
Deliverable 5

The Demonstrator

Esprit Project 27439 - HIDE

High-level Indegrated Design Environment for
Dependability

Gy. Csert�an, M. Dal Cin, G. Huszerl, J. J�avorsky, K. Kosmidis, A.

Pataricza, Cs. Sz�asz

Friedrich-Alexander-Universit�at Erlangen-N�urnberg (FAU)

Conzorcio Pisa Ricerche-Pisa Dependable Computing Centre (PDCC)

Technical University of Budapest (TUB)

HIDE/D5/TUB/1/v2

Analysis tool

UML
meta-model

Figure 1: Analysis steps of an UML model

1 The HIDE core technology

In this section the HIDE core technology is presented according to the de�nition elaborated

in work phase 2. In phase 2 many new features have to be implemented which are missing in

the �rst phase, like fault-tolerant component library, fault-injection engine, back-annotation. If

we propose for the next phase the technology used in the �rst, then we must investigate it's

capability to handle the new features.

The HIDE repository must enable the following features:

� Storage of UML models designed in a CASE tool

� Storage of the generated models for target tools

� Storage and execution of the transformation library

� Storage of fault tolerant components (conform the UML meta-model)

Phase 1 showed that the implementation of the HIDE repository on the basis of a relational

database system is useful not only for rapid prototyping but it is also a very universal approach,

adaptable for other projects as well, when di�erent tools must be integrated.

There is a wide range of usable programming languages for implementing the features of

the HIDE environment as most languages have a standard interface for handling relational

databases. In spite of variety of choosable programming language, the most e�ective one is the

standard internal programing language of the relational databases, the PL/SQL.

2

2 Transformation from the UML tools to the HIDE database

As in the previous sections already presented, the starting point of implementing any model-

transformation is to have the UML model in the HIDE repository. In the Section X the nearly-

automatic generation of a UML database scheme was presented. In the following section the

generated database scheme is presented, then the implementation of the export feature from

CASE tool to the HIDE repository.

2.1 The database structure

The DDL �le (see Deliverable 3. for detail), which holds the statements for creating the database

scheme corresponding to the UML meta-model, can be used on most relation database systems.

The database scheme contains 125 database tables, each table storing one aspect of the UML

model. For example a table will store the instances of generalizations between classes, while

others the properties of an attribute.

The most important concept in the database scheme is that the IDs identifying an object in

an UML model can hold any ID used and given by an arbitrary CASE tool. Thus, it can hold

the UML model exported from various CASE tools, while preparing the IDs given by the host

tool. This is very important when after the formal analysis the results must be visualized in

the tool. Without the ability of connecting the results to one or more particular objects in the

original UML model, the results cannot be interpreted and used. Therefore, it is supposed that

the IDs are preserved all the way through the model-transformation and the analysis.

2.2 Transformation to the database

In the demonstrator, as a front-end UML CASE tool, the Innovator was integrated. Its internal

script language is the Tcl/Tk. This standard script language is extended with functions that

can read and write the repository holding the UML model. In order to enable on-line connection

to the database holding the HIDE repository it was extended, so that in Windows platform it

can connect to various databases through ODBC interface.

As part of the demonstrator the export function was implemented which can export the

content of the repository in a text format or directly into the database. In the �rst case the

exported �le must be executed inside the database (for inserting the exported data into the

database), while in the second case the data exported from the repository is inserted into the

database during the execution of the script.

The export script exports only the logic aspect of the UML model, i.e.. the visual properties

are ignored, because the analysis tools cannot utilize these information.

The script can be executed using a menu, integrated into Innovator (Figure 2). This way,

after designing a UML model in the Innovator, the contents can be exported by selecting a

menu item.

3

Figure 2: Extending the Innovator with export feature

3 Transformation generation toolbox and its application to se-

lected transformations

In this section two model transformation implementations and their integration into the host

UML CASE tool is presented. In the demonstrator example not every possibility was used to

make the integration of the analysis procedure as user-friendly as possible. The execution of the

transformation procedure, which makes the conversion between the UML model and the target

model, can be initialized inside the CASE tool, however the execution of the analysis tool with

the generated input �le and the result analysis must be done by the user, which means that he

must understand the results generated by the analysis tool. The elimination of this leakage will

be the task of the second work phase as shown in Figure 1 (steps 4-7).

3.1 Transformation from UML to Spin1

3.1.1 Introduction

In accordance with our previous consideration the process of transformation to Promela starts

with the transformation of the statechart into an intermediate form, on the basis of which then

the transformation will occur according to the stated rules. This intermediate form is the EHA

(Extended Hierarchical Automaton).

The very same consideration holds for our transformation, i.e. an EHA database is created

on the basis of the generated UML database, with the aid of which EHA database the rules will

then be implemented.

1For a short description of the Spin see Deliverable 3.

4

It is important to stress that the EHA database is independent of SPIN, i.e. the structure

within the EHA is one equivalent to the statechart. Thus, if needed and if the conversion rules

are properly modeled the mass of data can be converted to the input language of other tools.

The programming language used is PL/SQL.

3.1.2 The structure of the EHA

Four major tables constitute the structure of the EHA database, the content of which is gener-

ated from the UML database. These are:

� State,

� Seqaut,

� Transition,

� Trlabel.

These tables describe the EHA as follows. Table State contains the states of EHA and

table Seqaut includes the di�erent sequential automatons, while Table Transition comprises the

transitions de�ning the automaton they have been moved to and also the corresponding source

and target states. Finally, table Trlabel is the one already given at the de�nition of the EHA,

including all transitions with source and target states, the events that triger these transitions

and also their possible guards, etc.

Three additional tables are generated for the transformation, yet these are only auxiliary

tables needed for programming technique considerations such as decreasing procedure time, etc.

In the followings the EHA database, the �elds of the di�erent major tables and the meaning

of these �elds are discussed in detail.

3.1.3 The State Table

The �elds of the table are :

� ID :character

� Seqaut: character

� IsBasic: numeric

� IsInitial: numeric

� StName: character

� Pos: numeric

5

Field ID is the same as �eld ID in the State table of UML database. Field Seqaut indicates

the sequential automaton of the Extended Hierarchical Automaton, in which the given state is

found. The value of IsBasic is either 1 or 0. Value 1 means that the given state is a basic state

in the EHA, while value 0 means that the given state is not a basic state. Field IsInitial is very

similar to IsBasic, it indicates whether the given state is a initial state of the EHA or not.

Field StName indicates the name the user has attributed to the given state in the original

statechart, while Field Pos simply contains serial numbers to states starting from 0. It is needed

for later designation of states in the generated Promela code as:

S < serialnumber >< >< statename >

Both �elds ID and Pos have di�erent values for each state, the primary key is �eld ID, while

the foreign key is �eld ID in the following Seqaut table corresponding to �eld SeqAut in table

State.

3.1.4 The Seqaut Table

This table contains the following �eldsl:

� ID: character

� IsRoot: numeric

� ParState: character

Field ID �gures the identi�ers of sequentiel automatons that were de�ned during the pro-

duction of table State. According to the EHA �eld IsRoot is 1 for the root automaton, i.e. at

the top hierachy automaton, while it is 0 for any other automatons.

Field ParState contains the parent state of a given automaton, i.e. the state, from which

the EHA derives. Obviously, this �eld is void for the root automaton, while it is �lled in for all

the other automatons. The sate is identi�ed by the ID �eld of table State.

In this table the primary key is ID.

3.1.5 The Transition Table

The �elds of the table are:

� ID: character

� Transition: character

� SeqAut: character

� Target: character

� Source: character

6

� Label: character

Field ID is equivalent to the ID �eld in the transition table of the UML database, while �eld

Transition is an identi�er generated by us and with the following syntax:

t < serialnumber >

Field Label is generated alike, it identi�es the label belonging to the transition and its

structure is:

l < serialnumber >

Field SeqAut contains the identi�er of a sequential automaton, since the target and source

states of a transition have to be in the same sequential automaton in the EHA. Therefore, �eld

Seqaut contains the automaton, in which the transition is found. Field Target and Source com-

prise state identi�ers (corresponding to �eld ID of table State). These states are those, in which

the transition arrives or from which it starts. These �elds are not the original ones, because

in the statechart there may be interlevel transitions, and it was proposed in the theoretical

bases that in this case the transition has to be moved to that level of the extended hierarhical

automaton where it can be handled as a simple transition.

Fields ID, Transition and Label have all di�erent values for each state, the primary key is

�eld ID, while the foreign key is �eld Label, which corresponds to �eld LabelID in the following

Trlabel table.

3.1.6 The Trlabel Table

The �elds of the table are:

� LabelID: character

� TransitionID: character

� Target: character

� Source: character

� Event: character

� EvName: character

� EvPos: numeric

� Action: character

� Guard: character

7

Fields LabelID and TransitionID correspond to �elds Transition and Label of the Transi-

tion table. Fields Target and Source contain the original target state and source state of the

transition, i.e. the states between which the transitions really occur. These states �gure in �eld

Transition of Transition table of the UML database.

Field Event contains the identi�er of the event, which triggers the transition, this identi�er

corresponds to the event identi�er of the UML database. However, �eld EvName contains the

original name of the event given by the user. If a transition is not be triggered by an event

then this �eld contains the string "pseudoevent". Field EvPos comprises a serial number, all

particular event names have particular serial numbers. This fact does not mean that all of the

transitions have their own serial numbers because the same event can trigger more transitions.

An action generated by a transition �gures in �eld Action if an action belongs to this

transition. In case there is no generated action the �eld is void. Similar considerations are valid

for �eld Guard: if a transition has a guard then it �gures in this �eld, if not then the �eld is

void.

Both �elds LabelID and TrasitionID have di�erent values for di�erent states in the table.

The primary key to the table is LabelID, while the foreign key is TransitionID corresponding

to �eld Transition of table Transition.

3.1.7 The Possibility of Back Annotation

During the generation of the Promela code variable names generated by us are used in order

to help the better understanding of the code, since for the time being the veri�cation of SPIN

is a manual process. However, in the EHA database original UML identi�ers �gure as well,

therefore following the automatic SPIN veri�cation it will be easy to back-trace the results up

to the UML database and then to do it from there back up to the model. This all means that

there is no theoretical hindrance to the future realisation of back-annotation.

3.1.8 From Statechart Diagrams to Kripke Structures Sketch of an Algorithm

In the following an algorithm for building the Kripke Structure resulting by applying the opera-

tional semantics of UML Statechart Diagrams de�ned de�ned in Deliverable 2 to a statechart is

sketched. The description of the algorithm is rather informal, given in a kind of pseudo-pascal

notation, where, on the other hand, set notation is freely used.

The input to the algorithm is a extended hierarchical automaton H and its initial status

(C0; E0). It uses relations A " P :: (C; feg)
L
�! (C0; E 0) and (Sel E e E 0), de�ned in Deliverable

2, as boolean functions. Also function join on event queues, de�ned in Deliverable 2, is used.

The termination condition is reached when there are no more (new) statuses to analyze. At

this point, the output of the alrorithm is given by the values of the variables St and Tr holding

respectively the set of statuses and the set of step-transitions of the resulting Kripke Structure

(the initial status is that given as an input). The algorithm is given in Fig 3.

8

Types

EHA (* to represent extended hierarchical automata *)

State (* to represent states *)

Event (* to represent events *)

Queue = queue of Event

Con�g = set of State

Status (* to represent a status as a pair

(con�guration, event queue) *)

S-Transition (* to represent a STEP-transition as a pair of statuses *)

Variables

H : EHA

S : set of Status (* Stores the set of currently generated statuses *)

St : set of Status (* Stores the set of currently analyzed statuses *)

Tr : set of S-Transition(* Stores the set of currently generated transitions *)

C; C0: Con�g

e : Event

E ; E 0; E 00 : Queue

Initialization

H := (* the input extended hierarchical automaton *);

S := f(C0; E0)g;

St:= ;;

Tr:= ;;

repeat

begin

select any element from S and assign it to (C; E);

S := S nf(C; E)g;

St := St [f(C; E)g;

for (e; E 00) in f(x; Y) j (Sel E e Y)g do

if H " ; :: (C; feg)
L
�! (C0; E 0) for some set of transitions L, and status (C0; E 0)

then begin

S:= S [(f(C0; joinE 0 E 00)gn St);

Tr:= Tr [f((C; E); (C0; joinE 0 E 00))g

end

end

until S 6= ;

Figure 3: KS algorithm sketch

9

3.1.9 The Transformation

The transformation has been carried out according to the previously-de�ned rules.

3.2 Extending the CASE tools with HIDE engine

As the CASE tool used in the demonstrator is the Innovator, the extension mechanism has the

following steps:

1. Extending the Innovator with the Export function, which will export a UML model into

the HIDE repository. This must be done only once, and used for all transformations.

2. Extending the Innovator with a Tcl script, which will execute the transformation procedure

(written in PL/SQL and stored by the database) inside the database. This function is

responsible for transforming the UML model stored in the database to the meta-model of

the target analysis tool. It must also generate the input �le of the target tool.

3. Optionally: Initiating the analysis with the target tool with the generated �le as input.

This is not always possible, as the analysis tools used in Phase 1. can only be executed

in UNIX platform.

The Innovator extensibility interface supports user de�ned menus to be added, which call

some prede�ned Tcl scripts. These scripts can connect to the internal repository of the Innova-

tor, as well as, { this is implemented only on the Windows platform in Phase 1.{ to the HIDE

repository.

4 The fault injections engine

In work Phase 1 no fault injection engine was implemented, since model extensions and trans-

formations that rely on the fault injection engine were not selected for implementation.

5 The back-annotation mechanism

In work Phase 1. no back-annotation mechanisms were implemented, but the implemented

transformations try to propagate as many information about the original UML model as possible.

