
Deliverable 3

Speci�cation of the HIDE Environment

Esprit Project 27439 - HIDE

High-level Indegrated Design Environment for
Dependability

A. Borschet, M. Dal Cin, J. J�avorsky, A. Pataricza, G. Savoia, Cs. Sz�asz

Friedrich-Alexander-Universit�at Erlangen-N�urnberg (FAU)

Conzorcio Pisa Ricerche-Pisa Dependable Computing Centre (PDCC)

Technical University of Budapest (TUB)

MID GmbH

Intecs Sistemi SpA

HIDE/D3/TUB/1/v2



simulation

virtual
prototyping

code
generation

UML editor

document
generation

transformer

transformerback-annotation

database
generation transformer

transformer

fault-tolerant
component library

UML

repository

model

dependability

analysis:
- validation
- simulation
- ATPG
- FMEA
- diagnostics

validation

performance
analysis

database
model

stochastic
model (SPN)

communication
model (PA)

model (DFN)
dataflow

fault model
(DFN)

fault libraryfault injector
error propagation
model extractor

host framework HIDE tool-box model evaluation tools

Figure 1: Architectural framework of the HIDE environment

1 De�nition of architectural framework

The aim of this deliverable is the de�nition of the HIDE architecture in a form which can be

used without major alteration for both phases. However, the implementation could di�er for the

two phases. The primary target of Phase 1. is the de�nition of a prototyping environment, in

consideration of the assurance of a high level of exibility and of a good support for debugging

of the algorithms to be implemented. In this phase, both the e�cient use of the resources and

the time requirements of the transformations are of secondary importance. Accordingly, this

implementation should rely, as far as possible, on commercially available tools, not necessary

incorporated into the �nal HIDE tool.

The HIDE architecture is built up from 4 main components:

UML CASE tool The user-end modelling platform is an arbitrary UML CASE tool. In this

component the user can build up its own UML model. All tool provided features, as

code-generation, round trip engineering, can be used freely, without any modi�cation.

When modelling new constraints and rules must observed which are de�ned in the HIDE

environment. As the CASE tool is one of the mostly used user-end interface of the

HIDE framework, if de�nitely required, it may be altered in some way to suit into the

requirements raised by HIDE.

Veri�cation tools These tools usually are o�-the-shelf components and are not supposed to

be altered in any way. The HIDE core will act as an end-user toward the veri�cation tool.

It will call the tool supplying the correct input for it and then will analyze the result of

it. As the development or improving of these tools are totally out of scope of the HIDE

aims, their knowledge and shortcomings have a great inuence on the services delivered by

HIDE, in this sense we do not alter the tools, but merely support the selection of proper

modelling paradigms and tools for the problem solving.

2



HIDE repository All additional functions added to the CASE tool are developed on the basis

of a virtual database system. This has many advantages presented in later sections, but

the most important three are:

� independence of CASE tool

� better performance, then reading and writing the internal repository of the host

CASE tool

� faster development as all model transformations are implemented on a uniform envi-

ronment

The HIDE repository will contain one or more actual UML models (designed in the CASE

tool), the functions executed on it and will act as a fault tolerant library.

The use of a standard database for implementing the HIDE reposotory o�ers naturally all

services provided by the database system. Such services can provide additional bene�ts

for the user. For instance, here are some useful possibilities:

� Availability of the UML model through a standard interface (SQL). This way the

user can utilize the power of the database based approach.

� If the CASE tool doesn't provide support for version checking or automatic backup,

the end user could use the database for these tasks.

Naturally the disadvantage of this approach is that, as a matter of fact, there is a dupli-

cation of databases, one is the CASE tool's UML model repository, the second one is the

HIDE repository. It has to be pointed out, that:

The majority of the tools do not use standard databases, however according to the needs

of the UML based design process (like the support of teamwork, specialized data formats,

...) they o�er some very specialized solutions. The next problem in merging the repository

and database would be the necessity of a common script language. Currently di�erent

tools use di�erent script languages, for instance Innovator uses Tcl/Tk, Rational Rose

uses Basic Script, UML Nice provides a CORBA interface. Specialized database script

languages are provided by the tools vendors for handling the database contents, in the

�rst phase we always relied on the PL/SQL script language which is an standard provided

by practically all database vendors. An additional bene�t of using the standard databases

is, that this way the compliance with the UML metamodel is assured by automatically

transforming the meta-model of UML into database structure. This meta-model was made

available by the OMG for end-users, and as a matter of fact by using the advanced features

of CASE tools supporting the transformation of a UML model into a database structure

as well, a fully automatic transformation procedure was supported, automatically assuring

the standard compliance. This approach is at the same time a well founded basis for the

maintenance of the entire HIDE approach as if further modi�cations are taken on UML,

only some minor changes are needed in the scripts interfacing the automatically derived

database structure from the UML meta-model.

