issues on MOF metamodelling.

� Chapter 2 gives the reader a short introduction on XML, and a more detailed description
on XMI containing several examples.

� In Chapter 3, our proposed model interchange format is discussed by constructing a MOF{
based GraTra metamodel.

� In addition to this previous topic, Appendix A lists the complete generated GraTra DTD.

� Appendix B contains the complete examples mentioned in Chapter 2.

1.2 Meta Object Facility

The concepts of metamodelling originate in the need for an e�ective design process of formal

speci�cation and modelling languages. The large number of similar languages | often
supported nowadays by visual diagrams | necessitates a common description language (called
metameta{model later) that is able to describe the instances of these languages as sentences.
Traditionally, such a description is based upon a set of production rules called a grammar.

However, the sentences of this top{level modelling language (called later as a model) can
be used for designing a lower level grammar for generating lower level languages hence a model

hierarchy is available in this sense with several meta{layers where the sentences of a higher
level language can be used for specifying a lower level language.

This hierarchy can be observed in Figure 1.1, and later demonstrated also in Table 1.1.

1.2.1 Basic MOF Notation

Metadata is a general term for data which in some sense describes a language, and usually
de�ned in the terms of the Meta Object Facility (MOF) standard [7].

In this MOF context, the term model has a broader meaning than in its general sense
(namely, description of something in the real world). Here, a model is a collection of metadata

that is related in the following ways:

2

Language A(i+1)th metalevel

Sentence ’b’(i-1)th metalevel

Sentence ’a’ Grammar B Language Bith metalevel

Figure 1.1: Meta{layers in language speci�cation.

� The collection of metadata describes information.

� All the metadata conforms to rules controlling its structure and consistency, i.e. it has a
common abstract syntax.

� The metadata has a meaning in a common semantic context.

Metadata itself is a kind of information, hence it can be described by metadata as well. In
the MOF terminology, metadata that describes metadata is called meta{metadata, and the

model that consists of a meta{metadata is called a metamodel. Metamodels are integrated into
a topmost level meta{metamodel, which is the MOF Model, by de�ning a common syntax for
the de�nition of several metamodel types.

The MOF metadata framework is typically depicted as a four layer architecture that can be
observed in Table 1.1.

Meta{level MOF terms Examples

M3 meta{metamodel The MOF Model

M2
meta{metadata
metamodel

GraTra metamodel
(interchange format)

M1
metadata
model

GraTra models,
e.g. a graph grammar

M0 data
modelled systems,
e.g. a graph

Table 1.1: MOF Metadata Architecture

1.2.2 The MOF Model

The MOF Model is an abstract language for de�ning MOF metamodels. Originally, it was
developed to provide a general means for describing the language constructs of UML.

Although MOF and UML was designed for di�erent purpose (i.e. metadata versus system
modelling), the MOF Model and the core of the UML metamodel are closely related in their
modelling concepts (classes for objects of similar structure, associations as relations between
these classes, generalization, etc.); therefore, the corresponding UML notation is commonly

3

used for MOF{based metamodels as well. Nevertheless, in order to distinguish between the
metamodel elements of UML and the basic constructs of the MOF Model, latter ones printed
with capitals.

The main metadata modelling constructs provided by the MOF are the following:

� Classes are type descriptions of "�rst class instance" MOF meta{objects. Classes de�ned
at the M2 meta{level have their instances at the M1 level. The structural features of
Classes can be described at both object and class level by Attributes (value holders in an
instance of the class), Operations (specifying the name and type signature by which the
behaviour is invoked). Classes may also inherit their structure and behaviour from other
Classes by Generalization.

� Associations support binary relations between Class instances. Each Association has two
AssociationEnds that may specify aggregation semantics and structural constraints on
cardinality and uniqueness. When a Class is the type of an AssociationEnd, the Class may
contain a Reference that allows navigability of the Association's links (i.e. Classes) from
a Class instance.

� Packages are collections of related Classes and Associations. Packages can be composed
by importing other Packages by inheriting from them. They can also be nested, which
provides a form of information hiding.

� DataTypes allow the use of non{object types for Operation parameters and Attributes.

� Constraints are used to describe semantic restrictions on elements in a MOF metamodel

by de�ning well{formedness rules for the metadata described by a metamodel. The Object
Constraint Language (OCL) [8] is often used as a formal language for expressing
constraints.

A semi{formal description of the UML metamodel [9] (containing each of the more than
120 pictorial objects) was released by the OMG using the constructs of the MOF Model as a
convincing demonstration that such a rich language as UML can be described by a small subset
of its own modelling language.

Examples for a MOF{based metamodel can be found in Section 2.4 when a simple Petri Net
metamodel will be introduced. However, these examples lack the demonstration of DataTypes
and Constraints in order to emphasize on model structures.

Conclusion This chapter illustrated that the MOF Model provides a natural method to spec-
ify and design various metamodels even in di�erent levels of hierarchy. This visual language is
a well{de�ned subset of UML, the widely{known standard of object{oriented software design,
thus its modelling concepts can easily be understood in academic research as well as in industrial
applications.

4

Chapter 2

XML Metadata Interchange

2.1 Basic Concepts

The main purpose of XMI (XML Metadata Interchange) is to provide an easy interchange
of metadata between modelling tools (using UML as their modelling language) and metadata
repositories (OMG MOF based) in distributed heterogeneous environments (e.g. Internet) [6].

2.1.1 Introduction

The standardization of models and metamodels interchange (i.e. the invention of XMI format)
ha also been proposed by the OMG.

XMI integrates three major industrial standards:

� MOF: using the four layered metamodelling architecture for general purpose manipulation
of metadata;

� UML: representing models and metamodels;

� XML (eXtensible Markup Language): allowing the models to be changed as streams
or �les.

An XMI compliant model (e.g. a user UML model) usually contains the following:

� The metamodel of the problem space (e.g. UML metamodel or GraTra metamodel) as
an origin of a uniform interchange format based on MOF.

� The Document Type De�nition (DTD) of the metamodel (generated automatically
from the MOF description).

� The XMI Document (in an XML format) describing the user model itself. This docu-
ment can be syntactically (by an LL(1) parser) and semantically veri�ed (with respect to
a given DTD).

Concerning their purpose, DTDs can be regarded as context{free Chomsky grammars de-
scribing the XMI documents as their corresponding formal languages.

5

Meta{
level

Metadata XMI DTDs XMI Documents

M3 The MOF Model MOF DTD

M2
UML Metamodel
GraTra Metamodel

UML DTD
GraTra DTD

MOF MetaModel
Documents

M1
UML Models
GraTra Models

UML Models
GraTra Documents

M0 Instances

Table 2.1: XMI and the MOF Metadata Architecture

2.1.2 Main Design Goals

The XMI proposal (of OMG) is planned to meet the following design goals:

Design Goal 1. Providing a metadata interchange format for any MOF metamodel.

XMI supports the four layer metadata architecture of OMG in a similar manner as shown in
Table 2.1. For instance, a UML model will be encoded against a UML DTD which corresponds
to the UML metamodel.

Design Goal 2. Supporting an automated transfer syntax (i.e. DTD) generation from a given

MOF compliant metamodel.

The classical way of de�ning a data interchange format is to create a speci�cation document
which describes the syntax in BNF or a similar notation and includes a natural language de-
scription of non{syntactic aspects. The problem with this approach is that errors and omissions
inevitably remain in the speci�cation. The result is that the person responsible for coding import
and export modules needs to "interpret" the speci�cation. Divergence in people's interpretations
of a speci�cation often leads to unsuccessful data exchange.

The XMI speci�cation is designed to allow automated generation of XML DTDs based on the
original MOF speci�cation of a metamodel, hence a faithful re
ection of the original metamodel
is much more guaranteed.

Design Goal 3. Following the established principles of XML document design.

XMI documents are keeping XML's tree{based element structure and its nesting over linkage.
This allows generic XML tools to validate documents against a given XML DTD without any
hard{wired knowledge of the validity rules for the document.

Design Goal 4. Supporting the interchange of incomplete models (model fragments).

The closure of an entire model often consists of much more model elements than are required
by a consumer. A consumer may already have many of the elements, or alternatively may have
no interest in them. In these circumstances, the production, transmission and consumption of
redundant or needless metadata can be a substantial burden to all parties.

Design Goal 5. An XMI model need not be fully validated as a precondition for metadata

interchange.

Only syntactic correctness and a minimum set of semantic constraints are required since
the requirement of full well{formedness would be too restrictive. Ideas often need to be shared
before all the details are elaborated.

6

Design Goal 6. Supporting versions of models.

The XMI proposal allows model and metamodel version information to be included in the
XMI header. However, it is up to the producers and consumers of XMI streams to manage the
allocation of version numbers, and to cope with compatibility between versions and model life
cycles.

Design Goal 7. Allowing the extension of standard models by non{standard model properties

An XMI document consists of two parts. The �rst part contains metadata that conforms
to a particular MOF metamodel. The second part contains additional metadata that is not
described by the base metamodel. This part may have multiple sections, each corresponding to
the model extension made by a particular tool (i.e. each tool of di�erent vendors may contain
non{standard model attributes as well, such as attributes for graphical representation).

2.2 An Introduction to XML

2.2.1 The Roots of XML

Today, HTML (HyperText Markup Language) is the predominant language for expressing
web pages, although it has the major disadvantage that HTML tags express presentation rather
than semantic information.

The more powerful SGML (Standard Generalized Markup Language) separates view
from content and data from metadata, but due to its complexity, and the complexity of the tools
required, it has not achieved widespread uptake.

XML, the Extensible Markup Language, is a new document format designed by the
World Wide Web Consortium (W3C) to bring structured information to the Web. The XML
document format embeds the content within HTML{like tags that express the structure. Pre-
sentation information is kept in distinct style information format, written mainly in XSL (Ex-

tensible Style Language).
XML provides the ability to express rules for the structure (i.e. grammar) of a document.

These two features allow automatic separation of data and metadata, and allow generic tools to
validate an XML document against its grammar.

XML is an open, tool and vendor independent standard, with low cost on both user and
developer side (e.g. a free XML parser written in Java is available), therefore XML is expected
to be the next step in the evolution of the Web.

2.2.2 XML Structuring Concepts

XML structure elements XML documents are tree{based structures of matched tag pairs
containing nested tags and data. In combination with its advanced linking capabilities, XML
can encode a wide variety of information structures speci�ed by DTD rules.

In the simple case, an XML tag consists of a tag name enclosed by less{than (<) and
greater{than (>) characters. Tags in an XML document always come in pairs consisting of an
opening tag and a closing tag. The closing tag in a pair has the name of the opening tag preceded
by a slash symbol. Formally, a balanced tag pair is called an element, and the material between

the opening and closing tags is called the element's content. The following example shows a
simple element:

Example 1. Label is a sample XML element with a balanced tag pair (<Tag>,</Tag>) and

with the string content a sample XML tag

7

<Label> a sample XML tag </Label>

The content of an element may include other elements which may also contain other elements,
etc. However, at all levels of nesting, the closing tag for each element must be closed before its
surrounding element may be closed. This requirement to balance the tags provides XML with
its tree data structure and is a key architectural feature missing from HTML.