This is necessary, when we want to understand, moreover, to automatically analyze the results

generated by the analysis tool. The easiest way for enabling back-annotation is by preserving

the internal IDs given by UML CASE tool. This way, we can go back directly to the element

in the original UML model in the host CASE tool.

In the second work phase when implementing the transformations, additional e�ort must

be addressed for preserving the information (at least the IDs of the elements) needed for back-

annotation.

10

6 Production Cell as Demonstrator Example

6.1 Introduction

The production cell is a benchmark [Claus Lewerentz and Thomas Lindner, editors. Formal

Development of Reactive Systems, volume 891 of Lecture Notes in Computer Science. Springer-

Verlag, January 1995] in modelling embedded systems. The model the of production cell in

UML is manageable. Thus, experienced in modelling real systems, we can provide evaluates

such throughput. We also developed formal methods to verify the speci�cation of the production

cell.

6.2 The production cell

The production cell processes metal blanks which are conveyed to a press by a feed belt. A

robot takes each blank from the rotary table and places it into one of the two presses. The press

forges the blanks and the robot takes the metal plate from the press and puts it on a deposit

belt. A worker puts the blanks on the feed belt and take the forged blanks from the robot. The

production cell should tolerate the failure of one of the presses.

Figure 4: Schematic diagram of the production cell

6.2.1 Architecture of the cell

Figure 1 shows a top view of the production cell. On the bottom left the feed belt is shown

which conveys the blanks to an elevating rotary table. This table has to be between the feed

belt and the robot to bring the blanks into the right position so that the robot can pick them

up. To increase the utilization of the presses, the robot is �tted with two arms - one always

used for loading (arm 1), the other one (arm 2) for unloading the presses.

The system is controlled by means of actuators using information received from sensors.

The system has a set of actuators, for rotating the robot base, picking up metal plates with

each robot arm and other similar tasks. There is also a set of sensors, providing the control

program with information about the state of the system. They return discrete values, like "press

11

Figure 5: Positions of the robot

is open for loading" or "a blank arrived at the end of the feed belt". The production cell can

be modelled as a faulty set of �nite automata.

Feed Belt The feed belt conveys the blanks to an elevating rotary table. The belt is powered

by an electrical motor. On the belt there is space for two blanks. There are two light

barries at the start and the end of the belt. The �rst sensor indicates if there is a blank

on the �rst position of the blank. The second sensor is active if a blank leaves the belt.

Rotary Table The rotary table is between the feed belt and the robot. The task of the rotary

table is to load the blank from the feed belt, to turn into a right position for the robot and

to lift the blank up in such a way that the robot arm can be loaded. The feed belt and

the robot arm are in di�erent vertical positions. For loading the arm we have to lift the

blank up. The rotation movement is necessary because we can't rotate the picker arm.

Robot The robot's task is to pick up the metal blanks from the rotary table, put them in one

the presses to be forged and taking the forged plates from the presses. To raise up the

e�ciency the robot has two robot arms which build a 90 degree angle. Every arm has his

own task. Robot arm 1 always picks up the blanks and loads the presses. Robot arm 2

always unloads the presses.

Presses The task of the two presses is to forge the metal blanks. The press is loaded by robot

arm 1. After forged the metal blank the press is unloaded by robot arm 2. Our model

contains 2 presses to tolerate the failure of one of the presses.

6.2.2 Movement sequence of the robot

To simplify our model the robot can take one of the three position depicted in Figure 2. At

the beginning the robot arm 1 is over the rotary table and ready to pick up a metal blank.

The robot can now load the press 1 by taking position 2 or press 2 by taking position 3. For

unloading the presses by robot arm the robot enters either position 1 (for press 1) or position

2 (for press 2).

12

HIDEHIDE 0 0

Requirements ModelRequirements Model

UC DiagramsUC Diagrams

ProductionCellProductionCell 0 0

Use Case ObjectsUse Case Objects

SystemsSystems

ActorsActors

Use CasesUse Cases

ProduceBlankProduceBlank 0 0

produce_blank_1produce_blank_1 0 0

produce_blank_2produce_blank_2 0 0

RepairCellRepairCell 0 0

SignalErrorSignalError 0 0

SQ DiagramsSQ Diagrams

Object ModelObject Model

Dynamic ModelDynamic Model

PackagesPackages

Lifelink EntriesLifelink Entries

Lost and FoundLost and Found

Figure 6: The requirement model of the production cell

6.3 The structural diagrams

6.3.1 The requirement model

The requirement model is given in Figure 6. It contains the use case diagrams, the use case

objects, and the sequence diagrams. The use case objects are the objects that are de�ned in

the use case diagrams: actors, systems, and use cases. To each use case sequence diagrams can

be assigned, but further sequence diagrams can also be de�ned, and they remain unassigned.

Figure 7 depicts the use case diagram of the production cell. The elements of the use case

diagram are (see also Figure 6) the use case objects:

Worker The actor of the system. In the normal functionality the worker is responsible for

feeding the production cell with unprocessed metal blanks and for removing the forged

metal blanks for the system. The relationship is bidirectional between worker and system.

In an extended functionality that is not implemented yet the worker can repair the crashed

components of the cell. The relationship is from the worker to the system, although it can

13

ProductionCellProductionCell

WorkerWorker

ProductionCellProductionCell

ProduceBlankProduceBlank

RepairCellRepairCell

SignalErrorSignalError

«« extendsextends»»

Figure 7: The use case view of the production cell

produce_blank_1produce_blank_1

RobotRobot
::robotrobot

WorkerWorker
::workerworker

RotaryTableRotaryTable
::rotarytablerotarytable

FeedBeltFeedBelt
::feedbeltfeedbelt

Press1Press1
::presspress

convey_blankconvey_blank

insert_blankinsert_blank

position_blankposition_blank

insert_blankinsert_blank

remove_plateremove_plate

forge_plateforge_plate

remove_blankremove_blank

Figure 8: Sequence of using Press1 for producing a blank

14

produce_blank_2produce_blank_2

RobotRobot
::robotrobot

Press2Press2
::presspress

WorkerWorker
::workerworker

RotaryTableRotaryTable
::rotarytablerotarytable

FeedBeltFeedBelt
::feedbeltfeedbelt

remove_plateremove_plate

convey_blankconvey_blank

insert_blankinsert_blank

position_blankposition_blank

insert_blankinsert_blank

forge_plateforge_plate

remove_blankremove_blank

Figure 9: Sequence of using Press2 for producing a blank

not be represented graphically.

ProductionCell The system itself. Its functionalities are expressed by the three use cases:

ProduceBlank, SignalError, RepairCell. It is in connection with its environment, with the

Worker.

ProduceBlank The main use case of the system. It describes the primary function of the

system when it is used to produce forged metal blanks. In this use case an unprocessed

blank is taken from the worker forged by one of the presses and then the forged blank is

given back to the worker.

SignalAlarm This use case extends the ProduceBlank use case by signaling a failure, e.g. the

crash of a given system components. (This use case is not implemented yet.)

RepairCell This use case represents the functionality of the system in which the worker is able

to repair a crashed component and to set the system back to its fault-free state. (This

use case is not implemented yet.)

The implemented use case is the ProduceBlank use case. The two most important sequences

of this use case are depicted in the sequence diagrams in Figure 8 and Figure 9. The only

di�erence between the two sequence diagrams is that in the one Press1 is used while in the

other Press2 is used. Therefore only the �rst sequence diagram is described in detail.

The worker places a blank onto the feed belt that interprets it as a convey blank message.

The feed belt conveys the blank to the rotary table and pushes the blank onto the table. The

table interprets it as a position blank message. The feed belt signals the worker that a new

blank can be inserted by an insert blank message. The table positions the blank for the robot

by turning right and rising to the level of arm1. Upon reaching the correct position the table

sends an insert blank message to the robot. The robot places the blank into the press1 and

starts the forging process by sending a forge blank message. When forging is �nished the press

signals it to the robot by a remove plate message. The robot removes the blank from the press

15

HIDEHIDE 0 0

Requirements ModelRequirements Model

Object ModelObject Model

OM DiagramsOM Diagrams

ProductionCellProductionCell 0 0

machinesmachines 0 0

controllerscontrollers 0 0

environmentenvironment 0 0

deploymentdeployment 0 0

OM ClassesOM Classes

Dynamic ModelDynamic Model

PackagesPackages

Lifelink EntriesLifelink Entries

Lost and FoundLost and Found

Figure 10: The object model of the production cell

and gives a remove blank signal to the worker who should remove the blank from the arm of

the robot.

6.3.2 The object model

The object model describes the object view of the system. It is a set of graphs that are made

of nodes; the classes and objects of the system and arcs; the relationship among the classes and

objects. Figure 10 shows the object model of the system. It consists of two parts: the object

model diagrams and the object model classes. The latter one is only a listing of the classes

used in the former ones. In the object model of the production cell �ve object diagrams can be

found:

ProductionCell This diagram describes the objects of the production cell and their relation-

ship.

machines This diagram describes the classes and the derived objects of the machines.

controllers This diagram describes the classes and the derived objects of the controllers for

the machines.

environment This diagram describes the environment of the production cell.

deployment This diagram is not a real class diagram its only function is to be a container for

the deployment diagrams.

Figure 11 shows the objects that describes the hardware parts of the machines of the pro-

duction cell. The classes are: conveyor belt hw, table hw, robot hw, and press hw. From the

classes objects are derived by instanciation. The two presses Press1HW and Press2HW have

the same parent, while the other objects do not share a same parent.

Each object has a single method the name of which is equivalent with that of the object. The

methods describe the hardware functionality of the machine, e.g. the sensors and the motors of

the feed belt or the motors, sensors, or coils around the electromagnet of the robot.

16

machinesmachines

«class»«class»

conveyor_belt_hwconveyor_belt_hw
«class»«class»

rotary_table_hwrotary_table_hw
«class»«class»

robot_hwrobot_hw
«class»«class»

press_hwpress_hw

«method»«method»

FeedBeltHWFeedBeltHW

FB.HW wait_for_blankFB.HW wait_for_blank
FB.HW emptyFB.HW empty
FB.HW one_blank_rightFB.HW one_blank_right
FB.HW two_blanksFB.HW two_blanks

«attribute»«attribute»

FB.HW one_blank_leftFB.HW one_blank_left

«object»«object»

FeedBeltHWFeedBeltHW

«method»«method»

RotaryTableHWRotaryTableHW

T.HW v_crashT.HW v_crash
T.HW v_st3T.HW v_st3
T.HW v_st2T.HW v_st2
T.HW v_st1T.HW v_st1
T.HW r_crashT.HW r_crash
T.HW r_st3T.HW r_st3
T.HW r_st2T.HW r_st2
T.HW r_st1T.HW r_st1
T.HW v_ok4FB_bT.HW v_ok4FB_b
T.HW v_ok4FB_aT.HW v_ok4FB_a
T.HW v_ok4RA1_bT.HW v_ok4RA1_b
T.HW v_ok4RA1_aT.HW v_ok4RA1_a
T.HW r_ok4FB_bT.HW r_ok4FB_b
T.HW r_ok4FB_aT.HW r_ok4FB_a
T.HW r_ok4RA1_bT.HW r_ok4RA1_b

«attribute»«attribute»

T.HW r_ok4RA1_aT.HW r_ok4RA1_a

«object»«object»

RotaryTableHWRotaryTableHW

«method»«method»

RobotHWRobotHW

R.HW Pos3R.HW Pos3
R.HW Pos2R.HW Pos2

«attribute»«attribute»

R.HW Pos1R.HW Pos1

«object»«object»

RobotHWRobotHW

«method»«method»

Press2HWPress2HW

PR2.HW processingPR2.HW processing
PR2.HW processPR2.HW process
PR2.HW emptyPR2.HW empty
PR2.HW failurePR2.HW failure

«attribute»«attribute»

PR2.HW donePR2.HW done

«object»«object»

Press2HWPress2HW

«method»«method»

Press1HWPress1HW

PR1.HW processingPR1.HW processing
PR1.HW processPR1.HW process
PR1.HW emptyPR1.HW empty
PR1.HW failurePR1.HW failure

«attribute»«attribute»

PR1.HW donePR1.HW done

«object»«object»

Press1HWPress1HW

Figure 11: Class diagram of the machines

controllerscontrollers

«class»«class»

conveyor_belt_cconveyor_belt_c
«class»«class»

rotary_table_crotary_table_c
«class»«class»

robot_crobot_c
«class»«class»

press_cpress_c

«method»«method»

FeedBeltCFeedBeltC

FB.C tick 2FB.C tick 2
FB.C tick 1FB.C tick 1
FB.C time outFB.C time out
FB.C stopFB.C stop

«attribute»«attribute»

FB.C moveFB.C move

«object»«object»

FeedBeltCFeedBeltC

«method»«method»

RotaryTableCRotaryTableC

T.C time outT.C time out
T.C tick 2T.C tick 2
T.C tick 1T.C tick 1
T.C v_stopT.C v_stop
T.C r_stopT.C r_stop
T.C unloadedT.C unloaded
T.C loadT.C load
T.C v_downT.C v_down
T.C v_upT.C v_up
T.C r_leftT.C r_left

«attribute»«attribute»

T.C r_rightT.C r_right

«object»«object»

RotaryTableCRotaryTableC

«method»«method»

RobotCRobotC

R.C time outR.C time out
R.C tick 2R.C tick 2
R.C tick 1R.C tick 1
R.C System failsR.C System fails
R.C Press 2 downR.C Press 2 down
R.C Press 1 downR.C Press 1 down
R.C Redundancy ManagerR.C Redundancy Manager
R.C RA1 loadedR.C RA1 loaded
R.C RA2-PR2 okR.C RA2-PR2 ok
R.C RA2-PR1 okR.C RA2-PR1 ok
R.C RA1-PR2 okR.C RA1-PR2 ok
R.C RA1-PR1 okR.C RA1-PR1 ok
R.C startR.C start
R.C stopR.C stop
R.C RA1-TR.C RA1-T
R.C RA2-PR2R.C RA2-PR2
R.C RA2-PR1R.C RA2-PR1
R.C RA1-PR2R.C RA1-PR2
R.C RA1-PR1R.C RA1-PR1
R.C leftR.C left

«attribute»«attribute»

R.C rightR.C right

«object»«object»

RobotCRobotC

«method»«method»

Press1CPress1C

PR1.C loadedPR1.C loaded
PR1.C readyPR1.C ready
PR1.C crashedPR1.C crashed
PR1.C busyPR1.C busy
PR1.C unloadedPR1.C unloaded

«attribute»«attribute»

PR1.C workPR1.C work

«object»«object»

Press1CPress1C

«method»«method»

Press2CPress2C

PR2.C loadedPR2.C loaded
PR2.C readyPR2.C ready
PR2.C crashedPR2.C crashed
PR2.C busyPR2.C busy
PR2.C unloadedPR2.C unloaded

«attribute»«attribute»

PR2.C workPR2.C work

«object»«object»

Press2CPress2C

Figure 12: Class diagram of the controllers

17

environmentenvironment

«class»«class»

workerworker

remove_blankremove_blank

«method»«method»

insert_blankinsert_blank

«actor»«actor»

WorkerWorker

Figure 13: Class diagram of the environment

The attributes of the objects can be divided into two parts. Public attributes describe the

signal and actuator signals of the objects. They are public since other objects should see it.