3



all UML features which are supported and used by the HIDE framework

extensibility features for the end-user: internal script language

several requirements on the script language

Table 1: Requirements for UML CASE tools

HIDE toolbox. The HIDE toolbox will be a user-end interface executing those functions that

cannot be triggered from the CASE tools. For example these are the database manipula-

tion tasks.

1.1 Objectives

One of the main requirements when de�ning the architectural framework is the openness of the

approach. On the openness we mean that:

� an arbitrary UML CASE tool can be used as host environment assumed that it is able to

export the model for further modi�cation. Here the output format of the model repository

has to be well de�ned. Such de�nitions are available for the majority of the tools, like UML

Nice, Innovator, Rational Rose. This kind of extensibility is naturally only the simplest

solution for integrating the HIDE environment into a new host framework. Typically

tool providers support the integration of user functions in two ways: by an internal script

language or by a CORBA interface in order to make the content of the repository reachable

for user de�ned tools, like HIDE.

� The user interface of the host CASE tool has to be extended (for example, by new menus)

in order to serve the comfort of the use of the HIDE environment.

� There should be some kind of back-annotation mechanism in order to provide the possi-

bility for the visualization of the analysis results provided by the veri�cation tools.

1.2 CASE tools

As the CASE tool is one of the most basic resources for the entire HIDE approach, not only in

the sense that it provides the user front-end interface, but merely that it has to integrate the

additional services o�ered by HIDE, it may be altered or extended by the features required by

HIDE.

An arbitrary UML CASE tool will play the part of the user-end interface of the HIDE

framework. The user will use this component for design an UML model, the subject of all later

investigations performed by the HIDE engine. Such a tool, in order to enable its integration

into the HIDE framework, must provide { in addition to all the standard features speci�ed in

the UML { certain necessary features. An overview on the requirements for a CASE tool is

given in Table 1 and clari�ed in full details in Section X.

The integration into the HIDE will extend the tool with the following features:

4



� Transformation (export) of the UML model designed in the CASE tool into the HIDE

repository.

� Transformation (import) of the HIDE repository into the tool. This is required when the

UML model is modi�ed inside the HIDE repository.

� Visualization of the results of the veri�cation tools.

1.3 Analysis tools

The HIDE framework is supposed to use and integrate several analysis tools. The main inno-

vation in HIDE is to provide the knowhow necessary for problem solution in the form of model

libraries and modelling paradigms. This additional knowhow will be formulated in such a way

which is fully compliant to the actual analysis tool. These tools will perform several veri�cation

/ validation tasks on the investigated UML model. They will enable the end-user to identify

design errors in the model or derive qualitative or quantitative parameters for the model.

As the end-users of the HIDE framework are not supposed to know neither the integrated

veri�cation tools, nor their underlying mathematical theory, the framework must "hide" these

tools in such a way that the user can start the veri�cation directly from the front-end and

receive only the post-interpreted results of the output generated by the tools.

These tools generally are not designed in any way for analyzing an UML model. Because of

this the conversion between them and the UML model must be solved in some way. There are

two possibilities to overcome the gap between the tool's internal representation and the UML

model to be analyzed.

� First is to extend the veri�cation tool with new capabilities that enable them to handle

UML models directly. As the HIDE doesn't aim the development of any new tool, but at

the reuse of them, these tools will be o�-the-shelf components of the HIDE framework.

This way, if they are unprepared to handle UML models or they do not provide any

extension interface for the developer, the only solution is to accept the tool as it is.

� The second solution, which is one of the basic concepts of HIDE, is to provide correct

input for the tool, which corresponds to internal representation and to the syntax of their

input �les. Naturally, this solution requires as starting point the precise syntax of the

input �les.