Example 2. This is a simple XMI document describing a Player (football player) in details.
It contains three attribute tags (Name,Number,AvgGoals).

(New lines and indentation have no semantic signi�cance in XML. They are included here
and later on simply to highlight the structure of the example document.)

<Player>

<Name> F. Puskas </Name>

<Number> 10 </Number>

<AvgGoals> 12.2 </AvgGoals>

</Player>

XML Attributes In addition to contents, an XML element may contain attributes. XML

attributes are expressed in the opening tag of the element as a list of name{value pairs following
the tag name.

Example 3. A sample attribute of element Player is xmi.label.

<Player xmi.label="mp1"> </Player>

XML de�nes a special attribute, the ID (identi�er), which can be used to attach a unique
identi�er to an element within a document context. These IDs can be used to cross{link the
elements to express meaning that cannot be expressed in the con�nes of XML's strict tree
structure.

Document Type De�nitions An XML DTD (which is responsible for the syntax of a
document) de�nes the di�erent kinds of elements that can appear in a valid document, and the
patterns of element nesting that are allowed.

Example 4. A DTD for the football player example above could contain the following declara-

tion indicating that a Player must contain each of the Name, Number, and AvgGoals elements.

<!ELEMENT Player (Name, Number, AvgGoals)>

The declaration for an element can have a more complex grammar, including multiplicities
(zero or one `?', one ` `, zero or more `*', and one or more `+') and logical{or `|'.

DTDs also de�ne the attributes that can be included in an element using an ATTLIST.

Example 5. The following DTD component speci�es that every Player element has an optional
xmi.label XML attribute and that the xmi.label consists of a character data string: (The
#IMPLIED directive indicates that the attribute is optional.)

<!ATTLIST Player xmi.label CDATA #IMPLIED>

While a DTD can be embedded in the document whose syntax it de�nes, DTDs are typically
stored in external �les and referenced by the XML document using a Universal Resource

Identi�er (URI) such as

"http://www.soc.cer/player.dtd".

8

2.2.3 XML Document Correctness

There are three levels of correctness associated with XML document; well{formedness, validity
and semantic correctness:

� A well{formed XML document is one where the elements are properly structured as
a tree with the opening and closing tags correctly nested. Well{formed documents are
essential for information exchange.

� A valid XML document is one which is well{formed and conforms to the structure de-

�ned by a corresponding DTD. A valid document will only contain elements and attributes
de�ned in the DTD. Similarly, the element contents and attribute values will conform to
the DTD. While the DTD need not be speci�ed in an XML document, it is unnecessary
for document decoding, it is essential for checking validity.

� The highest level of document correctness (semantic correctness) is beyond the scope
of XML and DTDs as they are currently de�ned.

2.3 DTD Generation

In this section the process of XMI DTD generation will be sketched. The more complete, semi{
formal algorithm can be found in [6], while this paper only describes its main features throughout
a running example. This example produces the corresponding DTD for a sample MOF{based
metamodel of Petri Nets (Figure 2.1) to describe only some major features of Petri Nets.

$UF

ZHLJKW � ,QWHJHU

,QSXW$UF

6XEQHW

QDPH

�

���

�

�VXEQHWV
���

���

�
�LQSXW$UFV

���

�

7UDQVLWLRQ

QDPH � 6WULQJ
JXDUG � 6WULQJ
UDQGRPBYDULDEOH � 'RXEOH
PHPRU\BSROLF\ � 6WULQJ
SULRULW\ � ,QWHJHU

���

�

�WUDQVLWLRQV

���

�

���

�

�LQ$UF
���

�WR7UDQVLWLRQ

�

3ODFH

ERXQG � ,QWHJHU
QDPH � 6WULQJ
WRNHQV � ,QWHJHU

���

�
�SODFHV
���

�

���
�

�LQ$UF

���

�IURP3ODFH

�

2XWSXW$UF

���

�

�RXWSXW$UFV
���

�

���
�

�RXW$UF

���

�IURP7UDQVLWLRQ

�

�

���

�WR3ODFH
�

�RXW$UF

���

Figure 2.1: A sample MOF metamodel of Petri Nets

A Petri Net model may contain Places and Transitions linked by InputArcs (from a
Place to a Transition) and OutputArcs (from a Transition to a Place). InputArcs and

9

OutputArcs inherit their structure from their common superclass Arc. In order to support
model decomposition, all the elements are nested in a Subnet.

Each Place has a name and may contain a number of tokens (tokens) as its Attributes
(tokens are not modelled as distinct objects this time). There are two References from a Place;
one is related to InputArc with a Role name inputArcs and Multiplicity 0..*, the other is
related to OutputArc with a Role name outputArcs and Multiplicity 0..*.

Further metamodel element can be interpreted similarly. Black diamonds at Subnet indicate
that a Subnet may contain other metamodel elements.

This Petri Net metamodel in Figure 2.1 is our own construct only for demonstration purposes.
However, a standard Petri Net metamodel is under construction and will soon be announced by
the Petri Net community.

2.3.1 The Skeleton of DTD Generation

A complete XMI DTD consists of a �xed DTD content (which is required for any XMI DTD),
followed by Package DTD elements for each of the outermost Packages in the MOF{based
metamodel. The �xed DTD content can be found in the example of Appendix B.1.

1. DTD ::= FixedContent 2:PackageDTD+

Package Packages may contain other Packages, Classes, classi�er{level Attributes, Associa-
tions and Compositions between Classes. We �nd a single Package (Petri Net: PN) �ve Classes
several types of Associations and Compositions in our example (Figure 2.1). Please note that
the UML{like notation with capital letters refers to the metaclasses of the MOF Model (see
Section 1.2.2)

DTD generation for a Package starts with the DTD generation for all of its contents (re-
cursively), followed by the de�nition of the Package itself (further re�nements are indicated
by numbers followed by a colon like e.g. 2:; terminal labels are indicated in single quotation
marks).

2: PackageDTD ::= (2:PackageDTD j 3:ClassDTD j CompositionDTD j
AssociationDTD j 4:AttributeElementDef)*

PackageElementDef

CompositionDTDs and AssociationDTDs are rarely used when encoding a typical MOF{
based metamodel, since the Classes at both AssociationEnds are responsible for the links between
themselves.

Whenever a Package contains another Package, the entire procedure of Package DTD Gen-
eration has to be repeated one (containment) level below.

Class The DTD generation for a Class can be performed in 3 steps.

1. Generating a de�nition for each Attributes (containing the attributes of the superclass as
well).

2. Generating a de�nition for each Reference (role of each Association or Compositions) of
the Class.

3. Generating a de�nition for the Class itself.

3: ClassDTD ::= (4:AttributeElementDef j ReferenceElementDef)*

5:ClassElementDef

10

Attribute An AttributeElementDef is the XML element de�nition for an Attribute. It gives
the name and type of the Attribute. The Attributes inherited from the superclass of the Class
are not rede�ned at any level.

4: AttributeElementDef ::=

'<!ELEMENT' AttribName AttribContents'>'

Here AttribName stands for the name of the Attribute while AttribContents is usually
equal to the string '(#PCDATA j XMI.Reference)*'.

Reference The generation of a ReferenceElementDef is very similar to the generation of
AttributeElementDef. The only di�erence is in its AttribContents, which contains all the
possible types or classes that this reference role can point to (i.e. all the subclasses in the
inheritance tree) and the corresponding multiplicity of the role.

Multiplicity The encoding of MOF Multiplicities (indicated in Table 2.2) are not trivial.
As XMI should also support the interchange of model fragments, the corresponding DTDs for
complete and partial models are slightly di�erent. The importance of generating more than one
DTD for the same metamodel comes from the requirement that partial models should also be
veri�ed against a DTD for incomplete models.

MOF Model Complete XMI DTD Partial XMI DTD

1 ?

0..1 ? ?

0..* * *

1..* + *

k..* + *

Table 2.2: Encoding MOF Model multiplicities in XMI

� In case of complete XMI models, the default multiplicity is "exactly one" (1 in the
MOF Model) therefore it is not indicated explicitly (blank �eld).

� "At most one" (0..1) is related to a question mark ("?").

� "Zero or more" (0..*) is identical to "*".

� However, we lose information in case of "at least k" semantics in the MOF Model, since
both "at least one" (1..*) and "at least k" (k..*) is related to "+".

In case of partial (incomplete) XMI models, only two di�erent notations are used as an
incomplete model may violate the lower bounds of a multiplicity (i.e. the model is incomplete
because of a missing mandatory element) but must not violate the upper bounds (since a violated
upper bound in an incomplete model also violates the upper bounds of a complete model).

� Therefore "at most one" and "exactly one" is related to "?".

� "Zero or more", "at least one" and "at least k" is encoded to "*".

11

Example 6. This example contains the sample element de�nitions for all the Attributes of Class
'Place' (in Figure 2.1) supposing that Classes 'InputArc' and 'OutputArc' will be declared

later on. Please note that a Place can be attached to several (possible none) InputArcs and

OutputArcs as shown by the corresponding multiplicities.

<!ELEMENT PN.Place.bound (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Place.name (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Place.tokens (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Place.inArc (PN.InputArc)* >

<!ELEMENT PN.Place.outArc (PN.OutputArc)* >

Class (continued) Finally, after having de�ned all the attributes, we described how the pre{
de�ned components can build up the de�nition of the Class itself. At this point, all the attributes
of its superclasses have to be collected and inserted before the own attributes of the Class are
declared. The Attributes are followed by a special element (XMI.Extension) and the de�nitions
of roles (References, Associations and Compositions).

An additional (uniform) ATTLIST declaration for the Class can also be found as a �nal step.

5: ClassElementDef ::=

'<!ELEMENT' ClassName ClassContents '>'

'<!ATTLIST' ClassName ClassAttListItems '>'

The following examples demonstrate the encoding process for either complete or incomplete
models.

Example 7. The de�nition of Class 'Place' in Figure 2.1 for complete XMI models. Class

Attributes are listed �rst (PN.Place.bound, PN.Place.name, PN.Place.tokens) followed by

a mandatory XMI.extension* attribute. Finally, the Role names of References are printed

(PN.Place.inArc*, PN.Place.outArc*).

<!ELEMENT PN.Place (PN.Place.bound, PN.Place.name,

PN.Place.tokens, XMI.extension*,

PN.Place.inArc*, PN.Place.outArc*)? >

<!ATTLIST PN.Place

%XMI.element.att;

%XMI.link.att;

Example 8. The de�nition of Class 'Place' for incomplete XMI models. Class Attributes

are listed �rst (PN.Place.bound, PN.Place.name, PN.Place.tokens) with a "?" multiplicity,

followed by a mandatory XMI.extension* attribute. Finally, the Role names of References are

printed (PN.Place.inArc*, PN.Place.outArc*).