The private attributes are used to identify the internal states of the object.

Figure 12 shows the objects that describe the controller part of the machines of the produc-

tion cell. The classes are: conveyor belt c, table c, robot c, and press c. Instanciation is done

similarly to the hardware part and methods and attributes can be explained in the same way.

In Figure 13 the environment of the production cell is described. The environment is the

Worker that is an object. It is instanciated from the class worker. The two methods of the

worker describe the insertion and removal of blanks onto the feed belt and from the robot arm.

Finally the object diagram ProductionCell (shown in Figure 14) describes the relationship

among the di�erent object of the production cell. The Worker is in connection with the Feed-

BeltHW that signals the Worker that a new blank can be inserted and with the RobotHW that

signals the Worker that the forged blank can be removed.

The object ProductionCell is a container object for the system. It contains the parts Feed-

Belt, RotaryTable, Robot, Press1, and Press2 that denote the objects of the production cell.

The containment is described by the aggregation relation. Each of the above objects contains

two parts, the object that represent the hardware of the machine and the controller that de-

scribes the controller functionality of the machine. Again the aggregation relation is used to

express this relation.

As an example the feed belt is composed of two parts FeedBeltHW and FeedBeltC. They

are in relation controls where the hardware has the role machine and the controller has the role

controls. This is expressed by the association relation between the objects.

Synchronization of the machines occurs via the synchronization of the corresponding con-

trollers. One machine can not start working without receiving the starting signal from the

other machine. It is represented by a dependency relationship. For example the feed belt loads

the rotary table that can start its work then. To carry on the work the rotary table should

be unloaded by the robot. Similarly the presses should be loaded and unloaded by the robot.

18

ProductionCellProductionCell

«object»«object»

Press1Press1
«object»«object»

Press2Press2

«object»«object»

FeedBeltCFeedBeltC

«object»«object»

FeedBeltHWFeedBeltHW

«object»«object»

Press1CPress1C

«object»«object»

Press1HWPress1HW

«object»«object»

Press2CPress2C

«object»«object»

Press2HWPress2HW

«object»«object»

RobotCRobotC

«object»«object»

RobotHWRobotHW

«object»«object»

RotaryTableCRotaryTableC

«object»«object»

RotaryTableHWRotaryTableHW

«actor»«actor»

WorkerWorker

«object»«object»

FeedBeltFeedBelt
«object»«object»

RotaryTableRotaryTable

«container»«container»

ProductionCellProductionCell

«object»«object»

RobotRobot

controllercontroller

machinemachine

controllercontroller

machinemachine

controllercontroller

machinemachine

controllercontroller

machinemachine

machinemachine

controllercontroller

loadsloads unloadsunloads

loads/unloadsloads/unloads

loads/unloadsloads/unloads

inserts_blankinserts_blank

removes_blankremoves_blank

containscontains
containscontains

containscontains

containscontains

containscontains containscontains

communicatescommunicates communicatescommunicates

communicatescommunicates

controlscontrolscontrolscontrols controlscontrols

controlscontrols

communicatescommunicates

controlscontrols

Figure 14: The objects of the production cell and their relationship

While the robot is unloaded by the worker.

6.4 The package model

The package model of the production cell is relatively simple, since the system does not contain

to many objects. Figure 15 shows the package model that consists of three packages and a

package diagram. Additional elements of the package model are: the deployment diagrams and

the object model diagram ProductionCell. They are linked to the model as assigned objects.

Figure 16 shows the package diagram. The packages of the system are:

machines This package includes the nodes of the system that represent the physical machines.

Elements of this package are: machine feed belt, machine rotary table, machine robot,

machine press1, machine press2.

controllers This package contains the nodes of the system that represent the physical con-

trollers that can be used in the system. Elements of the package are: controller pc,

controller sps.

functionalities The last package contains components of the system that describe the systems

functionalities. Elements of the package are: FeedBeltC, FeedBeltHW, RotaryTableC,

RotaryTableWH, RobotC, RobotHW, Press1C, Press1HW, Press2C, Press2HW.

Dashed lines in the �gure represents the dependencies between the packages. In our model

two such dependencies exist. They express that the functionality of the system depends on the

19

HIDEHIDE 0 0

Requirements ModelRequirements Model

Object ModelObject Model

Dynamic ModelDynamic Model

PackagesPackages

Package ProductionCellPackage ProductionCell 0 0

Son PackagesSon Packages

controllerscontrollers 0 0

funcionalitiesfuncionalities 0 0

machinesmachines 0 0

Assigned ObjectsAssigned Objects

OM Diagram deploymentOM Diagram deployment 0 0

OM Diagram ProductionCellOM Diagram ProductionCell 0 0

Package DiagramsPackage Diagrams

ProductionCell 0 0

Lifelink EntriesLifelink Entries

Lost and FoundLost and Found

Figure 15: Package model of the production cell

ProductionCellProductionCell

funcionalitiesfuncionalities

machinesmachines controllerscontrollers

Figure 16: Package diagram of the production cell

20

deployment_1@deploymentdeployment_1@deployment

p2ip2i

machine_robotmachine_robot

RobotHWRobotHW

FeedBeltHWFeedBeltHW

machine_feed_beltmachine_feed_belt

machine_rotary_tablemachine_rotary_table

RotaryTableHWRotaryTableHW

machine_press1machine_press1

machine_press2machine_press2

Press1HWPress1HW

Press2HWPress2HW

controller_pccontroller_pc

FeedBeltCFeedBeltC

RotaryTableCRotaryTableC

RobotCRobotC

Press1CPress1C

Press2CPress2C

pcipci

fbifbi

rtirti

riri

p1ip1i

Figure 17: Production cell with centralized controller

function of the machine and controller nodes.

6.4.1 The deployment model

The deployment model consists of the deployment diagrams of the system. The deployment

diagram describes a possible architecture of the system; a possible assignment of the components

to the nodes.

Figure 17 depicts the �rst deployment diagram of the production cell. Controlling function-

alities are centralized; each control component is mapped to the same node. This node is a

controller PC. Communication between components occurs through the interface of the node.

(The interfaces are the small rectangles in the �gure.)

In Figure 18 the second deployment diagram of the system is shown. It describes a dis-

tributed version of the controller; each control component is mapped to a di�erent SPS controller

node. Similarly to the centralized system, the components communicate via the interfaces of

the nodes.

6.5 The dynamic diagrams

The behaviour of the modelled system can be described by a statechart which contains all

the sub-statecharts of the components. Every component of the system consists of two sub-

statecharts. One describes the behaviour of the controller of the software and the other that

of the hardware. Only communication between hardware- and controller-sub-statecharts of the

same component is allowed. The controller sub-statecharts of di�erent components can also

communicate together as shown in picture x.

21

deployment_2@deploymentdeployment_2@deployment

RotaryTableCRotaryTableC c2ic2i

RobotCRobotC

Press1CPress1C

Press2CPress2C

c3ic3i

c4ic4i

c5ic5i

controller_sps1controller_sps1

controller_sps2controller_sps2

controller_sps3controller_sps3

controller_sps4controller_sps4

controller_sps5controller_sps5

machine_feed_beltmachine_feed_belt

machine_rotary_tablemachine_rotary_table

machine_robotmachine_robot

machine_press1machine_press1

machine_press2machine_press2

FeedBeltHWFeedBeltHW

RotaryTableHWRotaryTableHW

RobotHWRobotHW

Press1HWPress1HW

Press2HWPress2HW

fbifbi

rtirti

riri

p1ip1i

p2ip2i

FeedBeltCFeedBeltC c1ic1i

Figure 18: Production cell with distributed controller

Figure 19: Controller and components

22

FeedBeltC@FeedBeltCFeedBeltC@FeedBeltC

FBC_moveFBC_move

entryentry^̂stepstep

FBC_tickFBC_tick

entryentry^̂stepstep

FBC_time_outFBC_time_out

Feed Belt ControllerFeed Belt Controller

entryentry^̂stepstep

FBC_stopFBC_stop

entryentry^̂stepstep

stepstep/ / rate=10rate=10

stepstep/ / rate=10rate=10

stepstep [[((FBHW_one_blank_left)||((TC_load)&(FBHW_two_blanks)))((FBHW_one_blank_left)||((TC_load)&(FBHW_two_blanks)))]] / / rate=10rate=10

stepstep [[(FBHW_one_blank_right)(FBHW_one_blank_right)]] / / rate=10rate=10

Figure 20: State chart of the feed belt controller

FeedBeltHW@FeedBeltHWFeedBeltHW@FeedBeltHW

FBHW_wait_for_blankFBHW_wait_for_blank

Feed Belt HardwareFeed Belt Hardware

entryentry^̂stepstep

FBHW_emptyFBHW_empty

entryentry^̂stepstep

FBHW_one_blank_leftFBHW_one_blank_left

entryentry^̂stepstep

FBHW_two_blanksFBHW_two_blanks

entryentry^̂stepstep

FBHW_one_blank_rightFBHW_one_blank_right

entryentry^̂stepstep

stepstep [[(FBC_time_out)(FBC_time_out)]] / / rate=1rate=1

stepstep [[(FBC_move)(FBC_move)]] / / rate=1rate=1

stepstep [[(FBC_move)(FBC_move)]] / / rate=1rate=1 stepstep [[(FBC_stop)(FBC_stop)]] / / rate=1rate=1

stepstep [[(FBC_time_out)(FBC_time_out)]] / / rate=1rate=1

Figure 21: State chart of the feed belt hardware

Some states of the hardware sub-statecharts represent sensors in the real system while some

states in the controller sub-statechart represent the actuators. Through setting of the actuators

(entering the state) a state change is caused in the hardware sub-statechart and vice versa. The

guard of the transition is veri�ed and if it evaluates to true the state changes. The guards are

boolean expressions composed from state predicates of other sub-statecharts.

6.5.1 Feed belt

The behaviour of the feed belt is described by the statecharts FeedBeltC and FeedBeltHW. The

�rst one models the controller of the software while the second one is modelling the hardware.

The feed belt is empty at the beginning (FBHW empty). The worker puts a blank on the

feed belt and the statechart goes in the state FBHW one blank left. The controller veri�es the

guard and starts the electrical motor through entering the state FBC move. If the blank attains

the end of the belt the motor is stopped (FBC stop). The worker puts another blank on the

23

RotaryTableC@RotaryTableCRotaryTableC@RotaryTableC

TC_loadTC_load

Rotary Table ControllerRotary Table Controller

entryentry^̂stepstep

TC_tickTC_tick

entryentry^̂stepstep

T.C time outT.C time out

entryentry^̂stepstep

TC_r_rightTC_r_right

entryentry^̂stepstep

TC_r_stopTC_r_stop

entryentry^̂stepstep

TC_r_leftTC_r_left

entryentry^̂stepstep

TC_v_upTC_v_up

entryentry^̂stepstep

TC_v_stopTC_v_stop

entryentry^̂stepstep

TC_v_downTC_v_down

entryentry^̂stepstep

TC_unloadedTC_unloaded

entryentry^̂stepstep

stepstep/ / rate=10rate=10

stepstep/ / rate=10rate=10

stepstep [[((THW_r_ok4RA1_a)||(THW_r_ok4RA1_b))((THW_r_ok4RA1_a)||(THW_r_ok4RA1_b))]]
/ / rate=10rate=10

stepstep [[(((!THW_r_ok4RA1_a)||(!THW_r_ok4RA1_b))&(TC_load))(((!THW_r_ok4RA1_a)||(!THW_r_ok4RA1_b))&(TC_load))]]
/ / rate=10rate=10

stepstep [[(((!THW_r_ok4FB_a)||(!THW_v_ok4FB_b))&(TC_unloaded))(((!THW_r_ok4FB_a)||(!THW_v_ok4FB_b))&(TC_unloaded))]]
/ / rate=10rate=10

stepstep [[((THW_r_ok4FB_a)||(THW_r_ok4FB_b))((THW_r_ok4FB_a)||(THW_r_ok4FB_b))]]
/ / rate=10rate=10

stepstep [[((THW_v_ok4RA1_a)||(THW_v_ok4RA1_b))((THW_v_ok4RA1_a)||(THW_v_ok4RA1_b))]]
/ / rate=10rate=10

stepstep [[(((!THW_v_ok4RA1_a)||(!THW_v_ok4RA1_b))&(TC_load))(((!THW_v_ok4RA1_a)||(!THW_v_ok4RA1_b))&(TC_load))]]
/ / rate=10rate=10

stepstep [[(((!THW_v_ok4FB_a)||(!THW_v_ok4FB_b))&(TC_unloaded))(((!THW_v_ok4FB_a)||(!THW_v_ok4FB_b))&(TC_unloaded))]]
/ / rate=10rate=10

stepstep [[((THW_v_ok4FB_a)||(THW_v_ok4FB_b))((THW_v_ok4FB_a)||(THW_v_ok4FB_b))]]
/ / rate=10rate=10

stepstep [[(((THW_v_ok4FB_a)||(THW_v_ok4FB_b))&((THW_r_ok4FB_a)||(THW_r_ok4FB_b)))(((THW_v_ok4FB_a)||(THW_v_ok4FB_b))&((THW_r_ok4FB_a)||(THW_r_ok4FB_b)))]] / / rate=10rate=10

stepstep [[(((THW_v_ok4RA1_a)||(THW_v_ok4RA1_b))&((THW_r_ok4RA1_a)||(THW_r_ok4RA1_b)))(((THW_v_ok4RA1_a)||(THW_v_ok4RA1_b))&((THW_r_ok4RA1_a)||(THW_r_ok4RA1_b)))]] / / rate=10rate=10

Figure 22: State chart of the rotary table controller

feed belt (FBHW two blanks). If the feed belt is able to load the rotary table the motor starts

again. Therefore a communication between the controllers of the feed belt and the rotary table

is necessary. The rotary table must be in the right position for loading the blank. After loading

the rotary table the worker has to put another blank on the belt and the system waits to load

the rotary table again.