1.4 HIDE repository

The HIDE repository is the core component of the HIDE framework. It is responsible for the

following three main tasks:

� Store one or several UML models designed with an arbitrary UML CASE tool. For this

purpose a complex database scheme is built up which correspond to the o�cial UML

meta-model published by the OMG. In order to guarantee that the HIDE framework is

5



independent of the CASE tool, this scheme is not supposed to di�er from the standard

meta-model except if it is de�nitely necessary. As a result of this independency the HIDE

environment doesn't utilize the tool speci�c features even if they would improve somehow

the framework.

� Optionally store one or several models for target veri�cation tools. As the UML mod-

els are stored in a UML database scheme, the models for the target tools (optionally)

could also have a database scheme which could act as an intermediate storage place when

transforming the UML models for the target tools. This could be very useful when the

transformation between the UML model and the target model is too complex to handle

every aspect of the transformation in one step.

� Store and perform the transformation procedures executed between the UML model and

target tools and vice-versa. The functions performing the transformations between dif-

ferent models can be stored in the database or in the local �le-system. They can be

executed from the CASE tool or from the HIDE tool box. In the �rst case the whole

HIDE framework can be hidden from the end-user: the model design, the model analysis,

the interpretation of the results can be performed through the CASE tool.

� Store the HIDE fault-tolerant component library.

� Store and perform the model manipulation procedures (e.g. fault injection, modi�cation

for fault-tolerance) taking as input a UML model and the HIDE component library, while

the output is the modi�ed UML model.

In the de�nition of the HIDE architecture we de�ne only a "virtual" HIDE database, without

specifying its implementation. It is obvious that a storing device is needed for storing the fault

tolerant component library. In the following several alternatives of implementing the HIDE

repository are sketched out:

� The storage methods are implemented manually. This means storing the data in individual

�les, creating thus a new �le format: the HIDE format.

� Using the front-end CASE tool as a storing device, as the data to be stored is very close

to the UML, majority of them just UML components, like classes, attributes, methods.

� Using a commercial database system. This way we get a powerful storing device and a

CASE tool independent development platform and language. As this solution is used in

the �rst phase this will be presented in full detail in Section 2.1.

� There is a variety of possible implementation of the HIDE repository. In the following

sections some standard sollutions will be presented, as UREP, XMI and XML.

6



1.4.1 Universal Repository (UREP)

The Universal Repository (UREP) is a dynamic, extensible information system that de�nes,

integrates and manages metadata and business data. It is based on leading industry standards

that support best of breed tool integration and interoperability across heterogeneous platforms.

UREP is being used by independent software vendors (ISVs) and large corporations in diverse

domains such as:

� Tool Interoperability

� Enterprise Asset Management

� Legacy Integration

� Application Life Cycle Management

� Component-based Development

� Corporate Meta Data Management

� Data Warehousing

1.4.2 XMI and XML

The XMI speci�cation allows developers to create distributed applications in a vendor-neutral

environment, and demonstrates the commitments of IBM, Unisys and Oracle to providing

standards-based technology to the development community. XMI aims to make the eXtensible

Markup Language (XML) { integrated with the OMG's Uni�ed Modeling Language (UML)

and Meta Object Facility (MOF) { the cornerstone of an open information interchange model.

These standards are already in use by many major software vendors.

XML is the recommendation set forth by the World Wide Web Consortium (W3C) for

de�ning, validating and sharing document formats on the Web, while UML is designed to

give application developers a common language for specifying, constructing and documenting

distributed objects and business models. MOF is an OMG standard for distributed repositories

and metadata management.

"The rapid integration of modeling and repository technologies from the OMG and W3C

into the XMI speci�cation is a great example of industry consensus on how metadata practically

uni�es diverse technologies. As today's demonstrations indicate, our vision { that developers

would visually design models for various domains and then share objects and metadata regard-

less of development tool or environment { is quickly becoming reality."1

Today's demonstrations by Unisys, IBM, Oracle and SELECT Software Tools illustrate the

practical value of XMI. The vendors showed the exchange of UML model between a variety of

modeling and development tools and repositories, including IBM's VisualAge for Java develop-

ment environment, IBM VisualAge TeamConnection enterprise repository, the object building

1Sridhar Iyengar, Unisys Fellow and chair, OMG Object Analysis and Design Task Force

7



technology of IBM WebSphere Enterprise Application Server, IBM DB2 Universal Database,

Rational Rose, SELECT Component Factory (SCF), Unisys UREP repository, Oracle Reposi-

tory and Oracle Database Designer. Each modeling tool is used to view and extend the model

before passing it on to the next vendor.