<!ELEMENT PN.Place (PN.Place.bound?, PN.Place.name?,

PN.Place.tokens?, XMI.extension*,

PN.Place.inArc*, PN.Place.outArc*)? >

<!ATTLIST PN.Place

%XMI.element.att;

%XMI.link.att;

After having de�ned all the contained Classes of a Package, the de�nition of the Package can
also be added. This de�nition resembles to an ordinary Package de�nition with the well{known
ELEMENT and ATTLIST tags.

12

Example 9. The de�nition of the Package 'PN' indicates that PN may contain an arbitrary
amount of Classes PN.Place, PN.InputArc, PN.Transition, PN.OutputArc, PN.Arc and

PN.Subnet.

<!ELEMENT PN ((PN.Place | PN.InputArc | PN.Transition | PN.OutputArc |

PN.Arc | PN.Subnet)*) >

<!ATTLIST PN

%XMI.element.att;

%XMI.link.att;

>

The complete Petri Net DTD is listed in Appendix B.1.

2.4 XMI Document Generation

Most metamodels are characterized by a composition hierarchy. Modelling elements of some type
are composed of other modelling elements. A UML model for instance is composed of classes,
use cases, packages, etc. This sort of composition is de�ned in metamodels using the MOF's
composite form of Association. This composition must be strict containment { an element
cannot be contained by multiple composition in order to keep the strict tree structure of XML.

In order to support models and model fragments as compositions, XMI provides XML doc-
ument production by object containment. In other words, all the attributes and references of
an object are grouped inside the tag containing the de�nition of the object.

Our running example (in Figure 2.2) describes a simple Petri Net model: a subnet of a
transition and places (one of them is embedded into another subnet).

a4 : InputArc

a3: Transition

subnets

outArc

fromTransition

inArc

toTransitionfromPlace

inArc

a2 : Place

Ready

a5:OutputArc

a7 : Place

Box

a6 : Subnet

Store

places places

outArc

toPlace
outArcsinArcs

transitions

a1 : Subnet

CBelt

Ready Store

Box

CBelt

1

*

1

*

1
*

1 *

1

*

1 *

1

*

1
*

1

*

Subnet

Place

Transition

Arc

InArc

OutArc

Figure 2.2: Objects forming the sample Petri Net model

The fact that the Petri Net model is a well{formed model of the Petri Net metamodel (as
previously de�ned in Figure 2.1, only the Classes and Associations are depicted this time in
Figure 2.2) is grey{scale encoded.

13

The metamodel classes at M2 level (i.e. Place, Transition etc.), which are also instances
of M3 level Classes, are painted to di�erent shades of grey. The original Petri Net objects are
also linked to their corresponding model elements by dashed lines (beside shading). For instance,
the two Place objects (Ready and Box) are light grey since their class Place is light grey as well
and the isomorphism is also indicated by two reference lines.

2.4.1 Basic Principles of Document Generation

XMI documents mainly consist of two parts: a header and a content part. Naturally, only the
content part has a real importance from a modelling point of view.

Header and content parts are enclosed in the root tag of all XMI documents providing
information about the currently used XMI version, which is the XMI element itself.

Example 10. The root element of an XMI document is a tag called XMI. One of its attributes
is called xmi.version

<XMI xmi.version='1.0'>

</XMI>

The document generation is proceeded in a hierarchical way, starting from the root object
(topmost container object). Each object and attribute contained by another object appear
between the begin and end tag of the container instance. Reference links (like associations
and unlike compositions) between objects are expressed by special unique object identities.

XML prologue Each generated XML document begins with a prologue (header tag) and
the standard enclosing XML element's start tag. A possible header tag may be similar to the
following:

Example 11. A sample header tag of an XMI document consists of an XMI.header tag. Pos-
sibly, it may contain an XMI.metamodel element with an xmi.name and an xmi.version at-
tributes.

<XMI.header>

<XMI.metamodel xmi.name = `PetriNet' xmi.version = `0.1'/>

</XMI.header>

The importance of an XML prologue originates in the model management issues between
di�erent modelling tools of di�erent vendors. A user may get information about the owner,
the documentation, or the version of a model, and tool speci�c extensions of the metamodel
standard are also often described here.

At the current phase of a creating common model interchange format of graph transformation
systems, the prologue should be omitted probably (to improve clarity), however, we decided to
include it in the report in every complete DTD for XMI compatibility reasons.

Object identi�ers in XMI Model elements must often have a unique identi�er, similarly to
primary keys used in databases. There are three attributes in XMI (de�ned in the mandatory
part of XMI DTDs described in Appendix B.1) aiming to provide such a unique descriptor for
each XML element. The values of these attributes are used later for creating references to other
XML elements. The three attributes di�er from each other in the scope of uniqueness (locally
or globally).

14

xmi.id XML semantics require the values of this attribute to be unique within an XML docu-
ment; however, the value is not required to be globally unique. (In our running example,
we mainly use this sort of identi�cation.)

xmi.label This attribute may be used to provide a string label identifying a particular XML
element. Users may put any value in this attribute.

xmi.uuid The purpose of this attribute is to provide a (standardized) universally unique iden-
ti�er (UUID) for an XML element. The values of this attribute should by globally unique
strings pre�xed be the type of identi�er, for instance DCE:1234.

Object linking in XMI XMI requires the use of several XML attributes to enable XML
elements to refer (i.e. to link) to other XML elements using the values of the object identi�er
attributes. The link attributes act as a union of three major linking mechanism, any one of
which may be used at a time.

href A well{known inter{document referencing mechanism (from HTML documents).

xmi.idref This attribute allows an XML element to refer to another XML element within the
same document. The value of this attribute should be (in an XMI document) the value of
an existing xmi.id attribute.

xmi.uuidref This attribute provides a mechanism for referring to another XML element in any
document all around the world by using a UUID speci�ed in the xmi.uuid attribute of
another XML element.

2.4.2 Skeleton of Document Generation

After having completed the header section of an XMI document we may focus on its contents
embraced between an xmi.content tag. All the relevant contents are inside this prede�ned tag.

Example 12. The XMI tag containing the user models is embraced in XMI.content element.

<XMI.content>

</XMI.content>

Start and end tag of an object Document generation is based on element containment in
order to keep the strict tree structure. The contained collection of elements is listed between
the start and end tag of the container element.

Document generation for the actual model starts from the root object. For each object,
including the root object, the element start tag is generated from the object's metaclass name.

Example 13. The start tag of the sample Petri Net model of Figure 2.2 is the outermost con-

tainer Subnet object, which is 'a1' in our case.

<PN.Subnet xmi.id='a1'>

The element attribute xmi.id provides a unique identi�er for this element in the entire
document.

It must be noted that all names in XMI are fully quali�ed, based on the MOF description
of their metamodel. The name of the item is formed by the sequence of containments and
compositions, starting at the outermost package of the metamodel and separated by dots (for

15

instance, PN.Subnet in our previous example) in order to help maintain the strict tree structure
of XML.

Similarly to HTML, each start tag has to be completed with an end tag as well after all the
necessary contents have been written out.

Example 14. The corresponding end tag for the previous start tag (PN.Subnet).

</PN.Subnet>

Attribute generation Next each attribute of the current object is used in order to generate
XML code. The attribute is enclosed to an element, de�ned by the name of the attribute, as
found in the metamodel.

Next the attribute value is written out in XML. In our example, the name attribute is a
simple string, hence no further preparations are needed at this level.

Finally, the attribute is completed with the corresponding end tag. The following example
demonstrates the attribute generation for the root subnet of our running example (Figure 2.2).

Example 15. Generating the attribute name for the object Subnet belonging to the package PN.

<PN.Subnet.name>

CBelt

</PN.Subnet.name>

Other attributes of the object are generated in a similar way. However, there is an excep-
tion in case of enumeration and boolean data types. Supposing that Subnet has the boolean
attribute isTrue its value is written using the prede�ned xmi.value tag to increase XML parser
validation.

Example 16. Generating a �ctive Boolean (enumeration) attribute for the object Subnet of
package PN.

<PN.Subnet.isTrue xmi.value='true'/>

Object references The attribute generation is followed by the Subnet object's references. A
reference (in the sense of the MOF Model) provides the object's navigability to linked objects.
XMI considers references to be of two di�erent types and treats them di�erently.

� A normal reference: an object linked to another via a link de�ned in the metamodel as

having an aggregation other than composite.

� A composite reference: an object linked to another via a link de�ned in the metamodel as

a composite association, with the composite end corresponding to link end of the composite

object.

It can be considered as a rule of thumb that in XMI, all of the normal references should be
written out before the composite references.

As our example does not contain any normal references at this point (at the root object), it
will be continued by a composite reference block.

16

Example 17. Continuing our running example of Figure 2.2, Class Subnet has a composite
reference places to the Place objects contained. Thus the complete de�nition of Place object

'a2' is embedded in the Subnet element.

On the other hand, Place object 'a2' (in addition to its attribute name) has a normal

reference relating itself to InputArc 'a4'. This reference is indicated by a contained InputArc

element with a single xmi.idref attribute.

<PN.Subnet.places>

<PN.Place xmi.id='a2'>

<PN.Place.name>

Ready

</PN.Place.name>

<PN.Place.inArc>

<PN.InputArc xmi.idref='a4'/>

</PN.Place.inArc>

</PN.Place>

</PN.Subnet.places>

The Ready Place contained by the CBelt Subnet is composed of an attribute (name) and a
normal reference (inArc) to an InputArc (as shown in Figure 2.2). Normal references are written
out by using the xmi.idref attributes for linking objects. Please note that the InputArc object
itself is not written at this point, which emphasize a major di�erence between normal and
composite references.

The generation process continues to generate all the composite elements of the root Subnet
object in a similar way. The complete XMI document of our running example (the simple Petri
Net model of Figure 2.2) is kept together with the Petri Net DTD in Appendix B.

Conclusion As a conclusion, the XMI standard of OMG may become a crucial factor in the in-
tegration of di�erent modelling tools of di�erent vendors. XMI is based upon the four{layer MOF
metamodelling concept, strictly distinguishing between metamodels and models (instances).

Furthermore, regarding XMI documents as ordinary XML documents, user{created models
can be distributed via the Internet. Document veri�cation has become much more easier as well,
using special Chomsky{like formal grammars, i.e. DTDs.

17

Chapter 3

A Model Interchange Format for

Graph Transformation Systems

In the panel discussion at GRATRA 2000, G. Taentzer expressed [11] that a common inter-
change format is badly needed to support model interchange between graph transformation
tools.

This chapter provides our proposed GraTra metamodel (and the derived GraTra DTD

in Appendix A) for such a format based on the metamodelling techniques of Chapter 1 and the
foundations of XMI in Chapter 2.

3.1 Supported Graph Transformation Features

As the DTD generation is automated with respect to a given MOF metamodel description,
only the underlying MOF{based GraTra metamodel is discussed in details in the current report.
As being our �rst proposal in the �eld, the most common structures of graph transformation
were attempted to be included in the metamodel. Therefore our GraTra metamodel focuses
on the underlying data structure and the issues of visualization are not supported directly. As
visualization is highly tool{dependent, it is better to describe it by the means of XMI extensions.