6.5.2 Rotary table

RotaryTableC and RotaryTableHW describe the behaviour of the rotary table. If the rotary

table is empty it moves down and turns right to load a blank from the feed belt. These

movements are described by sub-statecharts in the controller- and the hardware-statechart.

After loading the blank it moves up and turns left to be in the right position for the robot.

Thus a communication between the rotary table, the robot (RC RA1 loaded) and the feed belt

(FBC can load) is necessary.

6.5.3 Robot

The robot is the most complex component of the modelled system. The statecharts RobotC

and RobotHW describe the behaviour of the robot. To simplify our model we allow the robot

to be in one of the three positions depicted in Figure 2. In the �rst position RA1 is over the

rotary table and RA2 is in front of press 1. In position two RA1 is in front of press1 and RA2

is in front of press 2. In the last position RA1 is in front of press 2. These positions are the

states of the RobotHW statechart.

Because of the model's comprehensibility we don't consider the loading/unloading and the

extend/retract process of the robot arm.

24

RotaryTableHW@RotaryTableHWRotaryTableHW@RotaryTableHW

THW_r_ok4RA1_aTHW_r_ok4RA1_a

Rotary Table HardwareRotary Table Hardware

entryentry^̂stepstep

THW_v_crashTHW_v_crash

entryentry^̂stepstep

THW_v_st3THW_v_st3

entryentry^̂stepstep

THW_v_st2THW_v_st2
entryentry^̂stepstep

THW_v_ok4FB_aTHW_v_ok4FB_a

entryentry^̂stepstep

THW_v_ok4FB_bTHW_v_ok4FB_b

entryentry^̂stepstep

THW_v_ok4RA1_bTHW_v_ok4RA1_b

entryentry^̂stepstep

THW_v_st1THW_v_st1

entryentry^̂stepstep

THW_v_ok4RA1_aTHW_v_ok4RA1_a

entryentry^̂stepstep

THW_r_crashTHW_r_crash

entryentry^̂stepstep

THW_r_st1THW_r_st1

entryentry^̂stepstep

THW_r_st2THW_r_st2

entryentry^̂stepstep

THW_r_st3THW_r_st3

entryentry^̂stepstep

THW_r_ok4FB_bTHW_r_ok4FB_b

entryentry^̂stepstep

THW_r_ok4RA1_bTHW_r_ok4RA1_b

entryentry^̂stepstep

THW_r_ok4FB_aTHW_r_ok4FB_a

entryentry^̂stepstep

stepstep
[[(TC_time_out)(TC_time_out)]]

/ / rate=1rate=1

stepstep
[[(TC_time_out)(TC_time_out)]]

/ / rate=1rate=1

stepstep
[[(TC_v_down)(TC_v_down)]]

/ / rate=1rate=1

stepstep [[(TC_time_out)(TC_time_out)]] / / rate=1rate=1

stepstep [[(TC_v_up)(TC_v_up)]] / / rate=1rate=1

stepstep [[(TC_v_down)(TC_v_down)]] / / rate=1rate=1stepstep [[(TC_v_up)(TC_v_up)]] / / rate=1rate=1

stepstep [[(TC_v_down)(TC_v_down)]] / / rate=1rate=1

stepstep
[[(TC_v_up)(TC_v_up)]]

/ / rate=1rate=1

stepstep
[[(TC_v_down)(TC_v_down)]]

/ / rate=1rate=1

stepstep
[[(TC_v_up)(TC_v_up)]]

/ / rate=1rate=1

stepstep [[(TC_time_out)(TC_time_out)]] / / rate=1rate=1

stepstep
[[(TC_r_left)(TC_r_left)]]

/ / rate=1rate=1

stepstep
[[(TC_r_right)(TC_r_right)]]

/ / rate=1rate=1

stepstep
[[(TC_time_out)(TC_time_out)]]

/ / rate=1rate=1

stepstep
[[(TC_time_out)(TC_time_out)]]

/ / rate=1rate=1

stepstep [[(TC_r_right)(TC_r_right)]] / / rate=1rate=1

stepstep [[(TC_r_left)(TC_r_left)]] / / rate=1rate=1

stepstep [[(TC_r_left)(TC_r_left)]] / / rate=1rate=1

stepstep [[(TC_r_right)(TC_r_right)]] / / rate=1rate=1

stepstep
[[(TC_r_left)(TC_r_left)]]

/ / rate=1rate=1

stepstep [[(TC_time_out)(TC_time_out)]] / / rate=1rate=1

stepstep
[[(TC_r_right)(TC_r_right)]]

/ / rate=1rate=1

stepstep [[(TC_time_out)(TC_time_out)]] / / rate=1rate=1

Figure 23: State chart of the rotary table hardware

RobotC@RobotCRobotC@RobotC

RC_RA1_PR2_okRC_RA1_PR2_ok

entryentry^̂stepstep

RC_RA1_loadedRC_RA1_loaded

Robot ControllerRobot Controller

entryentry^̂stepstep

RC_tickRC_tick

entryentry^̂stepstep

RC_time_outRC_time_out

entryentry^̂stepstep

RC_Redundancy_ManagerRC_Redundancy_Manager entryentry^̂stepstep

RC_Press_1_downRC_Press_1_down

entryentry^̂stepstep

RC_Press_2_downRC_Press_2_down entryentry^̂stepstep

RC_System_failsRC_System_fails

entryentry^̂stepstep

RC_rightRC_right

entryentry^̂stepstep

RC_stopRC_stop

entryentry^̂stepstep

RC_leftRC_left

entryentry^̂stepstep

RC_startRC_start
entryentry^̂stepstep

RC_RA1_TRC_RA1_T

entryentry^̂stepstep

RC_RA2_PR2RC_RA2_PR2
entryentry^̂stepstep

RC_RA2_PR1RC_RA2_PR1

entryentry^̂stepstep

RC_RA1_PR2RC_RA1_PR2
entryentry^̂stepstep

RC_RA1_PR1RC_RA1_PR1

entryentry^̂stepstep

RC_RA2_PR2_okRC_RA2_PR2_ok
entryentry^̂stepstep

RC_RA2_PR1_okRC_RA2_PR1_ok

entryentry^̂stepstep

RC_RA1_PR1_okRC_RA1_PR1_ok

entryentry^̂stepstep

stepstep [[((RC_Press_1_down)||(PR1C_work))((RC_Press_1_down)||(PR1C_work))]] / / rate=10rate=10

stepstep [[((RC_Press_2_down)||(PR2C_work))((RC_Press_2_down)||(PR2C_work))]] / / rate=10rate=10

stepstep/ / rate=10rate=10

stepstep/ / rate=10rate=10

stepstep [[(PR2C_crashed)(PR2C_crashed)]] / / rate=10rate=10

stepstep [[(PR1C_crashed)(PR1C_crashed)]] / / rate=10rate=10
stepstep [[(PR2C_crashed)(PR2C_crashed)]] / / rate=10rate=10

stepstep [[(PR1C_crashed)(PR1C_crashed)]] / / rate=10rate=10

stepstep [[((RHW_Pos1)||(RHW_Pos2))((RHW_Pos1)||(RHW_Pos2))]] / / rate=10rate=10

stepstep [[(((RC_RA1_PR1)&(RHW_Pos3))||((RC_RA1_T)&(!RHW_Pos1))||((RC_RA2_PR1)&(!RHW_Pos1))||((RC_RA2_PR2)&(RHW_Pos3)))(((RC_RA1_PR1)&(RHW_Pos3))||((RC_RA1_T)&(!RHW_Pos1))||((RC_RA2_PR1)&(!RHW_Pos1))||((RC_RA2_PR2)&(RHW_Pos3)))]] / / rate=10rate=10

stepstep [[(((RC_RA1_PR1)&(RHW_Pos1))||((RC_RA1_PR2)&(!RHW_Pos3))||((RC_RA2_PR2)&(RHW_Pos1)))(((RC_RA1_PR1)&(RHW_Pos1))||((RC_RA1_PR2)&(!RHW_Pos3))||((RC_RA2_PR2)&(RHW_Pos1)))]] / / rate=10rate=10

stepstep [[((RHW_Pos2)||(RHW_Pos3))((RHW_Pos2)||(RHW_Pos3))]] / / rate=10rate=10

stepstep [[(PR2C_busy)(PR2C_busy)]]
/ / rate=10rate=10

stepstep [[(TC_unloaded)(TC_unloaded)]] / / rate=10rate=10

stepstep [[(PR1C_busy)(PR1C_busy)]]
/ / rate=10rate=10

stepstep [[(RC_time_out)(RC_time_out)]]
/ / rate=10rate=10

stepstep [[(RHW_Pos2)(RHW_Pos2)]]
/ / rate=10rate=10

stepstep
[[(RHW_Pos1)(RHW_Pos1)]]

/ / rate=10rate=10

stepstep
[[(RHW_Pos3)(RHW_Pos3)]]

/ / rate=10rate=10

stepstep
[[(RHW_Pos2)(RHW_Pos2)]]

/ / rate=10rate=10

stepstep [[(RC_time_out)(RC_time_out)]] / / rate=10rate=10 stepstep [[(RC_time_out)(RC_time_out)]] / / rate=10rate=10

stepstep [[(RC_time_out)(RC_time_out)]] / / rate=10rate=10

stepstep [[(RC_time_out)(RC_time_out)]]
/ / rate=10rate=10

Figure 24: State chart of the robot controller

RobotHW@RobotHWRobotHW@RobotHW

RHW_Pos3RHW_Pos3

Robot HardwareRobot Hardware

entryentry^̂stepstep

RHW_Pos1RHW_Pos1

entryentry^̂stepstep

RHW_Pos2RHW_Pos2

entryentry^̂stepstep

stepstep [[(RC_left)(RC_left)]] / / rate=1rate=1 stepstep [[(RC_left)(RC_left)]] / / rate=1rate=1

stepstep [[(RC_right)(RC_right)]] / / rate=1rate=1 stepstep [[(RC_right)(RC_right)]] / / rate=1rate=1

Figure 25: State chart of the robot hardware

25

Press1C@Press1CPress1C@Press1C

PR1C_busyPR1C_busy

entryentry^̂stepstep

PR1C_crashedPR1C_crashed

entryentry^̂stepstep

PR1C_unloadedPR1C_unloaded

entryentry^̂stepstep

PR1C_loadedPR1C_loaded

Press 1 ControllerPress 1 Controller

entryentry^̂stepstep

PR1C_readyPR1C_ready

entryentry^̂stepstep

PR1C_workPR1C_work

entryentry^̂stepstep

stepstep [[((PR1C_ready)&(RC_RA1_PR1))((PR1C_ready)&(RC_RA1_PR1))]] / / rate=10rate=10

stepstep [[((PR1HW_done)&(RC_RA2_PR1))((PR1HW_done)&(RC_RA2_PR1))]] / / rate=10rate=10

stepstep [[(PR1C_loaded)(PR1C_loaded)]] / / rate=10rate=10 stepstep [[(PR1HW_done)(PR1HW_done)]] / / rate=10rate=10

stepstep [[(PR1HW_failure)(PR1HW_failure)]] / / rate=10rate=10

stepstep [[(PR1C_unloaded)(PR1C_unloaded)]] / / rate=10rate=10

Figure 26: State chart of the press1 controller

The RobotC statechart consists of four sub-statecharts. We have a clock for setting time-outs

and a sub-statechart for activating the movements of the robots (RC stop, RC left, RC right).

The most interesting sub-statecharts are these for the redundancy manager and the motion

manager.

The motion manager indicates if the robot picks up a blank from the rotary table or if he

loads/unloads a press. The statechart is non deterministic in the case that one press has forged

a blank and waits to be unloaded by the RA2 and at the same time the rotary table is in the

right position to be unloaded by RA1. It is not speci�ed whether if the robot unloads the rotary

table or the press �rst.

The redundancy manager provides important information for the motion manager. If a press

is crashed the redundancy manager enters the state RC Press 1 down or RC Press 2 down.

These states are parts of the guards of the motion manager transitions and the robot doesn't

try to load or to unload the crashed press avoiding a dead-lock.

The controller of the robot communicates with the presses and the rotary table.