1.5 Fault-tolerant components library

The extension of a UML CASE tool with fault-tolerant features requires several prede�ned fault-

tolerant components. The end-user will be able to extend (or convert somehow) it's UML model

with these prede�ned components without an in-depth knowledge of their internal function. As

the HIDE framework should be independent of any CASE tool, these components must be

stored in the HIDE repository.

There are two possibilities for extending a UML model with fault-tolerant components:

� Uploading directly (into the host CASE tool) the selected components from the fault-

tolerant library stored in the HIDE repository.

� Exporting the UML model into the HIDE repository, manual (with help of the HIDE

toolbox) or automatic extension of this model with the needed components, re-importing

the extended UML model into the CASE tool.

1.6 The back-annotation mechanism

In work Phase 1. no back-annotation mechanisms are planned, but the implemented trans-

formations try to propagate as many information about the original UML model as possible.

This is necessary, when we want to understand, moreover, to automatically analyze the results

generated by the analysis tool. The easiest way for enabling back-annotation is by preserving

the internal IDs given by UML CASE tool. This way, we can point directly to the element in

the original UML model in the host CASE tool.

In Phase 2, when implementing the transformations, additional e�ort must be addressed for

preserving the information (at least the IDs of the elements) needed for back-annotation.

2 Speci�cation of HIDE components

This section contains the selected and implemented solutions of the HIDE Phase 1. These

solutions are supposed to be the basic solutions for Phase 2.

In this approach the main idea is the use of a database system as a basis, on the top of

which all HIDE functions can be built.

The advantages of this solution are the following:

� Easy storage of HIDE persistent data, like fault-tolerant component library.

8



� All HIDE functions { like model transformations, model enrichment, model manipulation

{ can be implemented upon the same platform and independent of the UML CASE tool.

This way the switch from one CASE tool to another will not a�ect the core of the HIDE

environment (the implementation of the model-transformations). These parts are the

functions implementing the data-exchange between the CASE tool and the HIDE UML

database. It must be pointed out again, that the real knowhow of the HIDE implemented

using this solution is independent of the CASE tool, so its knowhow is accessible to every

CASE tool provider after the transformation and back-annotation between them and the

UML database is implemented. The e�ort needed for implementing this part depends on

the level of compatibility between the CASE tool's internal repository and the standard

UML meta-model. Although, on the market today there is no UML CASE tool supporting

all UML standard features, it is a natural expectation that the UML CASE tools will move

toward a better compatibility in the future. Moreover, there will be some tools, which will

use exactly the UML meta-model as the basic when developing their internal meta-model

and storage architecture.

� Rapid prototyping: The well de�ned standard and power of the DML 2 languages of the

database system enables not only a rapid development for model transformation but also

a very e�ective one. In the case of HIDE complex model transformation are needed {

for example between a UML model and a Petri Net { and the input models are huge and

complex ones. When manipulating big data it is straightforward to use a database system,

which can provide easy and e�ective access to the data.

� Platform independence: In the case of HIDE it can occur that the CASE tools and the

analysis tools are executed on di�erent platforms. As most database systems are reachable

from various platforms, this "platform gap" can be bridged through the database.

The drawbacks of this approach are the following:

� The need of a commercial database system, which makes the HIDE more expensive.

� The UML model to be analyzed is duplicated: it is stored in the host CASE tool and in

the database as well.

� Consistency problems must be resolved between the two copies of the model.

� A data-exchange feature must be developed between the CASE tool and the database

(however it is a quite mechanical task).

� The data-exchange decreases the overall performance of the HIDE framework (however

it is very likely, that the performance improvements gained in the case of the model-

transformations executed inside the database, will abundantly compensate it).

2Data Manipulation Language: script language for selecting, inserting, deleting and upgrading database tables

9



2.1 HIDE repository

Main tasks to provide:

� Storage of UML models designed in a CASE tool

� Storage of the generated models for target tools

� Storage and execution of the transformation library (written in PL/SQL)

� Storage of fault tolerant components (conform to the UML meta-model).