Furthermore, some of our constructs (e.g. relation, condition) are de�ned in a very high
abstraction level, which necessitates further metamodel re�nements in the future. The main
reason for this \liberal modelling" originates in the main goal of the report, i.e. to introduce
the concepts of MOF metamodelling and XMI documents for developing a common interchange
format for graph transformation systems.

As a result, the GraTra metamodel is able to cope with the following:

� Graph structure

{ typed, and attributed graphs (types and attributes associated to model elements like
nodes and edges),

{ hypergraphs (graphs with edges linking more than two nodes at a time),

{ hierarchical graphs (where an entire graph may be related to a node or edge on a
higher abstraction level),

{ variables and instances of graphs (to distinguish between graph instances and graph
schemata),

� Graph transformation approach

18

{ traditional graph transformation rules (following their de�nition in [1])

{ the triple graph grammar approach (e.g. [10]) used for bi{directional visual language
translation

{ our model transformation approach (see e.g. [12]) with rules structured as Left{
Right{Source{Target sides (called model transformation rules or LRST rules in the
sequel)

� Graph transformation (GT) system (de�ned in [1])

{ GT system (set of GT rules)

{ graph grammars (the extension of Chomsky grammars)

{ transformation units (a method for modular construction of rules and an extended
control
ow speci�cation)

� Mathematical extensions (at very high abstraction level)

{ relations, functions,

{ conditions,

Please note that a common GraTra metamodel may be independent from the applied graph
transformation method (e.g. single pushout, double pushout) as only the underlying data needs
to be changed. This requirement naturally includes the structure of rules or the description of
the system but excludes the process of a transformation step.

3.2 De�ning the GraTra Metamodel

3.2.1 Packages in the GraTra Metamodel

As the MOF standard allows a well{structured, modular construction of metamodels, the ele-
ments of the GraTra metamodel are discussed in this chapter in their container contexts (i.e.
their packages).

The GraTra metamodel is divided into six Packages following the main graph transformation
concepts and notations.

1. Core: Containing the basic elements like Nodes, Edges, Attributes, etc. and their abstract
superclasses

2. Graph: The de�nition of graphs, hypergraphs, hierarchical graphs.

3. GTRule: Graph transformation rules and their extensions for visual translation and
model transformation.

4. GTSystem: Graph transformation systems and graph grammars,

5. TransUnit: The metamodel of transformation units,

6. Math: And last but not least, major mathematical meta{structures, like relations, func-
tions and conditions.

Figure 3.1 summarizes these Packages together with their dependencies (please note that all
the �gures describing the GraTra metamodels are listed at the end of the section).

19

3.2.2 Core Metamodel Elements

Package Core (Figure 3.2) collects the main components that will be helpful to construct dif-
ferent sort of graphs. The model hierarchy starts from an abstract superclass (ModelElement).
Each ModelElement may be a variable or an instance as indicated by the boolean attribute
isVariable. (Emphasized elements with capital letters refer to the GraTra metamodel Classes
and not to the MOF Model itself.)

Two subclasses are inherited from ModelElement: the abstract TypedElement and the Type,
which can be instantiated. The relationship between them indicates that each ancestor of a
TypedElement may have a Type.

Another three Classes are inherited from TypedElement, namely, Attribute, Argument and
GraphElement, which is the superclass of Nodes and Edges. An Attribute have a name and a
value, and, naturally, the inherited relationship with Types. Argument has a single attribute
(order) for prescribing a speci�c order between Arguments.

3.2.3 Graph Metamodel Elements

As hypergraphs (with several source and target nodes) are a generalization of ordinary graphs,
our GraTra metamodel uses hypergraphs as the default graph model (Figure 3.3) and ordinary
graphs are specially constrained graph instances.

A Graph may contain several arbitrarily connected Nodes and Edges. Nodes can be reached
from an Edge via the attributes fromNode and toNode. An Edge is constrained to have at least
one source and target Node by the corresponding multiplicities. Both Nodes and Edges may
have additional Attributes.

Hierarchical graphs (HierGraph, Figure 3.4) are Graphs where each Node may contain a
Graph. The attribute parent of a HierGraph refers to the the container Node while the subgraph
(\sub" in a hierarchical sense) can be reached by the optional child attribute of a Node.

Naturally, it is possible to extend the GraTra metamodel for the case when edges may contain
graphs as well.

3.2.4 Mathematical Structures in GraTra Metamodel

Mathematical structures are also required in the GraTra metamodel since, for instance, graph
transformation rules contain two relations and an application condition. For that purpose,
relations on graphs (Relation) and Conditions are introduced in the Math Package.

Please note that the word Relation refers in the report to a set of concrete relation in-
stances (e.g rows in a relational database table). This ambiguity is indicated by Relation

and RelInstance. A RelInstance may have several Arguments, which has exactly one value
(usually a GraphElement).

3.2.5 Graph Transformation Rule Elements

In this �rst release of GraTra metamodel, three types of graph transformation rules are handled
(as indicated by inheritance in Figure 3.6). The original graph transformation rule (GTRule,
Figure 3.7) is strictly based on its de�nition in [1].

Every transformation rule (Rule) may have a priority and can be executed in a parallel or
sequential way. A graph transformation rule consists of a left{hand side graph (LHS), a right{
hand side graph (RHS), an interface graph interface, and, additionally, two relations (embRel,
glueRel) and an application condition (appCond).

20

Triple graph grammar rules (TGGRule, Figure 3.8) and our model transformation approach
(SGRule, Figure 3.9) are also included as two possible extension directions of a core GraTra
metamodel, however, these approaches can also be described by the traditional approach.

Triple graph grammar rules consist of a LHS graph, a RHS graph, a correspondence graph,
and (beside the application conditions), two relations coupling LHS and RHS with the corre-
spondence graph.

The model transformation approach is composed from four graphs (LHS{Source, LHS{
Target, RHS{Source, RHS{Target) and two relations connecting the corresponding LHS{and{
RHS, and the source{and{target graph elements.

3.2.6 Modelling Graph Transformation Systems

Both graph transformation systems (GTSystem) and graph grammars (GraphGrammar) are in-
cluded in the GraTra metamodel (see Figure 3.10).

Graph transformation systems (GTSystem) are a collection of rules (rules) while graph
grammars GraphGrammar are graph transformation systems (inheriting e.g. their rules) extended
by an initial graph (initial) and terminal type labels (terminal).

3.2.7 Modelling Transformation Units

In order to support transformation rule structuring, the concepts of transformation units (Trans-
Unit, Figure 3.11) are also de�ned in the GraTra metamodel, naturally, strictly following its
de�nition in [1].

A transformation unit has a name (as an own Attribute) and may also contain an initial
graph (initial) and a set of terminal graphs (terminals), any type of rules (rules), control
conditions (controlCond) and further imported transformation units (import).

3.3 The Graphical GraTra Metamodel

The submodels of the MOF{based GraTra metamodel are listed below. As the graph trans-
formation community is in the very �rst phase of standardization, our �rst proposal aiming to
provide a general description of graph transformation deals with only the major concepts, there-
fore, further extensions and re�nement will surely be needed (in corporation with the GraTra
community).

� Core concepts (Figure 3.2)

� Basic graph concepts (Figure 3.3)

� Hierarchical graphs (Figure 3.4)

� Mathematical concepts (Figure 3.5)

� Di�erent sort of graph transformation rules (Figure 3.6)

{ Graph transformation rules (Figure 3.7)

{ Triple graph grammars (Figure 3.8)

{ Our visual translation approach (Figure 3.9)

� Graph transformation systems (Figure 3.10)

21

� Transformation units (Figure 3.11)

Please note that relations with black diamonds are composite relations. Multiplicities are
always indicated in order to ensure that the automatically generated GraTra DTD is conform
with the GraTra metamodel.

A GraTra metamodel element has its corresponding XMI element in the DTD. The list of its
attributes is composed of own metamodel Attributes (like e.g. isVariable in ModelElement)
and the Role names of all navigable associations (e.g. fromNode in Edge).

Finally, Appendix A contains the generated DTD.

3.4 Conclusion

In the current report, a general model interchange format was introduced for graph transforma-
tion systems. Our proposal was based on the novel standard of the Object Management Group,
namely, the XML Metadata Interchange, which was developed to provide an easy interchange
of metadata between modelling tools and repositories in distributed environments.

An XMI{based model interchange format (serving as an XML{based format for graph trans-
formation tools) has several advantages.

� Only a slight knowledge of XML is required for the common format designers as the GraTra
DTD is automatically derived from a MOF metamodel of graph transformation.

� The GraTra metamodel is designed by a class diagram{like subset of the Uni�ed Modelling
Language (UML), called Meta Object Facility (MOF). Thus, designers formalize their
thoughts in the style of the widely{used standard of object{oriented software design.

� A graphical MOF diagram is more comprehensive (\legible") than a purely textual DTD
in a cooperative phase of design.

� MOF provide a well{structured design nesting the similar constructs into Packages.

� XMI is strongly related to CORBA hence providing a common programming interface as
well.

On the other hand, we must admit that our XMI{based solution may have a couple of
disadvantages as well in contrast with a pure XML solution.

� An XMI DTD may contain XML elements that are hardly ever used (e.g. Corba types).

� Long names of XMI elements with several dots are diÆcult to handle manually.

� More rigorous validity checks may be performed with respect to a pure XML DTD (espe-
cially, in case of basic data types).

As a conclusion, the MOF standard may become the standard model description of complex
metamodels in various academic and industrial �elds. Several sophisticated tools already exist
that are capable of producing the corresponding XMI DTD automatically, which reduces the
time spent on creating or updating an XML DTD signi�cantly. As a result, the design process of
XMI DTDs is characterized by a well{de�ned semi{formal method (in an analogy with entity{
relationship diagrams that rule the design of relational databases).