6.5.4 Presses

The dynamic behaviour of the presses is described by the statecharts Press1C, Press1HW for

press 1 and Press2C, Press2HW for press 2. Press1C (Press2C) is the statechart for the controller

of the software. Press1HW (Press2HW) is the statechart for the hardware.

If we consider the Press1C statechart we can see that there is a communication between the

controllers of the press and the robot. This is necessary for loading/unloading the press and

we have to check if the robot is in the right position for loading the press through the guard

((PR1C ready)&(RC RA1 PR1 ok)).

The other sub-statechart shows the current state of the press to the other components of

the system (e.g. PR1C work means that press 1 is working, PR1C busy means that the blank

26

Press1HW@Press1HWPress1HW@Press1HW

PR1HW_emptyPR1HW_empty

Press 1 HardwarePress 1 Hardware

entryentry^̂stepstep

PR1HW_failurePR1HW_failure

entryentry^̂stepstep

PR1HW_processPR1HW_process

entryentry^̂stepstep

PR1HW_processingPR1HW_processing

entryentry^̂stepstep

PR1HW_donePR1HW_done

entryentry^̂stepstep

stepstep/ / weight=0.1weight=0.1

stepstep/ / weight=10weight=10

stepstep/ / rate=1rate=1

stepstep [[(PR1C_unloaded)(PR1C_unloaded)]] / / rate=1rate=1

stepstep [[(PR1C_work)(PR1C_work)]] / / rate=1rate=1

Figure 27: State chart of the press1 hardware

Press2C@Press2CPress2C@Press2C

Press 2 ControllerPress 2 Controller

entryentry^̂stepstep

PR2C_unloadedPR2C_unloaded

entryentry^̂stepstep

PR2C_loadedPR2C_loaded

entryentry^̂stepstep

PR2C_readyPR2C_ready

entryentry^̂stepstep

PR2C_workPR2C_work
entryentry^̂stepstep

PR2C_busyPR2C_busy

entryentry^̂stepstep

PR2C_crashedPR2C_crashed

stepstep [[((PR2C_ready)&(RC_RA1_PR2))((PR2C_ready)&(RC_RA1_PR2))]] / / rate=10rate=10

stepstep [[((PR1HW_done)&(RC_RA2_PR2))((PR1HW_done)&(RC_RA2_PR2))]] / / rate=10rate=10

stepstep [[(PR2C_loaded)(PR2C_loaded)]] / / rate=10rate=10

stepstep [[(PR2HW_failure)(PR2HW_failure)]] / / rate=10rate=10

stepstep [[(PR2HW_done)(PR2HW_done)]] / / rate=10rate=10

stepstep [[(PR2C_unloaded)(PR2C_unloaded)]] / / rate=10rate=10

Figure 28: State chart of the press2 controller

Press2HW@Press2HWPress2HW@Press2HW

Press 2 HardwarePress 2 Hardware

entryentry^̂stepstep

PR2HW_emptyPR2HW_empty

entryentry^̂stepstep

PR2HW_processingPR2HW_processing

entryentry^̂stepstep

PR2HW_failurePR2HW_failure

entryentry^̂stepstep

PR2HW_donePR2HW_done

entryentry^̂stepstep

PR2HW_processPR2HW_processstepstep [[(PR2C_work)(PR2C_work)]] / / rate=1rate=1

stepstep/ / rate=1rate=1

stepstep [[(PR2C_unloaded)(PR2C_unloaded)]] / / rate=1rate=1

stepstep/ / weight=10weight=10

stepstep/ / weight=0.1weight=0.1

Figure 29: State chart of the press2 hardware

27

Figure 30: SQL model of the Petri net

is forged and the press is waiting to be unloaded, PR1C crashed shows the crash of the press).

Attention should be paid to the following states of the sub-statechart modelling the hardware.

After entering the state PR1HW process there are two possibilities. The press works correct

and forges the blank (PR1HW processing) or the press crashes (PR1HW failure). We specify a

weights (i.e. branching probabilities) for both transitions.

6.6 Implementation of the transformations

6.6.1 General

We transform several parts of the UML models to Petri-nets (PNs) to analyse numerically these

parts with a Petri-net tool. To be more exact, �rst we transform the UML model described in

a SQL database to PNs described in an other SQL database, then we generate a tool-speci�c

description of the second database. Several descriptions in several description languages can be

generated for several PN tools.

The input of the transformation is the UML model described in a SQL data model as

exported by the tool Innovator. The SQL data model of the (output) Petri-net is:

This model of PNs is tool-independent, however it supposes a PN-tool knowing immediate

and timed transitions, guarded transitions and an arbitrary technique to make arcs optional.

The PN-tool has to give to immediate transitions a higher priority than to timed ones.

6.6.2 Statecharts to Petri-nets

First of all the transformation eliminates all of the states containing diagrams or other states.

We transform in this phase only a restricted class of Statecharts (the so-called Guarded Stat-

echarts), so all of these states contain no information. All of the base states (containing no

diagrams or states) are transformed to PN places. The semantic of the PN model is that a

place (corresponding to a state of the Statechart) has a token if and only if the given state is

active. The Places corresponding to states with initial transitions leading to them have Init=1,

other Places have Init=0. The ID and the Name of these Places corresponds to the ID and the

name of the states of the Statechart (SC), respectively.

28

In a second step we transform all of the transitions between base states of the SC to transi-

tions of the PN. Every transition (with its guard) is a Trans.

The original UML model contains no timing information, but we need rates and probabilities

of timed and immediate transitions. The modeller has to assign these parameters while creating

the UML model (only timed transitions can have guards). It would be a good way to label the

transitions with these parameters but the tool Innovator makes it not possible yet. In the future

we count on this feature of the tool, but now we have assigned these parameters as "actions" of

the transitions. This temporary solution violates the UML rules but it is necessary for handling

timing information. When changing the tool the program code of the transformation can be

changed appropriately, it has no e�ect on the transformation itself.

The timed transitions have an exponential �ring function with the given parameter. The

�ring function can be some of others too (e.g. PANDA accepts following functions: exponential,

erlang-k, gamma, weibull, normal, lognormal, beta, triangular, deterministic, hyperexponential,

k-stage hyperexponential, uniform and cox). In this phase we have used only exponential

functions. The immediate transitions have �ring "probabilities". We call them weights, because

they can have values over 1. In general we do not need to restrict the weights to the interval

(0,1), they assign only relative recurrence.

The timing parameter of each transition is examined. If the transformation has no assigned

timing parameter, then the default parameter describes an immediate transition with weight

1. Timed transitions are described as TransTimeds, immediate ones as TransImms. To each

transition of the SC correspond an InArc and an OutArc they are created also.

In order to be able to model communication failures of embedded systems in the future, the

guards are processed once more. The guards of the Guarded SCs contain statements over states

being active or not. In our modelling technique these guards implement implicit communication

by checking actor or sensor states. In our failure model actor and sensor signal can be corrupted,

that is a guard can see a state being active as inactive and vice versa. For this purpose we

duplicate the places corresponding to public states, one place for modelling whether the state

is active or not and another place for modelling whether the state seems to be active or not.

When duplicating places the according InArcs and OutArcs are also duplicated. The duplicate

of the InArcs are optional.

There are 4 cases for a duplicated place:

1. Both of the places are empty (the according state of the SC is inactive and the guards of

the transitions see it so) The transitions "after" the places can not �re.

2. Both of the places have tokens (the according state of the SC is active and the guards of

the transitions see it as such). The transactions "after" the places can �re. When �ring

they take both tokens from the places.

3. Only the original place has a token (the according state of the SC is active, but the guards

of the transitions see it as it were inactive, e.g. the sensor is passive, but there is a sensor

signal sent). This case can only occur if the token of the duplicate place was removed by

an error (e.g. by a transition modelling failures)

29

Figure 31: The Petri net model of a state chart

Figure 32: The Petri net model of a sequence diagram

The transactions "after" the places can �re, because if the duplicate place has no token,

then there is no InArc from it to the transitions. (These arc are optional, that is they are

only there if there is a token in the duplicate place.) When �ring the transitions get the

token from the original place.

4. Only the duplicate place has token (the according state of the SC is inactive, but the

guards of the transitions see it as it were active, e.g. the sensor is active, but there is

no sensor signal sent) This case can only ensue if the token of the duplicate place was

produced by an error (e.g. by a transition modelling failures).
The transactions "after" the places can not �re, because there are always InArcs from the

original place to the transitions. Shortly the transitions of a component of the model can

�re if and only if the according original places have tokens. Discrepancies in the state

of the original and duplicate states can only be ensued by extra constructions modelling

failures.

6.6.3 Sequence Diagrams to Petri-nets

First of all we transform each messages to a place with Init 0, a timed transition with the �ring

rate of the message, an immediate transition with weight 1, and two arcs: an OutArc leading

from the timed transition to the place and an InArc leading from the place to the immediate

transition.

The messages are ordered by the "Precedence" relation of the UML model, so we can take

the �rst (an then always the next) transition. We always keep count of the "last" place of each

30

object. Each object of the Sequence Diagram (SqD) is transformed to a place with Init 1, and

initially they are the last places of their objects.

Then we take the �rst message and its sender and receiver objects. We make an InArc

leading from the last place of the sender to the timed transition of the message and another

from the last place of the receiver to the immediate transition of the message. We create two new

places and make an OutArc from the timed transition to the one (it become the last place of the

sender) an another OutArc from the immediate transition to the other place (it become the last

place of the receiver). We connect the other messages in an order de�ned by the "Precedence"

relation.

In the PN model of the SqD there are no guards and no optional InArcs. The communication

failures can be modelled the same way as in the SCs. The tokens of the places of the messages

can be removed with a given rate or injected with a given weight externally.

6.6.4 CSPL

The CSPL [K. S. Trivedi: SPNP User's Manual, Duke University, 1998] is the input language

of the PN tool PANDA. It is a C-like language for describing Stochastic Petri-nets. By the help

of C-functions It allow to describe very complex structures. The main element of the language

we used:

place("<p name>") De�nition of a place with the ID <p name>.

init("<p name>", <#tokens>) De�nition of the initial marking of the giving place. <#tokens>

is an integer.

trans("<t name>") De�nition of a transition with the ID <t name>.

enabling("<t name>", <function name>) Linking a previously described function to a given

C-transition. The transition can only �re if the function returns TRUE.

iarc("<t name>", "<p name>") De�nition of an inarc leading from a given place to given

transition.

viarc("<t name>", "<p name>", <function name>) De�nition of an inarc with variable mul-

tiplicity leading from a given place to given transition. The multiplicity of the arc is

computed by the help of the given C-function described previously.

oarc("<t name>", "<p name>") De�nition of an outarc leading from a given transition to a

given place.

probval("<t name>", <weight>) De�nition of the weight of an immediate transition. <weight>

is a real.

rateval("<t name>", <param>) De�nition of the rate of an (exponential) timed transition.

<param> is a real. In the C-functions (enabling functions of transitions and multiplicity

functions of arcs) we used the following prede�ned function:

mark(<p name>) Actual number of tokens in a given place.

31

6.6.5 Quantitative Results

We performed some measurement with the transformed model, the two transformations de-

scribed above, the PN-tool PANDA and the available computers, which provided very useful

experiences.

The transformed SC model ("Production Cell") has 133 places, 98 transitions (15 unguarded

and 83 guarded), 155 outarcs and 155 inarcs (inclusive 57 optional ones). This PN can reach

374.544 states. (The product of the number of states of the several components of the SC is

over 197 075 Millions, but the parallel components are very strongly coupled by the guards.)

Computing and storing the reachability graph of this (not very complex) UML model needs

a special computer environment. Actually we used a central parallel computer of the FAU

(Convex: 8 HP PA-RISC 7200 processors, 895 MB memory, 4 GB disk space, 2 GFLOP/s

computing power), but even a little more realistic model would cause problems in computing.

In the future we have, most probably, to concentrate our quantitative analysis on components

of the SCs.

With PANDA

� we can detect absorbing states of the system (states, which can be entered but can not be

exited),

� we can determine the number of the reachable states of the system

� we can determine the expected number of �ring of a given transition of the SC (from the

beginning till arbitrary time points),

� the expected time the system spend in a given state of the SC (from the beginning till

arbitrary time points), etc.

The number of �ring of a given transition is the throughput of the (sub)system and the time

spent in a given state can help in detecting bottlenecks in the system.

Usually the transformed SqDs are small (Compare: the SqD "produce blank 1". It has 25

places, 14 transitions, 20 outarcs, 20 inarcs and 12 reachable states). They can be analysed

without any problem. We can determine whether a scenario can work or not (deadlocks), and

we can determine the probability, that the scenario ends up in a given time. For example, the

scenario of the above SqD ends up earlier than time X with the probability Y (Practically, this

is the cumulative distribution function of the time it take to process one blank).

6.7 Model veri�cation

The dynamic behavior of a model described by state charts and designed in UML can be

automatically veri�ed using the SPIN veri�cation tool. The validity and the process of this

veri�cation will be shown in the example of the production cell.

A �le written in Promela, i.e. in the veri�cation language of SPIN can automatically be

generated out of the dynamic model.

32

The state chart describing the dynamic behavior of the system is the Production Cell. Within

that there are the following parallel sub-state charts: FeedBeltC, FeedBeltHW, RotaryTableC,

RotaryTableHW, RobotC, RobotHW, Press1C, Press1HW, Press2C, and Press2HW.

6.7.1 The SPIN code

The following Promela code is automatically generated out of the above-described model. The

skeleton of the code is presented the appendix, the whole code being too large for full presen-

tation.