In Section 1 the HIDE repository was de�ned as a "virtual" HIDE database without spec-

ifying its implementation. In Phase 1., however, several features were implemented, and these

required an implementation of the HIDE repository.

The most important features required on the side of the database are enumerated in the

following:

� Required features:

{ Relational database: the database scheme generated from the UML meta-model can

be used only for relational database systems.

{ Client-server architecture: as the database must be reached from di�erent tools.

{ Reachable from di�erent platforms: the tools can be of di�erent platforms.

{ PL/SQL as internal DML language: the model transformation algorithms are imple-

mented in PL/SQL in Phase 1.

� Optional features:

{ Reachability through ODBC interface: for online database connection from the CASE

tool.

{ Storage of PL/SQL program packages: the PL/SQL procedures can be stored in the

database, thus we can reach all HIDE features through only one interface, which is

the database.

{ Server side execution of PL/SQL packages: better performance can be obtained when

the features manipulating the database is executed by the database server.

{ Hierarchical queries: as the UML has many recursive stuctures (for example: states,

which have substates, which have substates, ...) the use of hierarchical queries can

have a major impact on the performance.

Because of its advantages presented in the previous section, we choosed the database system

based solution, more precisely, we implemented the HIDE repository on the base of the relational

database system provided by ORACLE Corporation.

10



UseCaseInstance

Use Cases

Actor

Instance
(from Common Behavior)

Classifier
(from Core)

1..* *

+classifier

1..* *

*

*

+realization
*

+specification

*

UseCase

extensionPoint : list of String

Figure 2: Meta-model of the Use Cases in the UML provided by Rational Rose

2.1.1 Database representation of the UML meta-model

The �rst task of the HIDE repository is to store an arbitrary UML model designed in a CASE

tool. The structure of the database scheme, which will hold these models, was a principle

issue when implemenating of the HIDE repository. There were two possibilities: to mirror

the database of the CASE tool or to develop a tool independent and based fully on the UML

standard meta-model provided by OMG. As even in the phase 1. two CASE tools (Innovator

and UML Nice) were involved and as the UML meta-model is downward compatible with the

internal representation of these tools, the second approach was the most suitable, which is to

generate a database scheme from the UML meta-model.

The UML meta-model, published by OMG, was provided publicly and downloadable by the

Rational Software Corporation (Figure 2). The UML meta-model was speci�ed in UML itself,

using the format of Rational Rose. Task to be solved was to generate the database structure by

a DDL3 script. Although DDL scripts can be generated from UML models directly, this part of

the UML CASE tools are ine�cient to correctly handle such big models. We choosed to convert

the UML model to ER4 model �rst, from which the DDL generation has a standard theoretical

basis.

As the main front-end CASE tool (Innovator) integrated in the HIDE in Phase 1 has a ER

module as well, we used this tool for generating the DDL scripts.

The steps for generating the DDLs for the UML meta-model are the following:

� Conversion the Rose model into an Innovator UML model. This could be resolved easily

as Innovator can be extended to understand the �le formatof the Rose.

� Conversion of the UML model into an ER model. Innovator has a feature which can

convert an UML model to an ER model. When doing such a conversion the conceptual

di�erences had to be resolved. Some of the were solved automatically, while others were

resolved manually.

� Generation of the DDL scripts for creating the HIDE UML database scheme. These scripts

3Data De�nition Language: DDL commands include commands to creating and altering databases and tables.
4Entity Relationship model : modelling paradigm for designing relational databases

11



can be generated automatically from Innovator.

This way, if in the future the standard UML meta-model is changed, by redoing these three

steps, we get nearly automatically a new, upgraded UML standard database scheme. Of course

all transformations which use this scheme somehow must be upgraded as well.

2.1.2 Transformation library

The transformation library has to store all functions which will perform complex model trans-

formations. The majority of these transformations have as source an UML model and as target

the model of an analysis tool. The output of these transformations can be:

� The input �le of the target tool. In this case, both the model transformation and the �le

export conform to the target tool's �le format, must be solved in one step. The imple-

mentation of these orthogonal functions in one monolithic function, makes the resulting

code less maintainable.