22

*75XOH

*UDSK

&RUH

0DWK

*76\VWHP 7UDQV8QLW

Figure 3.1: Graph Transformation package overview

7\SH

QDPH � 6WULQJ

1RGH (GJH

$WWULEXWH

QDPH

YDOXH

0RGHO(OHPHQW

LV9DULDEOH � %RROHDQ

7\SHG(OHPHQW

� ����� ����

$UJXPHQW

RUGHU � ,QWHJHU*UDSK(OHPHQW

Figure 3.2: Core graph transformation concepts

23

*UDSK

1RGH

�IURP &RUH�

�

���

�

���

FRQWDLQV

(GJH

�IURP &RUH�

���
���
 ���

�IURP1RGH
���

VRXUFH

���

���

�WR1RGH

���

���

WDUJHW

�

���

�

���

FRQWDLQV

$WWULEXWH

QDPH

YDOXH

�IURP &RUH�

�

���

�

���

�

���

�

���

Figure 3.3: Basic graph concept

*UDSK

1RGH

�IURP�&RUH�

+LHU*UDSK

����

����

�SDUHQW
����

�FKLOG ����

Figure 3.4: Modelling hierarchical graphs

5HODWLRQ

*UDSK(OHPHQW

�IURP�&RUH�

$UJXPHQW

RUGHU���,QWHJHU

�IURP�&RUH�
���

�
���

�OLQNHG(OHPHQW

�DUJ9DOXH

5HO,QVWDQFH

�

���

�

�DUJXPHQWV ���

����
 ����

Figure 3.5: Mathematical concepts

24

5XOH

SULRULW\���,QWHJHU

LV3DUDOOHO���%RROHDQ

*UD7UD5XOH 7**5XOH 6*5XOH

Figure 3.6: Modelling di�erent sort of graph transformation rules

*UDSK

�IURP *UDSK�

*UDSK

�IURP *UDSK�

*UDSK

�IURP *UDSK�

&RQGLWLRQ

FRQG � 6WULQJ

�IURP 0DWK�

5HODWLRQ

�IURP 0DWK�*UD7UD5XOH

�

�

�

�/+6
�

�

�

�

�5+6 �

�

����

�

�LQWHUIDFH

����

����
 �

�DSS&RQG

���

�

����

� �HPE5HO

����

5HODWLRQ

�IURP 0DWK�

�

����

�

�JOXH5HO

����

Figure 3.7: Modelling graph transformation rules

*UDSK
�IURP *UDSK�

*UDSK

�IURP *UDSK�

*UDSK

�IURP *UDSK�

&RQGLWLRQ

FRQG � 6WULQJ

�IURP 0DWK�
5HODWLRQ

�IURP 0DWK�
7**5XOH

�

�

�

�/+6
�

�

�

�

�FRUUHVSRQGHQFH

�

�

�

�

�5+6 �

�
���

�

�DSS&RQG

���

�

����

� �UHO/+6&RUU

����

5HODWLRQ

�IURP 0DWK�

�

����

�
�UHO5+6&RUU

����

Figure 3.8: Modelling triple graph grammars

25

5HODWLRQ

�IURP 0DWK�

*UDSK
�IURP *UDSK�

*UDSK

�IURP *UDSK�

*UDSK

�IURP *UDSK�

*UDSK

�IURP *UDSK�

&RQGLWLRQ

FRQG���6WULQJ

�IURP 0DWK� 6*5XOH

�

����

�

�/+66RXUFH
����

�

����

�

�/+67DUJHW

����

�

����

�

�5+66RXUFH

����

�

����

�

�5+67DUJHW

����

�
���

�

�DSS&RQG

���

�

����

� �UHO/5

����

5HODWLRQ

�IURP 0DWK�

�

����

�

�UHO67

����

Figure 3.9: Modelling the model transformation approach

*76\VWHP

5XOH

SULRULW\ � ,QWHJHU

LV3DUDOOHO � %RROHDQ

�IURP*75XOH�

�

���

�

�UXOHV ���

*UDSK

�IURP *UDSK�

*UDSK*UDPPDU

�

�

�

�LQLWLDO

�
7\SH

QDPH � 6WULQJ

�IURP &RUH�

�

���

�

�WHUP/DEHO

���

Figure 3.10: Modelling graph transformation systems

&RQGLWLRQ

FRQG � 6WULQJ

�IURP 0DWK�

*UDSK

�IURP *UDSK�
*UDSK

�IURP *UDSK�

5XOH

SULRULW\ � ,QWHJHU

LV3DUDOOHO � %RROHDQ

�IURP*75XOH�

7UDQV8QLW

QDPH � 6WULQJ

����
 �

�FRQWURO&RQG

���

�

����

�

�LQLWLDO

����

�

���

�

�WHUPLQDOV

���

�

���

�

�UXOHV
���

�LPSRUW

Figure 3.11: Modelling transformation units

26

Bibliography

[1] M. Andries, G. Engels, A. Habel, B. Ho�mann, H.-J. Kreowski, S. Kuske, D. Plump,
A. Sch�urr, and G. Taentzer. Graph transformation for speci�cation and programming.
Science of Computer Programming, (34):1{54, 1999.

[2] APPLIGRAPH. An ESPRIT Working Group for the Applications of Graph Transforma-
tion. http://www.informatik.uni-bremen.de/theorie/appligraph/.

[3] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. L�owe. Handbook of Graph
Grammars and Computing by Graph Transformations, volume 1: Foundations, chapter
Algebraic Approaches to Graph Transformation | Part I: Basic Concepts and Double
Pushout Approach, pages 163{245. World Scienti�c, 1997.

[4] H. Ehrig, R. Heckel, M. Kor�, M. L�owe, L. Ribeiro, A. Wagner, and A. Corradini. Handbook
of Graph Grammars and Computing by Graph Transformations, volume 1: Foundations,
chapter Algebraic Approaches to graph transformation | Part II: Single pushout approach
and comparison with double pushout approach, pages 247{312. World Scienti�c, 1997.

[5] GETGRATS. A TMR Research Network for a General Theory of Graph Transformation
Systems. http://www.di.unipi.it/ andrea/getgrats/.

[6] Object Management Group. XML Metadata Interchange, October 1998.
http://www.omg.org.

[7] Object Management Group. Meta Object Facility Version 1.3, September 1999.
http://www.omg.org.

[8] Object Management Group. Object Constraint Language Speci�cation Version 1.3, June
1999.
http://www.rational.com/uml.

[9] Object Management Group. UML Semantics Version 1.3, June 1999.
http://www.rational.com/uml.

[10] A. Sch�urr. Speci�cation of graph translators with triple graph grammars. Technical report,
RWTH Aachen, Fachgruppe Informatik, Germany, 1994.

[11] G. Taentzer. Panel Statement { Theory and practice of graph transformation: From histor-
ical roots to visions in the new milleneum. In H. Ehrig and G. Taentzer, editors, GRATRA
2000, Joint APPLIGRAPH and GETGRATS Workshop on Graph Transformation Sys-

tems, pages 275{276, March 2000.

27

[12] D. Varr�o. Automatic transformation of UML models. Master's thesis, Budapest University
of Technology and Economics, 2000.
http://domino.inf.mit.bme.hu/biblio.nsf.

28

Appendix A

GraTra DTD

<?xml version="1.0" encoding="UTF-8" ?>

<!-- XMI Automatic DTD Generation -->

<!-- Date: Sat Apr 22 19:12:39 CEST 2000 -->

<!-- Metamodel: GraTra1 -->

<!-- ___ -->

<!-- -->

<!-- XMI is the top-level XML element for XMI transfer text -->

<!-- ___ -->

<!ELEMENT XMI (XMI.header, XMI.content?, XMI.difference*,

XMI.extensions*) >

<!ATTLIST XMI

xmi.version CDATA #FIXED "1.0"

timestamp CDATA #IMPLIED

verified (true | false) #IMPLIED

>

<!-- ___ -->

<!-- -->

<!-- XMI.header contains documentation and identifies the model, -->

<!-- metamodel, and metametamodel -->

<!-- ___ -->

<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,

XMI.metametamodel*) >

<!-- ___ -->

<!-- -->

<!-- documentation for transfer data -->

<!-- ___ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |

XMI.longDescription | XMI.shortDescription |

XMI.exporter | XMI.exporterVersion |

XMI.notice)* >

<!ELEMENT XMI.owner ANY >

<!ELEMENT XMI.contact ANY >

<!ELEMENT XMI.longDescription ANY >

<!ELEMENT XMI.shortDescription ANY >

<!ELEMENT XMI.exporter ANY >

<!ELEMENT XMI.exporterVersion ANY >

<!ELEMENT XMI.exporterID ANY >

<!ELEMENT XMI.notice ANY >

<!-- ___ -->

<!-- -->

29

<!-- XMI.element.att defines the attributes that each XML element -->

<!-- that corresponds to a metamodel class must have to conform to -->

<!-- the XMI specification. -->

<!-- ___ -->

<!ENTITY % XMI.element.att

'xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid

CDATA #IMPLIED ' >

<!-- ___ -->

<!-- -->

<!-- XMI.link.att defines the attributes that each XML element that -->

<!-- corresponds to a metamodel class must have to enable it to -->

<!-- function as a simple XLink as well as refer to model -->

<!-- constructs within the same XMI file. -->

<!-- ___ -->

<!ENTITY % XMI.link.att

'xml:link CDATA #IMPLIED inline (true | false) #IMPLIED

actuate (show | user) #IMPLIED href CDATA #IMPLIED role

CDATA #IMPLIED title CDATA #IMPLIED show (embed | replace

| new) #IMPLIED behavior CDATA #IMPLIED xmi.idref IDREF

#IMPLIED xmi.uuidref CDATA #IMPLIED' >

<!-- ___ -->

<!-- -->

<!-- XMI.model identifies the model(s) being transferred -->

<!-- ___ -->

<!ELEMENT XMI.model ANY >

<!ATTLIST XMI.model

%XMI.link.att;

xmi.name CDATA #REQUIRED

xmi.version CDATA #IMPLIED

>

<!-- ___ -->

<!-- -->

<!-- XMI.metamodel identifies the metamodel(s) for the transferred -->

<!-- data -->

<!-- ___ -->

<!ELEMENT XMI.metamodel ANY >

<!ATTLIST XMI.metamodel

%XMI.link.att;

xmi.name CDATA #REQUIRED

xmi.version CDATA #IMPLIED

>

<!-- ___ -->

<!-- -->

<!-- XMI.metametamodel identifies the metametamodel(s) for the -->

<!-- transferred data -->

<!-- ___ -->

<!ELEMENT XMI.metametamodel ANY >

<!ATTLIST XMI.metametamodel

%XMI.link.att;

xmi.name CDATA #REQUIRED

xmi.version CDATA #IMPLIED

>

<!-- ___ -->

<!-- -->

<!-- XMI.content is the actual data being transferred -->

<!-- ___ -->

<!ELEMENT XMI.content ANY >

30

<!-- ___ -->

<!-- -->

<!-- XMI.extensions contains data to transfer that does not conform -->

<!-- to the metamodel(s) in the header -->

<!-- ___ -->

<!ELEMENT XMI.extensions ANY >

<!ATTLIST XMI.extensions

xmi.extender CDATA #REQUIRED

>

<!-- ___ -->

<!-- -->

<!-- extension contains information related to a specific model -->

<!-- construct that is not defined in the metamodel(s) in the header -->

<!-- ___ -->

<!ELEMENT XMI.extension ANY >

<!ATTLIST XMI.extension

%XMI.element.att;

%XMI.link.att;

xmi.extender CDATA #REQUIRED

xmi.extenderID CDATA #REQUIRED

>

<!-- ___ -->

<!-- -->

<!-- XMI.difference holds XML elements representing differences to a -->

<!-- base model -->

<!-- ___ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |

XMI.replace)* >

<!ATTLIST XMI.difference

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- XMI.delete represents a deletion from a base model -->

<!-- ___ -->

<!ELEMENT XMI.delete EMPTY >

<!ATTLIST XMI.delete

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- XMI.add represents an addition to a base model -->

<!-- ___ -->

<!ELEMENT XMI.add ANY >

<!ATTLIST XMI.add

%XMI.element.att;

%XMI.link.att;

xmi.position CDATA "-1"

>

<!-- ___ -->

<!-- -->

<!-- XMI.replace represents the replacement of a model construct -->

<!-- with another model construct in a base model -->

<!-- ___ -->

31

<!ELEMENT XMI.replace ANY >

<!ATTLIST XMI.replace

%XMI.element.att;