6.7.2 The Result of the Veri�cation with SPIN

The model can either be simulated or veri�ed by SPIN. First, having chosen veri�cation, SPIN

will roam the state space of the model up to the previously given steps. The process stops if a

deadlock or a recurrent cycle is found in the state space. In our given example the reason for

the halt was a recurrent cycle resulting in the following output:

(Spin Version 3.2.3 -- 1 August 1998)

+ Partial Order Reduction

Full statespace search for:

never-claim - (not selected)

assertion violations - (disabled by -A flag)

cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 512 byte, depth reached 19749, errors: 0

200 states, stored

1 states, matched

201 transitions (= stored+matched)

19524 atomic

steps hash conflicts: 0 (resolved)

(max size 2^21 states)

34.189 memory usage (Mbyte)

unreached in proctype queue

line 46, state 6, ''-end-''

(1 of 6 states)

unreached in proctype STEP

line 11610, state 216, ''(1)''

line 11612, state 220, ''(1)''

line 11619, state 225, ''Fire26 = 1''

...

As seen in the results, SPIN has found an invalid endstate and several code parts in the code

describing the model that have not been treated during running. Based on this information we

know that there is some kind of fault in the model, therefore we need a simulation in order to

�nd it.

33

6.7.3 The Result of the Simulation with SPIN

Using the simulation option of SPIN the state transitions in the model can be tracked down

and the reason for not having a satisfactory resultant state will be found. Omitting only the

sate transitions in the result of the simulation the following is obtained:

396: [S52_T_C_v_stop = 0] 397: [S53_T_C_v_down = 1]

411: [S49_T_C_r_stop = 0] 412: [S50_T_C_r_left = 1]

423: [S45_T_C_tick_1 = 0] 424: [S46_T_C_tick_2 = 1]

459: [S22_FB_C_tick_1 = 0] 460: [S23_FB_C_tick_2 = 1]

606: [S71_R_C_start = 0] 607: [S72_R_C_RA1_T = 1]

642: [S57_R_C_tick_1 = 0] 643: [S58_R_C_tick_2 = 1]

1309: [S46_T_C_tick_2 = 0] 1310: [S47_T_C_time_out = 1]

1345: [S23_FB_C_tick_2 = 0] 1346: [S24_FB_C_time_out = 1]

1438: [S89_T_HW_v_st1 = 0] 1439: [S84_T_HW_v_st3 = 1]

1456: [S92_T_HW_r_st1 = 0] 1457: [S0_T_HW_r_st3 = 1]

1531: [S58_R_C_tick_2 = 0] 1532: [S59_R_C_time_out = 1]

2148: [S84_T_HW_v_st3 = 0] 2149: [S86_T_HW_v_ok4FB_a = 1]

2199: [S47_T_C_time_out = 0] 2200: [S45_T_C_tick_1 = 1]

2235: [S24_FB_C_time_out = 0] 2236: [S22_FB_C_tick_1 = 1]

2262: [S39_FB_HW_empty = 0] 2263: [S40_FB_HW_one_blank_left = 1]

2349: [S0_T_HW_r_st3 = 0] 2350: [S3_T_HW_r_ok4FB_a = 1]

2388: [S72_R_C_RA1_T = 0] 2389: [S81_R_C_RA1_loaded = 1]

2424: [S59_R_C_time_out = 0] 2425: [S57_R_C_tick_1 = 1]

3034: [S3_T_HW_r_ok4FB_a = 0] 3035: [S1_T_HW_r_ok4FB_b = 1]

3073: [S53_T_C_v_down = 0] 3074: [S52_T_C_v_stop = 1]

3088: [S50_T_C_r_left = 0] 3089: [S49_T_C_r_stop = 1]

3094: [S45_T_C_tick_1 = 0] 3095: [S46_T_C_tick_2 = 1]

3106: [S54_T_C_unloaded = 0] 3107: [S55_T_C_load = 1]

3133: [S22_FB_C_tick_1 = 0] 3134: [S23_FB_C_tick_2 = 1]

3145: [S6_FB_C_stop = 0] 3146: [S7_FB_C_move = 1]

3217: [S86_T_HW_v_ok4FB_a = 0] 3218: [S87_T_HW_v_ok4FB_b = 1]

3319: [S57_R_C_tick_1 = 0] 3320: [S58_R_C_tick_2 = 1]

3970: [S52_T_C_v_stop = 0] 3971: [S51_T_C_v_up = 1]

3985: [S49_T_C_r_stop = 0] 3986: [S48_T_C_r_right = 1]

3997: [S46_T_C_tick_2 = 0] 3998: [S47_T_C_time_out = 1]

4033: [S23_FB_C_tick_2 = 0] 4034: [S24_FB_C_time_out = 1]

4066: [S40_FB_HW_one_blank_left = 0] 4067: [S42_FB_HW_one_blank_right = 1]

4216: [S58_R_C_tick_2 = 0] 4217: [S59_R_C_time_out = 1]

4883: [S47_T_C_time_out = 0] 4884: [S45_T_C_tick_1 = 1]

4919: [S24_FB_C_time_out = 0] 4920: [S22_FB_C_tick_1 = 1]

4943: [S7_FB_C_move = 0] 4944: [S6_FB_C_stop = 1]

5003: [S87_T_HW_v_ok4FB_b = 0] 5004: [S86_T_HW_v_ok4FB_a = 1]

5042: [S1_T_HW_r_ok4FB_b = 0] 5043: [S3_T_HW_r_ok4FB_a = 1]

5108: [S59_R_C_time_out = 0] 5109: [S57_R_C_tick_1 = 1]

5762: [S45_T_C_tick_1 = 0] 5763: [S46_T_C_tick_2 = 1]

5798: [S22_FB_C_tick_1 = 0] 5799: [S23_FB_C_tick_2 = 1]

5840: [S42_FB_HW_one_blank_right = 0] 5841: [S43_FB_HW_wait_for_blank = 1]

5981: [S57_R_C_tick_1 = 0] 5982: [S58_R_C_tick_2 = 1]

6637: [S46_T_C_tick_2 = 0] 6638: [S47_T_C_time_out = 1]

6673: [S23_FB_C_tick_2 = 0] 6674: [S24_FB_C_time_out = 1]

6853: [S58_R_C_tick_2 = 0] 6854: [S59_R_C_time_out = 1]

7453: [S3_T_HW_r_ok4FB_a = 0] 7454: [S92_T_HW_r_st1 = 1]

7516: [S47_T_C_time_out = 0] 7517: [S45_T_C_tick_1 = 1]

7552: [S24_FB_C_time_out = 0] 7553: [S22_FB_C_tick_1 = 1]

7591: [S43_FB_HW_wait_for_blank = 0] 7592: [S41_FB_HW_two_blanks = 1]

7627: [S86_T_HW_v_ok4FB_a = 0] 7628: [S89_T_HW_v_st1 = 1]

34

7738: [S59_R_C_time_out = 0] 7739: [S57_R_C_tick_1 = 1]

8396: [S45_T_C_tick_1 = 0] 8397: [S46_T_C_tick_2 = 1]

8432: [S22_FB_C_tick_1 = 0] 8433: [S23_FB_C_tick_2 = 1]

8444: [S6_FB_C_stop = 0] 8445: [S7_FB_C_move = 1]

8534: [S89_T_HW_v_st1 = 0] 8535: [S85_T_HW_v_st2 = 1]

8546: [S92_T_HW_r_st1 = 0] 8547: [S93_T_HW_r_st2 = 1]

8621: [S57_R_C_tick_1 = 0] 8622: [S58_R_C_tick_2 = 1]

9285: [S46_T_C_tick_2 = 0] 9286: [S47_T_C_time_out = 1]

9321: [S23_FB_C_tick_2 = 0] 9322: [S24_FB_C_time_out = 1]

9357: [S41_FB_HW_two_blanks = 0] 9358: [S42_FB_HW_one_blank_right = 1]

9504: [S58_R_C_tick_2 = 0] 9505: [S59_R_C_time_out = 1]

10119: [S85_T_HW_v_st2 = 0] 10120: [S90_T_HW_v_ok4RA1_a = 1]

10167: [S47_T_C_time_out = 0] 10168: [S45_T_C_tick_1 = 1]

10203: [S24_FB_C_time_out = 0] 10204: [S22_FB_C_tick_1 = 1]

10227: [S7_FB_C_move = 0] 10228: [S6_FB_C_stop = 1]

10314: [S93_T_HW_r_st2 = 0] 10315: [S4_T_HW_r_ok4RA1_a = 1]

10389: [S59_R_C_time_out = 0] 10390: [S57_R_C_tick_1 = 1]

11004: [S4_T_HW_r_ok4RA1_a = 0] 11005: [S2_T_HW_r_ok4RA1_b = 1]

11028: [S51_T_C_v_up = 0] 11029: [S52_T_C_v_stop = 1]

11043: [S48_T_C_r_right = 0] 11044: [S49_T_C_r_stop = 1]

11058: [S45_T_C_tick_1 = 0] 11059: [S46_T_C_tick_2 = 1]

11073: [S55_T_C_load = 0] 11074: [S54_T_C_unloaded = 1]

11097: [S22_FB_C_tick_1 = 0] 11098: [S23_FB_C_tick_2 = 1]

11139: [S42_FB_HW_one_blank_right = 0] 11140: [S43_FB_HW_wait_for_blank = 1]

11205: [S90_T_HW_v_ok4RA1_a = 0] 11206: [S88_T_HW_v_ok4RA1_b = 1]

11283: [S57_R_C_tick_1 = 0] 11284: [S58_R_C_tick_2 = 1]

11930: [S52_T_C_v_stop = 0] 11931: [S53_T_C_v_down = 1]

11945: [S49_T_C_r_stop = 0] 11946: [S50_T_C_r_left = 1]

11960: [S46_T_C_tick_2 = 0] 11961: [S47_T_C_time_out = 1]

11996: [S23_FB_C_tick_2 = 0] 11997: [S24_FB_C_time_out = 1]

12176: [S58_R_C_tick_2 = 0] 12177: [S59_R_C_time_out = 1]

12779: [S2_T_HW_r_ok4RA1_b = 0] 12780: [S4_T_HW_r_ok4RA1_a = 1]

12845: [S47_T_C_time_out = 0] 12846: [S45_T_C_tick_1 = 1]

12881: [S24_FB_C_time_out = 0] 12882: [S22_FB_C_tick_1 = 1]

12920: [S43_FB_HW_wait_for_blank = 0] 12921: [S41_FB_HW_two_blanks = 1]

12968: [S88_T_HW_v_ok4RA1_b = 0] 12969: [S90_T_HW_v_ok4RA1_a = 1]

13067: [S59_R_C_time_out = 0] 13068: [S57_R_C_tick_1 = 1]

13720: [S45_T_C_tick_1 = 0] 13721: [S46_T_C_tick_2 = 1]

13756: [S22_FB_C_tick_1 = 0] 13757: [S23_FB_C_tick_2 = 1]

13936: [S57_R_C_tick_1 = 0] 13937: [S58_R_C_tick_2 = 1]

14588: [S46_T_C_tick_2 = 0] 14589: [S47_T_C_time_out = 1]

14624: [S23_FB_C_tick_2 = 0] 14625: [S24_FB_C_time_out = 1]

14804: [S58_R_C_tick_2 = 0] 14805: [S59_R_C_time_out = 1]

15408: [S4_T_HW_r_ok4RA1_a = 0] 15409: [S92_T_HW_r_st1 = 1]

15465: [S47_T_C_time_out = 0] 15466: [S45_T_C_tick_1 = 1]

15501: [S24_FB_C_time_out = 0] 15502: [S22_FB_C_tick_1 = 1]

15597: [S90_T_HW_v_ok4RA1_a = 0] 15598: [S89_T_HW_v_st1 = 1]

15684: [S59_R_C_time_out = 0] 15685: [S57_R_C_tick_1 = 1]

16339: [S45_T_C_tick_1 = 0] 16340: [S46_T_C_tick_2 = 1]

16375: [S22_FB_C_tick_1 = 0] 16376: [S23_FB_C_tick_2 = 1]

16471: [S89_T_HW_v_st1 = 0] 16472: [S84_T_HW_v_st3 = 1]

16489: [S92_T_HW_r_st1 = 0] 16490: [S0_T_HW_r_st3 = 1]

16561: [S57_R_C_tick_1 = 0] 16562: [S58_R_C_tick_2 = 1]

17220: [S46_T_C_tick_2 = 0] 17221: [S47_T_C_time_out = 1]

17256: [S23_FB_C_tick_2 = 0] 17257: [S24_FB_C_time_out = 1]

17436: [S58_R_C_tick_2 = 0] 17437: [S59_R_C_time_out = 1]

The state transitions in the original UML Statecharts show that they occur cyclically in the

35

following sub-statecharts:

� Feed Belt Controller, Rotary Table Controller and Robot Controller tick1 - tick2 - timeout,

� Rotary Table Controller unloaded - load,

� Rotary Table Controller v-stop - v-down - v-stop - v-up - v-stop and r-stop - r-left - r-stop

- r-right - r-stop,

� Rotary Table Hardware r st1 - r st3 - r ok4FB a - r ok4FB b - r ok4FB a - r st1 and v st1

- v st3 - v ok4FB a - v ok4FB b - v ok4FB a - v st1,

� Feed Belt Controller stop - move,

� In Feed Belt Hardware after having reached state one blank right: one blank right -

wait for blank - two blanks.

Starting from state start the Robot Controller reaches state RA1 and from there state RA1

loaded.

What can be stated altogether is that none of the presses react, however the feed belt starts

operating and the rotary table turns to the appropriate position. The robot arm senses as if

holding a sheet, while in reality it holds nothing, which plate it cannot then put down from the

feed belt onto the rotary table. Therefore, the system is in a quasi dead-lock.