%XMI.link.att;

xmi.position CDATA "-1"

>

<!-- ___ -->

<!-- -->

<!-- XMI.reference may be used to refer to data types not defined in -->

<!-- the metamodel -->

<!-- ___ -->

<!ELEMENT XMI.reference ANY >

<!ATTLIST XMI.reference

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- This section contains the declaration of XML elements -->

<!-- representing data types -->

<!-- ___ -->

<!ELEMENT XMI.TypeDefinitions ANY >

<!ELEMENT XMI.field ANY >

<!ELEMENT XMI.seqItem ANY >

<!ELEMENT XMI.octetStream (#PCDATA) >

<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >

<!ATTLIST XMI.enum

xmi.value CDATA #REQUIRED

>

<!ELEMENT XMI.any ANY >

<!ATTLIST XMI.any

%XMI.link.att;

xmi.type CDATA #IMPLIED

xmi.name CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |

XMI.CorbaTcSequence | XMI.CorbaTcArray |

XMI.CorbaTcEnum | XMI.CorbaTcUnion |

XMI.CorbaTcExcept | XMI.CorbaTcString |

XMI.CorbaTcWstring | XMI.CorbaTcShort |

XMI.CorbaTcLong | XMI.CorbaTcUshort |

XMI.CorbaTcUlong | XMI.CorbaTcFloat |

XMI.CorbaTcDouble | XMI.CorbaTcBoolean |

XMI.CorbaTcChar | XMI.CorbaTcWchar |

XMI.CorbaTcOctet | XMI.CorbaTcAny |

XMI.CorbaTcTypeCode | XMI.CorbaTcPrincipal |

XMI.CorbaTcNull | XMI.CorbaTcVoid |

XMI.CorbaTcLongLong |

XMI.CorbaTcLongDouble) >

<!ATTLIST XMI.CorbaTypeCode

%XMI.element.att;

>

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcAlias

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >

<!ATTLIST XMI.CorbaTcStruct

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

32

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcField

xmi.tcName CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |

XMI.CorbaRecursiveType) >

<!ATTLIST XMI.CorbaTcSequence

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaRecursiveType EMPTY >

<!ATTLIST XMI.CorbaRecursiveType

xmi.offset CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcArray

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcObjRef EMPTY >

<!ATTLIST XMI.CorbaTcObjRef

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel) >

<!ATTLIST XMI.CorbaTcEnum

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >

<!ATTLIST XMI.CorbaTcEnumLabel

xmi.tcName CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >

<!ATTLIST XMI.CorbaTcUnionMbr

xmi.tcName CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*) >

<!ATTLIST XMI.CorbaTcUnion

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >

<!ATTLIST XMI.CorbaTcExcept

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcString EMPTY >

<!ATTLIST XMI.CorbaTcString

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcWstring EMPTY >

<!ATTLIST XMI.CorbaTcWstring

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcFixed EMPTY >

<!ATTLIST XMI.CorbaTcFixed

xmi.tcDigits CDATA #REQUIRED

xmi.tcScale CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcShort EMPTY >

<!ELEMENT XMI.CorbaTcLong EMPTY >

<!ELEMENT XMI.CorbaTcUshort EMPTY >

<!ELEMENT XMI.CorbaTcUlong EMPTY >

<!ELEMENT XMI.CorbaTcFloat EMPTY >

<!ELEMENT XMI.CorbaTcDouble EMPTY >

<!ELEMENT XMI.CorbaTcBoolean EMPTY >

<!ELEMENT XMI.CorbaTcChar EMPTY >

<!ELEMENT XMI.CorbaTcWchar EMPTY >

<!ELEMENT XMI.CorbaTcOctet EMPTY >

33

<!ELEMENT XMI.CorbaTcAny EMPTY >

<!ELEMENT XMI.CorbaTcTypeCode EMPTY >

<!ELEMENT XMI.CorbaTcPrincipal EMPTY >

<!ELEMENT XMI.CorbaTcNull EMPTY >

<!ELEMENT XMI.CorbaTcVoid EMPTY >

<!ELEMENT XMI.CorbaTcLongLong EMPTY >

<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

<!-- ___ -->

<!-- -->

<!-- METAMODEL: GraTra1 (own definitions) -->

<!-- ___ -->

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: GT -->

<!-- ___ -->

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: GTRule -->

<!-- ___ -->

<!ELEMENT GT.GTRule.GraTraRule.LHS (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.GraTraRule.RHS (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.GraTraRule.interface (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.GraTraRule.appCond (GT.Math.Condition)* >

<!ELEMENT GT.GTRule.GraTraRule.embRel (GT.Math.Relation)? >

<!ELEMENT GT.GTRule.GraTraRule.glueRel (GT.Math.Relation)? >

<!ELEMENT GT.GTRule.TGGRule.LHS (GT.Graph.Graph | GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.TGGRule.correspondence (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.TGGRule.RHS (GT.Graph.Graph | GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.TGGRule.appCond (GT.Math.Condition)* >

<!ELEMENT GT.GTRule.TGGRule.relLHSCorr (GT.Math.Relation)? >

<!ELEMENT GT.GTRule.TGGRule.relRHSCorr (GT.Math.Relation)? >

<!ELEMENT GT.GTRule.SGRule.LHSSource (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.SGRule.LHSTarget (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.SGRule.RHSSource (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.SGRule.RHSTarget (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTRule.SGRule.appCond (GT.Math.Condition)* >

<!ELEMENT GT.GTRule.SGRule.relLR (GT.Math.Relation)? >

<!ELEMENT GT.GTRule.SGRule.relST (GT.Math.Relation)? >

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: GraTraRule -->

<!-- ___ -->

<!ELEMENT GT.GTRule.GraTraRule (GT.GTRule.Rule.priority?,

GT.GTRule.Rule.isParallel?,

XMI.extension*,

GT.GTRule.GraTraRule.LHS?,

GT.GTRule.GraTraRule.RHS?,

GT.GTRule.GraTraRule.interface?,

GT.GTRule.GraTraRule.appCond*,

GT.GTRule.GraTraRule.embRel?,

GT.GTRule.GraTraRule.glueRel?)? >

<!ATTLIST GT.GTRule.GraTraRule

34

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: TGGRule -->

<!-- ___ -->

<!ELEMENT GT.GTRule.TGGRule (GT.GTRule.Rule.priority?,

GT.GTRule.Rule.isParallel?, XMI.extension*,

GT.GTRule.TGGRule.LHS?,

GT.GTRule.TGGRule.correspondence?,

GT.GTRule.TGGRule.RHS?,

GT.GTRule.TGGRule.appCond*,

GT.GTRule.TGGRule.relLHSCorr?,

GT.GTRule.TGGRule.relRHSCorr?)? >

<!ATTLIST GT.GTRule.TGGRule

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Rule -->

<!-- ___ -->

<!ELEMENT GT.GTRule.Rule.priority (#PCDATA | XMI.reference)* >

<!ELEMENT GT.GTRule.Rule.isParallel (#PCDATA | XMI.reference)* >

<!ELEMENT GT.GTRule.Rule (GT.GTRule.Rule.priority?,

GT.GTRule.Rule.isParallel?, XMI.extension*)? >

<!ATTLIST GT.GTRule.Rule

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: SGRule -->

<!-- ___ -->

<!ELEMENT GT.GTRule.SGRule (GT.GTRule.Rule.priority?,

GT.GTRule.Rule.isParallel?, XMI.extension*,

GT.GTRule.SGRule.LHSSource?,

GT.GTRule.SGRule.LHSTarget?,

GT.GTRule.SGRule.RHSSource?,

GT.GTRule.SGRule.RHSTarget?,

GT.GTRule.SGRule.appCond*,

GT.GTRule.SGRule.relLR?,

GT.GTRule.SGRule.relST?)? >

<!ATTLIST GT.GTRule.SGRule

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT GT.GTRule ((GT.GTRule.GraTraRule | GT.GTRule.TGGRule |

GT.GTRule.Rule | GT.GTRule.SGRule)*) >

<!ATTLIST GT.GTRule

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: Graph -->

<!-- ___ -->

<!ELEMENT GT.Graph.Graph.node (GT.Core.Node)* >

35

<!ELEMENT GT.Graph.Graph.edge (GT.Core.Edge)* >

<!ELEMENT GT.Core.Node.attribute (GT.Core.Attribute)* >

<!ELEMENT GT.Core.Edge.attribute (GT.Core.Attribute)* >

<!ELEMENT GT.Core.Node.child (GT.Graph.HierGraph)? >

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Graph -->

<!-- ___ -->

<!ELEMENT GT.Graph.Graph (XMI.extension*, GT.Graph.Graph.node*,

GT.Graph.Graph.edge*)? >

<!ATTLIST GT.Graph.Graph

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: HierGraph -->

<!-- ___ -->

<!ELEMENT GT.Graph.HierGraph.parent (GT.Core.Node)? >

<!ELEMENT GT.Graph.HierGraph (XMI.extension*,

GT.Graph.HierGraph.parent?,

GT.Graph.Graph.node*,

GT.Graph.Graph.edge*)? >

<!ATTLIST GT.Graph.HierGraph

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT GT.Graph ((GT.Graph.Graph | GT.Graph.HierGraph)*) >

<!ATTLIST GT.Graph

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: Core -->

<!-- ___ -->

<!ELEMENT GT.Core.TypedElement.type (GT.Core.Type)? >

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: TypedElement -->

<!-- ___ -->

<!ELEMENT GT.Core.TypedElement (GT.Core.ModelElement.isVariable?,

XMI.extension*,

GT.Core.TypedElement.type?)? >

<!ATTLIST GT.Core.TypedElement

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Node -->

<!-- ___ -->

<!ELEMENT GT.Core.Node (GT.Core.ModelElement.isVariable?,

XMI.extension*, GT.Core.TypedElement.type?,

GT.Core.Node.child?, GT.Core.Node.attribute*)? >

<!ATTLIST GT.Core.Node

%XMI.element.att;

36

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Edge -->

<!-- ___ -->

<!ELEMENT GT.Core.Edge.toNode (GT.Core.Node)* >

<!ELEMENT GT.Core.Edge.fromNode (GT.Core.Node)* >

<!ELEMENT GT.Core.Edge (GT.Core.ModelElement.isVariable?,

XMI.extension*, GT.Core.Edge.toNode*,

GT.Core.Edge.fromNode*,

GT.Core.TypedElement.type?,

GT.Core.Edge.attribute*)? >

<!ATTLIST GT.Core.Edge

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Attribute -->

<!-- ___ -->

<!ELEMENT GT.Core.Attribute.name >

<!ELEMENT GT.Core.Attribute.value >

<!ELEMENT GT.Core.Attribute (GT.Core.ModelElement.isVariable?,

GT.Core.Attribute.name?,

GT.Core.Attribute.value?, XMI.extension*,

GT.Core.TypedElement.type?)? >

<!ATTLIST GT.Core.Attribute

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Type -->

<!-- ___ -->

<!ELEMENT GT.Core.Type.name (#PCDATA | XMI.reference)* >

<!ELEMENT GT.Core.Type (GT.Core.ModelElement.isVariable?,

GT.Core.Type.name?, XMI.extension*)? >

<!ATTLIST GT.Core.Type

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: ModelElement -->

<!-- ___ -->

<!ELEMENT GT.Core.ModelElement.isVariable (#PCDATA | XMI.reference)* >

<!ELEMENT GT.Core.ModelElement (GT.Core.ModelElement.isVariable?,

XMI.extension*)? >

<!ATTLIST GT.Core.ModelElement

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Argument -->

<!-- ___ -->

<!ELEMENT GT.Core.Argument.order (#PCDATA | XMI.reference)* >

37

<!ELEMENT GT.Core.Argument.linkedElement (GT.Core.GraphElement |

GT.Core.Node | GT.Core.Edge)? >

<!ELEMENT GT.Core.Argument (GT.Core.ModelElement.isVariable?,

GT.Core.Argument.order?, XMI.extension*,

GT.Core.Argument.linkedElement?,

GT.Core.TypedElement.type?)? >

<!ATTLIST GT.Core.Argument

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: GraphElement -->

<!-- ___ -->

<!ELEMENT GT.Core.GraphElement (GT.Core.ModelElement.isVariable?,

XMI.extension*,

GT.Core.TypedElement.type?)? >

<!ATTLIST GT.Core.GraphElement

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT GT.Core ((GT.Core.TypedElement | GT.Core.Node | GT.Core.Edge |

GT.Core.Attribute | GT.Core.Type |

GT.Core.ModelElement | GT.Core.Argument |

GT.Core.GraphElement)*) >

<!ATTLIST GT.Core

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: Math -->

<!-- ___ -->

<!ELEMENT GT.Math.RelInstance.arguments (GT.Core.Argument)* >

<!ELEMENT GT.Math.Function.return (GT.Core.Argument)? >

<!ELEMENT GT.Math.Function.arguments (GT.Core.Argument)* >

<!ELEMENT GT.Math.Relation.relInstance (GT.Math.RelInstance)* >

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: RelInstance -->

<!-- ___ -->

<!ELEMENT GT.Math.RelInstance (XMI.extension*,

GT.Math.RelInstance.arguments*)? >

<!ATTLIST GT.Math.RelInstance

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Function -->

<!-- ___ -->

<!ELEMENT GT.Math.Function (XMI.extension*, GT.Math.Function.return?,

GT.Math.Function.arguments*)? >

<!ATTLIST GT.Math.Function

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

38

<!-- -->

<!-- METAMODEL CLASS: Condition -->

<!-- ___ -->

<!ELEMENT GT.Math.Condition.cond (#PCDATA | XMI.reference)* >

<!ELEMENT GT.Math.Condition (GT.Math.Condition.cond?, XMI.extension*)? >

<!ATTLIST GT.Math.Condition

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Relation -->

<!-- ___ -->

<!ELEMENT GT.Math.Relation (XMI.extension*,

GT.Math.Relation.relInstance*)? >

<!ATTLIST GT.Math.Relation

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT GT.Math ((GT.Math.RelInstance | GT.Math.Function |

GT.Math.Condition | GT.Math.Relation)*) >

<!ATTLIST GT.Math

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: GTSystem -->

<!-- ___ -->

<!ELEMENT GT.GTSystem.GTSystem.rules (GT.GTRule.Rule | GT.GTRule.SGRule |

GT.GTRule.TGGRule |

GT.GTRule.GraTraRule)* >

<!ELEMENT GT.GTSystem.GraphGrammar.initial (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.GTSystem.GraphGrammar.termLabel (GT.Core.Type)* >

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: GTSystem -->

<!-- ___ -->

<!ELEMENT GT.GTSystem.GTSystem (XMI.extension*,

GT.GTSystem.GTSystem.rules*)? >

<!ATTLIST GT.GTSystem.GTSystem

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: GraphGrammar -->

<!-- ___ -->

<!ELEMENT GT.GTSystem.GraphGrammar (XMI.extension*,

GT.GTSystem.GTSystem.rules*,

GT.GTSystem.GraphGrammar.initial?,

GT.GTSystem.GraphGrammar.termLabel*)?

>

<!ATTLIST GT.GTSystem.GraphGrammar

%XMI.element.att;

39

%XMI.link.att;

>

<!ELEMENT GT.GTSystem ((GT.GTSystem.GTSystem |

GT.GTSystem.GraphGrammar)*) >

<!ATTLIST GT.GTSystem

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: TransUnit -->

<!-- ___ -->

<!ELEMENT GT.TransUnit.TransUnit.controlCond (GT.Math.Condition)* >

<!ELEMENT GT.TransUnit.TransUnit.initial (GT.Graph.Graph |

GT.Graph.HierGraph)? >

<!ELEMENT GT.TransUnit.TransUnit.terminals (GT.Graph.Graph |

GT.Graph.HierGraph)* >

<!ELEMENT GT.TransUnit.TransUnit.rules (GT.GTRule.Rule |

GT.GTRule.SGRule |

GT.GTRule.TGGRule |

GT.GTRule.GraTraRule)* >

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: TransUnit -->

<!-- ___ -->

<!ELEMENT GT.TransUnit.TransUnit.name (#PCDATA | XMI.reference)* >

<!ELEMENT GT.TransUnit.TransUnit.import (GT.TransUnit.TransUnit)* >

<!ELEMENT GT.TransUnit.TransUnit (GT.TransUnit.TransUnit.name?,

XMI.extension*,

GT.TransUnit.TransUnit.import*,

GT.TransUnit.TransUnit.controlCond*,

GT.TransUnit.TransUnit.initial?,

GT.TransUnit.TransUnit.terminals*,

GT.TransUnit.TransUnit.rules*)? >

<!ATTLIST GT.TransUnit.TransUnit

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT GT.TransUnit ((GT.TransUnit.TransUnit)*) >

<!ATTLIST GT.TransUnit

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT GT ((GT.GTRule | GT.Graph | GT.Core | GT.Math | GT.GTSystem |

GT.TransUnit)*) >

<!ATTLIST GT

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT GraTra1 ((GT)*) >

<!ATTLIST GraTra1

%XMI.element.att;

%XMI.link.att;

>

40

Appendix B

XMI{Based Petri Net Models

B.1 A Sample Petri Net DTD

<?xml version="1.0" encoding="UTF-8" ?>

<!-- XMI Automatic DTD Generation -->

<!-- Date: Mon Apr 10 14:25:22 CEST 2000 -->

<!-- Metamodel: PetriNet -->

<!-- ___ -->

<!-- -->

<!-- XMI is the top-level XML element for XMI transfer text -->

<!-- ___ -->

<!ELEMENT XMI (XMI.header, XMI.content?, XMI.difference*,

XMI.extensions*) >

<!ATTLIST XMI

xmi.version CDATA #FIXED "1.0"

timestamp CDATA #IMPLIED

verified (true | false) #IMPLIED

>

<!-- ___ -->

<!-- -->

<!-- XMI.header contains documentation and identifies the model, -->

<!-- metamodel, and metametamodel -->

<!-- ___ -->

<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,

XMI.metametamodel*) >

<!-- ___ -->

<!-- -->

<!-- documentation for transfer data -->

<!-- ___ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |

XMI.longDescription | XMI.shortDescription |

XMI.exporter | XMI.exporterVersion |

XMI.notice)* >

<!ELEMENT XMI.owner ANY >

<!ELEMENT XMI.contact ANY >

<!ELEMENT XMI.longDescription ANY >

41

<!ELEMENT XMI.shortDescription ANY >

<!ELEMENT XMI.exporter ANY >

<!ELEMENT XMI.exporterVersion ANY >

<!ELEMENT XMI.exporterID ANY >

<!ELEMENT XMI.notice ANY >

<!-- ___ -->

<!-- -->

<!-- XMI.element.att defines the attributes that each XML element -->

<!-- that corresponds to a metamodel class must have to conform to -->

<!-- the XMI specification. -->

<!-- ___ -->

<!ENTITY % XMI.element.att

'xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid

CDATA #IMPLIED ' >

<!-- ___ -->

<!-- -->

<!-- XMI.link.att defines the attributes that each XML element that -->

<!-- corresponds to a metamodel class must have to enable it to -->

<!-- function as a simple XLink as well as refer to model -->

<!-- constructs within the same XMI file. -->

<!-- ___ -->

<!ENTITY % XMI.link.att

'xml:link CDATA #IMPLIED inline (true | false) #IMPLIED

actuate (show | user) #IMPLIED href CDATA #IMPLIED role

CDATA #IMPLIED title CDATA #IMPLIED show (embed | replace

| new) #IMPLIED behavior CDATA #IMPLIED xmi.idref IDREF

#IMPLIED xmi.uuidref CDATA #IMPLIED' >

<!-- ___ -->

<!-- -->

<!-- XMI.model identifies the model(s) being transferred -->

<!-- ___ -->

<!ELEMENT XMI.model ANY >

<!ATTLIST XMI.model

%XMI.link.att;

xmi.name CDATA #REQUIRED

xmi.version CDATA #IMPLIED

>

<!-- ___ -->

<!-- -->

<!-- XMI.metamodel identifies the metamodel(s) for the transferred -->

<!-- data -->

<!-- ___ -->

<!ELEMENT XMI.metamodel ANY >

<!ATTLIST XMI.metamodel

%XMI.link.att;

xmi.name CDATA #REQUIRED

xmi.version CDATA #IMPLIED

>

<!-- ___ -->

<!-- -->

42

<!-- XMI.metametamodel identifies the metametamodel(s) for the -->

<!-- transferred data -->

<!-- ___ -->

<!ELEMENT XMI.metametamodel ANY >

<!ATTLIST XMI.metametamodel

%XMI.link.att;

xmi.name CDATA #REQUIRED

xmi.version CDATA #IMPLIED

>

<!-- ___ -->

<!-- -->

<!-- XMI.content is the actual data being transferred -->

<!-- ___ -->

<!ELEMENT XMI.content ANY >

<!-- ___ -->

<!-- -->

<!-- XMI.extensions contains data to transfer that does not conform -->

<!-- to the metamodel(s) in the header -->

<!-- ___ -->

<!ELEMENT XMI.extensions ANY >

<!ATTLIST XMI.extensions

xmi.extender CDATA #REQUIRED

>

<!-- ___ -->

<!-- -->

<!-- extension contains information related to a specific model -->

<!-- construct that is not defined in the metamodel(s) in the header -->

<!-- ___ -->

<!ELEMENT XMI.extension ANY >

<!ATTLIST XMI.extension

%XMI.element.att;

%XMI.link.att;

xmi.extender CDATA #REQUIRED

xmi.extenderID CDATA #REQUIRED

>

<!-- ___ -->

<!-- -->

<!-- XMI.difference holds XML elements representing differences to a -->

<!-- base model -->

<!-- ___ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |

XMI.replace)* >

<!ATTLIST XMI.difference

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- XMI.delete represents a deletion from a base model -->