A Promela code

/* Bits for states */

bit S0_T_HW_r_st3, S1_T_HW_r_ok4FB_b,

S2_T_HW_r_ok4RA1_b, S3_T_HW_r_ok4FB_a, S4_T_HW_r_ok4RA1_a,

S5_Feed_Belt_Controller, S6_FB_C_stop, S7_FB_C_move,

S8_Press_1_Controller, S9_PR1_C_ready, S10_PR1_C_work,

S11_PR1_C_busy, S12_Presse_2_Controller, S13_PR1_C_crashed,

S14_PR1_C_unloaded, S15_PR1_C_loaded, S16_PR2_C_unloaded,

S17_PR2_C_loaded, S18_PR2_C_ready, S19_PR2_C_work,

S20_PR2_C_busy, S21_PR2_C_crashed, S22_FB_C_tick_1,

S23_FB_C_tick_2, S24_FB_C_time_out, S25_Production_Cell,

S26_PR2_HW_empty, S27_PR2_HW_processing, S28_PR2_HW_failure,

S29_PR2_HW_done, S30_PR2_HW_process, S31_Press_2_Hardware,

S32_Press_1_Hardware, S33_PR1_HW_failure, S34_PR1_HW_process,

S35_PR1_HW_processing, S36_PR1_HW_done, S37_PR1_HW_empty,

S38_Feed_Belt_Hardware, S39_FB_HW_empty,

S40_FB_HW_one_blank_left, S41_FB_HW_two_blanks,

S42_FB_HW_one_blank_right, S43_FB_HW_wait_for_blank,

S44_Rotary_Table_Controller, S45_T_C_tick_1, S46_T_C_tick_2,

S47_T_C_time_out, S48_T_C_r_right, S49_T_C_r_stop,

S50_T_C_r_left, S51_T_C_v_up, S52_T_C_v_stop,

S53_T_C_v_down, S54_T_C_unloaded, S55_T_C_load,

S56_Robot_Controller, S57_R_C_tick_1, S58_R_C_tick_2,

S59_R_C_time_out, S60_R_C_Redundancy_Manager,

S61_R_C_Press_1_down, S62_R_C_Press_2_down,

S63_R_C_System_fails, S64_R_C_right, S65_R_C_stop,

S66_R_C_left, S67_Robot_Hardware, S68_R_HW_Pos1, S69_R_HW_Pos2,

S70_R_HW_Pos3, S71_R_C_start, S72_R_C_RA1_T, S73_R_C_RA2_PR2,

S74_R_C_RA2_PR1, S75_R_C_RA1_PR2, S76_R_C_RA1_PR1,

S77_R_C_RA2_PR2_ok, S78_R_C_RA2_PR1_ok, S79_R_C_RA1_PR1_ok,

S80_R_C_RA1_PR2_ok, S81_R_C_RA1_loaded,

36

S82_Rotary_Table_Hardware, S83_T_HW_v_crash, S84_T_HW_v_st3,

S85_T_HW_v_st2, S86_T_HW_v_ok4FB_a, S87_T_HW_v_ok4FB_b,

S88_T_HW_v_ok4RA1_b, S89_T_HW_v_st1, S90_T_HW_v_ok4RA1_a,

S91_T_HW_r_crash, S92_T_HW_r_st1, S93_T_HW_r_st2;

/* Bits for transition priorities */

bit P0, P1, P2, P3, P95, P96, P97;

/* Bits for transition selections */

bit Sel0, Sel1, Sel2, Sel3, Sel95, Sel96, Sel97;

/* Bits for transition firing */

bit Fire0, Fire1, Fire2, Fire3, Fire95, Fire96, Fire97;

/* Channels */

chan to_stmachine = [0] of {int}

chan to_queue = [104] of {int}

/* Definition of priorities */

#define SM(x,y) (0)

/* Definitions of events */

#define e1_step 1

/* Event variable */

int Event;

proctype queue()

{

int e;

do

::

to_queue?e;

to_stmachine!e;

od

}

proctype STEP()

{

int e;

do

::

to_stmachine?e;

Event=e;

atomic

{

...

/* Automaton 12 */

/* Begin Automaton 12 progress*/

/* Transition 86 */

37

Sel86 =

/* Progress 3 */

S6_FB_C_stop & (Event==e1_step) &

((S40_FB_HW_one_blank_left)||%

((S55_T_C_load)&(S41_FB_HW_two_blanks)))

/* End Progress 3 */

&

/* Progress 4 */

!(P0 & SM(86,0))& !(P1 & SM(86,1))& !(P2 & SM(86,2))& !(P3 & SM(86,3))&

!(P4 & SM(86,4))& !(P5 & SM(86,5))& !(P96 & SM(86,96))& !(P97 & SM(86,97))

/* End Progress 4 */

&

/* Progress 5 */

/* End Progress 5 */

/* Progress 6 */

1

/* End Progress 6 */

/* End Transition 86 */

;

/* Transition 92 */

Sel92 =

/* Progress 3 */

S7_FB_C_move & (Event==e1_step) & (S42_FB_HW_one_blank_right)

/* End Progress 3 */

&

/* Progress 4 */

!(P0 & SM(92,0))& !(P1 & SM(92,1))& !(P96 & SM(92,96))& !(P97 & SM(92,97))

/* End Progress 4 */

&

/* Progress 5 */

/* End Progress 5 */

/* Progress 6 */

1

/* End Progress 6 */

/* End Transition 92 */

;

/* End Automaton 12 progress*/

/* Begin Automaton 12 composition */

/* Updating priorities with active transitions */

P86 = S6_FB_C_stop & (Event==e1_step) & ((S40_FB_HW_one_blank_left)||

((S55_T_C_load)&(S41_FB_HW_two_blanks)));

P92 = S7_FB_C_move & (Event==e1_step) & (S42_FB_HW_one_blank_right);

/* End Automaton 12 composition */

/* End Automaton 12 */

...

/* Selecting transition to fire */

/* Automaton 3 */

if

:: (Sel0 || Sel1 || Sel2 || Sel3 || Sel4 || Sel5 || Sel6 || Sel7 || Sel8

|| Sel9 || Sel10 || Sel11 || Sel12 || Sel13 || Sel14 || Sel15 || Sel16

|| Sel17 || Sel18 || Sel19 || Sel20 || Sel21 || Sel22 || Sel23 || Sel24

|| Sel25 || Sel26 || Sel27 || Sel28 || Sel29 || Sel30 || Sel31 || Sel32

|| Sel33 || Sel34 || Sel35 || Sel36 || Sel37 || Sel38 || Sel39 || Sel40

|| Sel41 || Sel42 || Sel43 || Sel44 || Sel45 || Sel46 || Sel47 || Sel48

|| Sel49 || Sel50 || Sel51 || Sel52 || Sel53 || Sel54 || Sel55 || Sel56

|| Sel57 || Sel58 || Sel59 || Sel60 || Sel61 || Sel62 || Sel63 || Sel64

|| Sel65 || Sel66 || Sel67 || Sel68 || Sel69 || Sel70 || Sel71 || Sel72

38

|| Sel73 || Sel74 || Sel75 || Sel76 || Sel77 || Sel78 || Sel79 || Sel80

|| Sel81 || Sel82 || Sel83 || Sel84 || Sel85 || Sel86 || Sel87 || Sel88

|| Sel89 || Sel90 || Sel91 || Sel92 || Sel93 || Sel94 || Sel95 || Sel96

|| Sel97 || 0) ->

/* Automaton 0 */

if

:: (Sel83 || Sel84 || Sel85 || Sel86 || Sel92 || 0) ->

/* Automaton 12 */

if

:: Sel86 -> Fire86=1;

:: Sel92 -> Fire92=1;

:: else -> skip;

fi;

/* Automaton 19 */

if

:: Sel83 -> Fire83=1;

:: Sel84 -> Fire84=1;

:: Sel85 -> Fire85=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 1 */

if

:: (Sel24 || Sel25 || Sel26 || Sel27 || Sel28 || Sel29 || 0) ->

/* Automaton 14 */

if

:: Sel26 -> Fire26=1;

:: Sel27 -> Fire27=1;

:: Sel28 -> Fire28=1;

:: Sel29 -> Fire29=1;

:: else -> skip;

fi;

/* Automaton 17 */

if

:: Sel24 -> Fire24=1;

:: Sel25 -> Fire25=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 10 */

if

:: (Sel36 || Sel37 || Sel38 || Sel39 || Sel40 || Sel41 || Sel42 || Sel43

|| Sel44 || Sel45 || Sel46 || Sel47 || Sel48 || Sel49 || Sel50 || Sel51

|| Sel52 || Sel53 || Sel54 || Sel55 || Sel56 || Sel57 || Sel58 || Sel59

|| 0) ->

/* Automaton 46 */

if

:: Sel46 -> Fire46=1;

:: Sel47 -> Fire47=1;

:: Sel48 -> Fire48=1;

:: Sel55 -> Fire55=1;

:: Sel50 -> Fire50=1;

:: Sel56 -> Fire56=1;

:: Sel49 -> Fire49=1;

:: Sel51 -> Fire51=1;

:: Sel52 -> Fire52=1;

39

:: Sel53 -> Fire53=1;

:: Sel54 -> Fire54=1;

:: Sel57 -> Fire57=1;

:: else -> skip;

fi;

/* Automaton 47 */

if

:: Sel43 -> Fire43=1;

:: Sel44 -> Fire44=1;

:: Sel45 -> Fire45=1;

:: Sel36 -> Fire36=1;

:: Sel39 -> Fire39=1;

:: Sel42 -> Fire42=1;

:: Sel58 -> Fire58=1;

:: Sel59 -> Fire59=1;

:: Sel37 -> Fire37=1;

:: Sel38 -> Fire38=1;

:: Sel40 -> Fire40=1;

:: Sel41 -> Fire41=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 2 */

if

:: (Sel77 || Sel78 || Sel79 || Sel80 || Sel81 || Sel82 || 0) ->

/* Automaton 16 */

if

:: Sel79 -> Fire79=1;

:: Sel80 -> Fire80=1;

:: Sel81 -> Fire81=1;

:: Sel82 -> Fire82=1;

:: else -> skip;

fi;

/* Automaton 18 */

if

:: Sel77 -> Fire77=1;

:: Sel78 -> Fire78=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 4 */

if

:: (Sel30 || Sel31 || Sel32 || Sel33 || Sel34 || 0) ->

/* Automaton 26 */

if

:: Sel32 -> Fire32=1;

:: Sel30 -> Fire30=1;

:: Sel31 -> Fire31=1;

:: Sel33 -> Fire33=1;

:: Sel34 -> Fire34=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 5 */

if

40

:: (Sel87 || Sel88 || Sel89 || Sel90 || Sel91 || 0) ->

/* Automaton 27 */

if

:: Sel87 -> Fire87=1;

:: Sel91 -> Fire91=1;

:: Sel88 -> Fire88=1;

:: Sel89 -> Fire89=1;

:: Sel90 -> Fire90=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 6 */

if

:: (Sel93 || Sel94 || Sel95 || Sel96 || Sel97 || 0) ->

/* Automaton 28 */

if

:: Sel94 -> Fire94=1;

:: Sel97 -> Fire97=1;

:: Sel93 -> Fire93=1;

:: Sel95 -> Fire95=1;

:: Sel96 -> Fire96=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 7 */

if

:: (Sel64 || Sel65 || Sel66 || Sel67 || Sel68 || Sel69 || Sel70 || Sel71

|| Sel72 || Sel73 || Sel74 || Sel75 || Sel76 || 0) ->

/* Automaton 30 */

if

:: Sel70 -> Fire70=1;

:: Sel71 -> Fire71=1;

:: Sel68 -> Fire68=1;

:: Sel69 -> Fire69=1;

:: else -> skip;

fi;

/* Automaton 31 */

if

:: Sel73 -> Fire73=1;

:: Sel72 -> Fire72=1;

:: Sel74 -> Fire74=1;

:: else -> skip;

fi;

/* Automaton 32 */

if

:: Sel75 -> Fire75=1;

:: Sel76 -> Fire76=1;

:: else -> skip;

fi;

/* Automaton 33 */

if

:: Sel64 -> Fire64=1;

:: Sel65 -> Fire65=1;

:: Sel66 -> Fire66=1;

:: Sel67 -> Fire67=1;

:: else -> skip;

41

fi;

:: else -> skip;

fi;

/* Automaton 8 */

if

:: (Sel0 || Sel1 || Sel2 || Sel3 || Sel4 || Sel5 || Sel6 || Sel7 || Sel8

|| Sel9 || Sel10 || Sel11 || Sel12 || Sel13 || Sel14 || Sel15 || Sel16

|| Sel17 || Sel18 || Sel19 || Sel20 || Sel60 || Sel61 || Sel62 || Sel63

|| 0) ->

/* Automaton 35 */

if

:: Sel16 -> Fire16=1;

:: Sel6 -> Fire6=1;

:: Sel7 -> Fire7=1;

:: Sel8 -> Fire8=1;

:: Sel9 -> Fire9=1;

:: Sel10 -> Fire10=1;

:: Sel11 -> Fire11=1;

:: Sel12 -> Fire12=1;

:: Sel13 -> Fire13=1;

:: Sel14 -> Fire14=1;

:: Sel15 -> Fire15=1;

:: Sel17 -> Fire17=1;

:: Sel4 -> Fire4=1;

:: Sel5 -> Fire5=1;

:: else -> skip;

fi;

/* Automaton 36 */

if

:: Sel19 -> Fire19=1;

:: Sel18 -> Fire18=1;

:: Sel20 -> Fire20=1;

:: else -> skip;

fi;

/* Automaton 37 */

if

:: Sel61 -> Fire61=1;

:: Sel60 -> Fire60=1;

:: Sel62 -> Fire62=1;

:: Sel63 -> Fire63=1;

:: else -> skip;

fi;

/* Automaton 39 */

if

:: Sel0 -> Fire0=1;

:: Sel3 -> Fire3=1;

:: Sel1 -> Fire1=1;

:: Sel2 -> Fire2=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Automaton 9 */

if

:: (Sel21 || Sel22 || Sel23 || Sel35 || 0) ->

/* Automaton 38 */

if

:: Sel35 -> Fire35=1;

42

:: Sel23 -> Fire23=1;

:: Sel21 -> Fire21=1;

:: Sel22 -> Fire22=1;

:: else -> skip;

fi;

:: else -> skip;

fi;

:: else -> skip;

fi;

/* Firing selected transitions */

if :: Fire52-> S2_T_HW_r_ok4RA1_b=0; S91_T_HW_r_crash=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire53-> S2_T_HW_r_ok4RA1_b=0; S4_T_HW_r_ok4RA1_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire54-> S3_T_HW_r_ok4FB_a=0; S92_T_HW_r_st1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire55-> S3_T_HW_r_ok4FB_a=0; S1_T_HW_r_ok4FB_b=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire56-> S4_T_HW_r_ok4RA1_a=0; S92_T_HW_r_st1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire57-> S4_T_HW_r_ok4RA1_a=0; S2_T_HW_r_ok4RA1_b=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire58-> S84_T_HW_v_st3=0; S86_T_HW_v_ok4FB_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire59-> S85_T_HW_v_st2=0; S90_T_HW_v_ok4RA1_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire60-> S60_R_C_Redundancy_Manager=0; S61_R_C_Press_1_down=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire61-> S60_R_C_Redundancy_Manager=0; S62_R_C_Press_2_down=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire62-> S61_R_C_Press_1_down=0; S63_R_C_System_fails=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire63-> S62_R_C_Press_2_down=0; S63_R_C_System_fails=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire64-> S51_T_C_v_up=0; S52_T_C_v_stop=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire65-> S52_T_C_v_stop=0; S53_T_C_v_down=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire66-> S52_T_C_v_stop=0; S51_T_C_v_up=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire67-> S53_T_C_v_down=0; S52_T_C_v_stop=1; to_queue!e1_step; skip

:: else->skip

43

fi;

if :: Fire68-> S48_T_C_r_right=0; S49_T_C_r_stop=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire69-> S49_T_C_r_stop=0; S50_T_C_r_left=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire70-> S49_T_C_r_stop=0; S48_T_C_r_right=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire71-> S50_T_C_r_left=0; S49_T_C_r_stop=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire72-> S45_T_C_tick_1=0; S46_T_C_tick_2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire73-> S46_T_C_tick_2=0; S47_T_C_time_out=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire74-> S47_T_C_time_out=0; S45_T_C_tick_1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire75-> S54_T_C_unloaded=0; S55_T_C_load=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire76-> S55_T_C_load=0; S54_T_C_unloaded=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire77-> S16_PR2_C_unloaded=0; S17_PR2_C_loaded=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire78-> S17_PR2_C_loaded=0; S16_PR2_C_unloaded=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire79-> S18_PR2_C_ready=0; S19_PR2_C_work=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire80-> S19_PR2_C_work=0; S20_PR2_C_busy=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire81-> S19_PR2_C_work=0; S21_PR2_C_crashed=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire82-> S20_PR2_C_busy=0; S18_PR2_C_ready=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire83-> S22_FB_C_tick_1=0; S23_FB_C_tick_2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire84-> S23_FB_C_tick_2=0; S24_FB_C_time_out=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire85-> S24_FB_C_time_out=0; S22_FB_C_tick_1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire86-> S6_FB_C_stop=0; S7_FB_C_move=1; to_queue!e1_step; skip

:: else->skip

fi;

44

if :: Fire87-> S34_PR1_HW_process=0; S35_PR1_HW_processing=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire88-> S34_PR1_HW_process=0; S33_PR1_HW_failure=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire89-> S35_PR1_HW_processing=0; S36_PR1_HW_done=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire90-> S36_PR1_HW_done=0; S37_PR1_HW_empty=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire91-> S37_PR1_HW_empty=0; S34_PR1_HW_process=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire92-> S7_FB_C_move=0; S6_FB_C_stop=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire93-> S39_FB_HW_empty=0; S40_FB_HW_one_blank_left=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire94-> S40_FB_HW_one_blank_left=0; S42_FB_HW_one_blank_right=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire95-> S41_FB_HW_two_blanks=0; S42_FB_HW_one_blank_right=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire96-> S42_FB_HW_one_blank_right=0; S43_FB_HW_wait_for_blank=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire97-> S43_FB_HW_wait_for_blank=0; S41_FB_HW_two_blanks=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire26-> S9_PR1_C_ready=0; S10_PR1_C_work=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire27-> S10_PR1_C_work=0; S13_PR1_C_crashed=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire28-> S10_PR1_C_work=0; S11_PR1_C_busy=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire29-> S11_PR1_C_busy=0; S9_PR1_C_ready=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire30-> S26_PR2_HW_empty=0; S30_PR2_HW_process=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire31-> S27_PR2_HW_processing=0; S29_PR2_HW_done=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire32-> S29_PR2_HW_done=0; S26_PR2_HW_empty=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire33-> S30_PR2_HW_process=0; S28_PR2_HW_failure=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire34-> S30_PR2_HW_process=0; S27_PR2_HW_processing=1; to_queue!e1_step; skip

45

:: else->skip

fi;

if :: Fire35-> S68_R_HW_Pos1=0; S69_R_HW_Pos2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire36-> S86_T_HW_v_ok4FB_a=0; S89_T_HW_v_st1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire37-> S86_T_HW_v_ok4FB_a=0; S87_T_HW_v_ok4FB_b=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire38-> S87_T_HW_v_ok4FB_b=0; S83_T_HW_v_crash=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire39-> S87_T_HW_v_ok4FB_b=0; S86_T_HW_v_ok4FB_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire40-> S88_T_HW_v_ok4RA1_b=0; S90_T_HW_v_ok4RA1_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire41-> S88_T_HW_v_ok4RA1_b=0; S83_T_HW_v_crash=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire42-> S89_T_HW_v_st1=0; S84_T_HW_v_st3=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire43-> S89_T_HW_v_st1=0; S85_T_HW_v_st2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire44-> S90_T_HW_v_ok4RA1_a=0; S89_T_HW_v_st1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire45-> S90_T_HW_v_ok4RA1_a=0; S88_T_HW_v_ok4RA1_b=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire46-> S92_T_HW_r_st1=0; S93_T_HW_r_st2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire47-> S92_T_HW_r_st1=0; S0_T_HW_r_st3=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire48-> S93_T_HW_r_st2=0; S4_T_HW_r_ok4RA1_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire49-> S0_T_HW_r_st3=0; S3_T_HW_r_ok4FB_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire50-> S1_T_HW_r_ok4FB_b=0; S91_T_HW_r_crash=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire51-> S1_T_HW_r_ok4FB_b=0; S3_T_HW_r_ok4FB_a=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire0-> S65_R_C_stop=0; S66_R_C_left=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire1-> S65_R_C_stop=0; S64_R_C_right=1; to_queue!e1_step; skip

:: else->skip

46

fi;

if :: Fire2-> S66_R_C_left=0; S65_R_C_stop=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire3-> S64_R_C_right=0; S65_R_C_stop=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire4-> S81_R_C_RA1_loaded=0; S76_R_C_RA1_PR1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire5-> S81_R_C_RA1_loaded=0; S75_R_C_RA1_PR2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire6-> S71_R_C_start=0; S74_R_C_RA2_PR1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire7-> S71_R_C_start=0; S72_R_C_RA1_T=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire8-> S71_R_C_start=0; S73_R_C_RA2_PR2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire9-> S72_R_C_RA1_T=0; S81_R_C_RA1_loaded=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire10-> S73_R_C_RA2_PR2=0; S77_R_C_RA2_PR2_ok=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire11-> S74_R_C_RA2_PR1=0; S78_R_C_RA2_PR1_ok=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire12-> S75_R_C_RA1_PR2=0; S80_R_C_RA1_PR2_ok=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire13-> S76_R_C_RA1_PR1=0; S79_R_C_RA1_PR1_ok=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire14-> S77_R_C_RA2_PR2_ok=0; S71_R_C_start=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire15-> S78_R_C_RA2_PR1_ok=0; S71_R_C_start=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire16-> S79_R_C_RA1_PR1_ok=0; S71_R_C_start=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire17-> S80_R_C_RA1_PR2_ok=0; S71_R_C_start=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire18-> S57_R_C_tick_1=0; S58_R_C_tick_2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire19-> S58_R_C_tick_2=0; S59_R_C_time_out=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire20-> S59_R_C_time_out=0; S57_R_C_tick_1=1; to_queue!e1_step; skip

:: else->skip

fi;

47

if :: Fire21-> S69_R_HW_Pos2=0; S68_R_HW_Pos1=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire22-> S69_R_HW_Pos2=0; S70_R_HW_Pos3=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire23-> S70_R_HW_Pos3=0; S69_R_HW_Pos2=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire24-> S14_PR1_C_unloaded=0; S15_PR1_C_loaded=1; to_queue!e1_step; skip

:: else->skip

fi;

if :: Fire25-> S15_PR1_C_loaded=0; S14_PR1_C_unloaded=1; to_queue!e1_step; skip

:: else->skip

fi;

do :: (len(to_queue)>1) -> to_queue?e;

:: (len(to_queue)$<$2) -> break; od;

/* Cleaninig up structures */

P0=0; P1=0; P2=0; P3=0; P4=0; P5=0; P6=0; P7=0; P8=0; P9=0; P10=0; P11=0;

P12=0; P13=0; P14=0; P15=0; P16=0;...

Sel0=0; Sel1=0; Sel2=0; Sel3=0; Sel4=0; Sel5=0; Sel6=0; Sel7=0; Sel8=0;

Sel9=0; Sel10=0; Sel11=0; Sel12=0;...

Fire0=0; Fire1=0; Fire2=0; Fire3=0; Fire4=0; Fire5=0; Fire6=0; Fire7=0;

Fire8=0; Fire9=0; Fire10=0; Fire11=0;...

{

od

}

init

{

/* Initial configuration */

S0_T_HW_r_st3=0;

S1_T_HW_r_ok4FB_b=0; S2_T_HW_r_ok4RA1_b=0;

S3_T_HW_r_ok4FB_a=0; S4_T_HW_r_ok4RA1_a=0;

S5_Feed_Belt_Controller=1; S6_FB_C_stop=1; S7_FB_C_move=0;

S8_Press_1_Controller=1; S9_PR1_C_ready=1; S10_PR1_C_work=0;

S11_PR1_C_busy=0; S12_Presse_2_Controller=1; S13_PR1_C_crashed=0;

S14_PR1_C_unloaded=1; S15_PR1_C_loaded=0; S16_PR2_C_unloaded=1;

S17_PR2_C_loaded=0; S18_PR2_C_ready=1; S19_PR2_C_work=0;

S20_PR2_C_busy=0; S21_PR2_C_crashed=0; S22_FB_C_tick_1=1;

S23_FB_C_tick_2=0; S24_FB_C_time_out=0; S26_PR2_HW_empty=1;

S27_PR2_HW_processing=0; S28_PR2_HW_failure=0; S29_PR2_HW_done=0;

S30_PR2_HW_process=0; S31_Press_2_Hardware=1;

S32_Press_1_Hardware=1; S33_PR1_HW_failure=0; S34_PR1_HW_process=0;

S35_PR1_HW_processing=0; S36_PR1_HW_done=0; S37_PR1_HW_empty=1;

S38_Feed_Belt_Hardware=1; S39_FB_HW_empty=1;

S40_FB_HW_one_blank_left=0; S41_FB_HW_two_blanks=0;

S42_FB_HW_one_blank_right=0; S43_FB_HW_wait_for_blank=0;

S44_Rotary_Table_Controller=1; S45_T_C_tick_1=1;

S46_T_C_tick_2=0; S47_T_C_time_out=0; S48_T_C_r_right=0;

S49_T_C_r_stop=1; S50_T_C_r_left=0; S51_T_C_v_up=0;

S52_T_C_v_stop=1; S53_T_C_v_down=0; S54_T_C_unloaded=1;

S55_T_C_load=0; S56_Robot_Controller=1; S57_R_C_tick_1=1;

S58_R_C_tick_2=0; S59_R_C_time_out=0;

S60_R_C_Redundancy_Manager=1; S61_R_C_Press_1_down=0;

S62_R_C_Press_2_down=0; S63_R_C_System_fails=0; S64_R_C_right=0;

48

S65_R_C_stop=1; S66_R_C_left=0; S67_Robot_Hardware=1;

S68_R_HW_Pos1=1; S69_R_HW_Pos2=0; S70_R_HW_Pos3=0;

S71_R_C_start=1; S72_R_C_RA1_T=0; S73_R_C_RA2_PR2=0;

S74_R_C_RA2_PR1=0; S75_R_C_RA1_PR2=0; S76_R_C_RA1_PR1=0;

S77_R_C_RA2_PR2_ok=0; S78_R_C_RA2_PR1_ok=0;

S79_R_C_RA1_PR1_ok=0; S80_R_C_RA1_PR2_ok=0;

S81_R_C_RA1_loaded=0; S82_Rotary_Table_Hardware=1;

S83_T_HW_v_crash=0; S84_T_HW_v_st3=0; S85_T_HW_v_st2=0;

S86_T_HW_v_ok4FB_a=0; S87_T_HW_v_ok4FB_b=0;

S88_T_HW_v_ok4RA1_b=0; S89_T_HW_v_st1=1;

S90_T_HW_v_ok4RA1_a=0; S91_T_HW_r_crash=0; S92_T_HW_r_st1=1;

S93_T_HW_r_st2=0; S25_Production_Cell=1;

to_queue!e1_step;

/* Start process */

atomic {run queue(); run STEP()}

}

49