43

<!-- ___ -->

<!ELEMENT XMI.delete EMPTY >

<!ATTLIST XMI.delete

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- XMI.add represents an addition to a base model -->

<!-- ___ -->

<!ELEMENT XMI.add ANY >

<!ATTLIST XMI.add

%XMI.element.att;

%XMI.link.att;

xmi.position CDATA "-1"

>

<!-- ___ -->

<!-- -->

<!-- XMI.replace represents the replacement of a model construct -->

<!-- with another model construct in a base model -->

<!-- ___ -->

<!ELEMENT XMI.replace ANY >

<!ATTLIST XMI.replace

%XMI.element.att;

%XMI.link.att;

xmi.position CDATA "-1"

>

<!-- ___ -->

<!-- -->

<!-- XMI.reference may be used to refer to data types not defined in -->

<!-- the metamodel -->

<!-- ___ -->

<!ELEMENT XMI.reference ANY >

<!ATTLIST XMI.reference

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- This section contains the declaration of XML elements -->

<!-- representing data types -->

<!-- ___ -->

<!ELEMENT XMI.TypeDefinitions ANY >

<!ELEMENT XMI.field ANY >

<!ELEMENT XMI.seqItem ANY >

<!ELEMENT XMI.octetStream (#PCDATA) >

<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >

<!ATTLIST XMI.enum

xmi.value CDATA #REQUIRED

>

44

<!ELEMENT XMI.any ANY >

<!ATTLIST XMI.any

%XMI.link.att;

xmi.type CDATA #IMPLIED

xmi.name CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |

XMI.CorbaTcSequence | XMI.CorbaTcArray |

XMI.CorbaTcEnum | XMI.CorbaTcUnion |

XMI.CorbaTcExcept | XMI.CorbaTcString |

XMI.CorbaTcWstring | XMI.CorbaTcShort |

XMI.CorbaTcLong | XMI.CorbaTcUshort |

XMI.CorbaTcUlong | XMI.CorbaTcFloat |

XMI.CorbaTcDouble | XMI.CorbaTcBoolean |

XMI.CorbaTcChar | XMI.CorbaTcWchar |

XMI.CorbaTcOctet | XMI.CorbaTcAny |

XMI.CorbaTcTypeCode | XMI.CorbaTcPrincipal |

XMI.CorbaTcNull | XMI.CorbaTcVoid |

XMI.CorbaTcLongLong |

XMI.CorbaTcLongDouble) >

<!ATTLIST XMI.CorbaTypeCode

%XMI.element.att;

>

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcAlias

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >

<!ATTLIST XMI.CorbaTcStruct

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcField

xmi.tcName CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |

XMI.CorbaRecursiveType) >

<!ATTLIST XMI.CorbaTcSequence

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaRecursiveType EMPTY >

<!ATTLIST XMI.CorbaRecursiveType

xmi.offset CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcArray

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcObjRef EMPTY >

<!ATTLIST XMI.CorbaTcObjRef

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel) >

<!ATTLIST XMI.CorbaTcEnum

45

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >

<!ATTLIST XMI.CorbaTcEnumLabel

xmi.tcName CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >

<!ATTLIST XMI.CorbaTcUnionMbr

xmi.tcName CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*) >

<!ATTLIST XMI.CorbaTcUnion

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >

<!ATTLIST XMI.CorbaTcExcept

xmi.tcName CDATA #REQUIRED

xmi.tcId CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTcString EMPTY >

<!ATTLIST XMI.CorbaTcString

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcWstring EMPTY >

<!ATTLIST XMI.CorbaTcWstring

xmi.tcLength CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcFixed EMPTY >

<!ATTLIST XMI.CorbaTcFixed

xmi.tcDigits CDATA #REQUIRED

xmi.tcScale CDATA #REQUIRED

>

<!ELEMENT XMI.CorbaTcShort EMPTY >

<!ELEMENT XMI.CorbaTcLong EMPTY >

<!ELEMENT XMI.CorbaTcUshort EMPTY >

<!ELEMENT XMI.CorbaTcUlong EMPTY >

<!ELEMENT XMI.CorbaTcFloat EMPTY >

<!ELEMENT XMI.CorbaTcDouble EMPTY >

<!ELEMENT XMI.CorbaTcBoolean EMPTY >

<!ELEMENT XMI.CorbaTcChar EMPTY >

<!ELEMENT XMI.CorbaTcWchar EMPTY >

<!ELEMENT XMI.CorbaTcOctet EMPTY >

<!ELEMENT XMI.CorbaTcAny EMPTY >

<!ELEMENT XMI.CorbaTcTypeCode EMPTY >

<!ELEMENT XMI.CorbaTcPrincipal EMPTY >

<!ELEMENT XMI.CorbaTcNull EMPTY >

<!ELEMENT XMI.CorbaTcVoid EMPTY >

<!ELEMENT XMI.CorbaTcLongLong EMPTY >

<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

<!-- ___ -->

<!-- -->

<!-- METAMODEL: PetriNet (private definitions) -->

<!-- ___ -->

<!ELEMENT PN.Subnet.places (PN.Place)* >

<!ELEMENT PN.Subnet.inputArcs (PN.InputArc)* >

46

<!ELEMENT PN.Subnet.transitions (PN.Transition)* >

<!ELEMENT PN.Subnet.outputArcs (PN.OutputArc)* >

<!ELEMENT PN.Subnet.subnets (PN.Subnet)* >

<!-- ___ -->

<!-- -->

<!-- METAMODEL PACKAGE: PN -->

<!-- ___ -->

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Place -->

<!-- ___ -->

<!ELEMENT PN.Place.bound (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Place.name (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Place.tokens (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Place.inArc (PN.InputArc)* >

<!ELEMENT PN.Place.outArc (PN.OutputArc)* >

<!ELEMENT PN.Place (PN.Place.bound?, PN.Place.name?, PN.Place.tokens?,

XMI.extension*, PN.Place.inArc*, PN.Place.outArc*)? >

<!ATTLIST PN.Place

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: InputArc -->

<!-- ___ -->

<!ELEMENT PN.InputArc.fromPlace (PN.Place)? >

<!ELEMENT PN.InputArc.toTransition (PN.Transition)? >

<!ELEMENT PN.InputArc (PN.Arc.weight?, XMI.extension*,

PN.InputArc.fromPlace?,

PN.InputArc.toTransition?)? >

<!ATTLIST PN.InputArc

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Transition -->

<!-- ___ -->

<!ELEMENT PN.Transition.name (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Transition.guard (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Transition.random_variable (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Transition.memory_policy (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Transition.priority (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Transition.inArc (PN.InputArc)* >

<!ELEMENT PN.Transition.outArc (PN.OutputArc)* >

<!ELEMENT PN.Transition (PN.Transition.name?, PN.Transition.guard?,

PN.Transition.random_variable?,

PN.Transition.memory_policy?,

47

PN.Transition.priority?, XMI.extension*,

PN.Transition.inArc*, PN.Transition.outArc*)? >

<!ATTLIST PN.Transition

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: OutputArc -->

<!-- ___ -->

<!ELEMENT PN.OutputArc.fromTransition (PN.Transition)? >

<!ELEMENT PN.OutputArc.toPlace (PN.Place)? >

<!ELEMENT PN.OutputArc (PN.Arc.weight?, XMI.extension*,

PN.OutputArc.fromTransition?,

PN.OutputArc.toPlace?)? >

<!ATTLIST PN.OutputArc

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Arc -->

<!-- ___ -->

<!ELEMENT PN.Arc.weight (#PCDATA | XMI.reference)* >

<!ELEMENT PN.Arc (PN.Arc.weight?, XMI.extension*)? >

<!ATTLIST PN.Arc

%XMI.element.att;

%XMI.link.att;

>

<!-- ___ -->

<!-- -->

<!-- METAMODEL CLASS: Subnet -->

<!-- ___ -->

<!ELEMENT PN.Subnet.name >

<!ELEMENT PN.Subnet (PN.Subnet.name?, XMI.extension*,

PN.Subnet.inputArcs*, PN.Subnet.transitions*,

PN.Subnet.subnets*, PN.Subnet.places*,

PN.Subnet.outputArcs*)? >

<!ATTLIST PN.Subnet

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT PN ((PN.Place | PN.InputArc | PN.Transition | PN.OutputArc |

PN.Arc | PN.Subnet)*) >

<!ATTLIST PN

%XMI.element.att;

%XMI.link.att;

>

48

<!ELEMENT PetriNet ((PN)*) >

<!ATTLIST PetriNet

%XMI.element.att;

%XMI.link.att;

>

49

B.2 A Sample Petri Net Model

<?xml version = `1.0' encoding = `ISO88591' ?>

<!DOCTYPE XMI SYSTEM 'file:PetriNet.dtd' >

<XMI xmi.version='1.0'>

<XMI.header>

<XMI.metamodel xmi.name = `PetriNet' xmi.version = `0.1'/>

</XMI.header>

<xmi.content>

<PN.Subnet xmi.id='a1'>

<PN.Subnet.name>

CBelt

</PN.Subnet.name>

<PN.Subnet.places>

<PN.Place xmi.id='a2'>

<PN.Place.name>

Ready

</PN.Place.name>

<PN.Place.inArc>

<PN.InputArc xmi.idref='a4'/>

</PN.Place.inArc>

</PN.Place>

</PN.Subnet.places>

<PN.Subnet.transitions>

<PN.Transition xmi.id='a3'>

<PN.Transition.inArc>

<PN.InputArc xmi.idref='a4'/>

</PN.Transition.inArc>

<PN.Transition.outArc>

<PN.OutputArc xmi.idref='a5'/>

</PN.Transition.outArc>

</PN.Transition>

</PN.Subnet.transitions>

<PN.Subnet.inArcs>

<PN.InputArc xmi.id='a4'>

<PN.InputArc.fromPlace>

<PN.Place xmi.idref='a2'/>

</PN.InputArc.fromPlace>

<PN.InputArc.toTransition>

<PN.Transition xmi.idref='a3'/>

</PN.InputArc.toTransition>

</PN.InputArc>

</PN.Subnet.inArcs>

<PN.Subnet.outArcs>

<PN.OutArc xmi.id='a5'>

<PN.OutputArc.toPlace>

<PN.Place xmi.idref='a7'/>

</PN.OutputArc.toPlace>

<PN.OutputArc.fromTransition>

<PN.Transition xmi.idref='a3'/>

</PN.OutputArc.fromTransition>

</PN.OutArc>

</PN.Subnet.outArcs>

<PN.Subnet.subnets>

<PN.Subnet xmi.id='a6'>

<PN.Subnet.name>

Box

</PN.Subnet.name>

<PN.Subnet.places>

50

<PN.Place xmi.id = 'a7'>

<PN.Place.name>

Ready

</PN.Place.name>

<PN.Place.outArc>

<PN.OutputArc xmi.idref='a5'/>

</PN.Place.outArc>

</PN.Place>

</PN.Subnet.places>

</PN.Subnet>

</PN.Subnet.subnets>

</PN.Subnet>

</xmi.content>

</XMI>

51