� A new model stored in the database scheme built up to hold the models of the target

tools. This suppose that the target database scheme was previously designed and built

up and that there is a procedure which will export this model for the target tool. In spite

that this technology requires two more steps in contrast with the previous solution, this

solution is more e�cient as the development steps and their tasks can be partitioned more

easily. The biggest advantage is that the most complex part, which is the transformation

between the source and target model, can be implemented and executed on the basis of a

database exploiting all its power. Thus, the complex transformations can be implemented

completely in the script (DML) language of relational databases (PL/SQL), without caring

about non theoretical aspects of the transformation, like generating codefor the target tool.

Thus, here are some of the advantages, of this approach:

Easy development Every transformation can be implemented in the same language, indepen-

dently of the source and target tools.

E�ciency and performance In DML languages the input-output operations are very e�ec-

tive and easy to use. These model transformations need many of these operations, so the

overall performance of developing such functions can be improved a lot.

Execution by the database server If the data manipulations are executed by the database

server, then by reducing the communication overhead and exploiting the automatic op-

timization performed by the server, the execution of the entire function will be speed

up.

Client-server architecture As the database server can be connected from client computers

and the transformation scripts are executed on the server, the overall performance of the

transformations depends mostly on the server, which is usually a powerful machine.

12



Analysis tool

UML
meta-model

Figure 3: Analysis of an UML model

Thus, the function performing the complete model-transformation from the UML model

to the analysis tool is partitioned into three sequentially executed parts (Figure 3, �rst three

steps):

1. Export of a UML model into the HIDE UML database.

2. Model transformation between the source UML model and the target model inside the

database.

3. Exporting the generated target model for the target tool conform the syntax of it's input

�le.

The next step od the model-transformation is the execution of the target tool using the

generated �le as input. Then, the result must be processed and visualized somehow for the

end-user, as the results are probably di�cult to understand.

Thus, the steps of a model transformation and analysis (Figure 3, last four steps):

1. Implementation of the transformation between the source UML scheme (holding a UML

model designed in the host CASE tool) and the target tool.

2. Implementation of the back-annotation of the result generated by the tool into the source

UML model.

3. Re-import of the modi�ed (by the back-annotation) UML model into the CASE tool and

visualization of the results.

13



2.1.3 Database scheme of the target tools

As Figure 3 shows there are two possibilities to transform a UML model from the database to

a representation of the target analysis tool (This task is represented by the 2th and 3rd step in

the Figure.):

� One step solution: performing the model-transformation and the code-generation in one

step. The e�ectiveness of this solution depends on the complexity of the target model.

� Two step solution:

1. Transformation from a UML model (database scheme) to a target tool's model (database

scheme).

2. Code generation (input �le) for the target tool from its representation in the database.

This simpli�es the model-transformation, because it is partitioned into two orthogonal

parts.

Development steps for an arbitrary code-generator for a target tool:

1. Building up in UML or in ER paradigm the internal meta-model of the target tool.

2. Generation of the database scheme for the target tool.

3. Implementation of the transformation between the source UML scheme and the target

tool's scheme.

4. Implementation of the code-generator from the tool's scheme to the target tool.

5. Implementation of the processing of the result generated by the tool.

6. Optional: Back-annotation of the results into the source UML model.

2.2 CASE tools

Needed extensions:

� Export of a UML model into the database (on-line, o�-line) (implemented).

� Import of a UML model from the database (not implemented).

2.2.1 Innovator

Innovator overview

14



Provided by MID GmbH

Used in �rst phase Yes

Supported platforms Windows 95 and Windows NT, OS/2,

UNIX (AIX, Solaris, HP-UX, SINIX), Al-

phaVMS

Script language Tcl/Tk

The concept Innovator is a global CASE solution for analyzing and designing IT systems.

The modular concept of the Innovator workbenches allows horizontal and vertical method in-

tegration for a seamless transition all the way from business process engineering to system

integration.

The Innovator workbenches are based on the standards and methods of function-oriented,

data-oriented and object-oriented software development.

Innovator is successfully used by over 13,200 users for application development. With a

variety of features, the Innovator design supports work in large project groups.

The following notations are supported:

Business Process Engineering:

� Uni�ed Modeling Language (UML)

Object Orientation:

� Uni�ed Modeling Language (UML)

� Object Modeling Technique (OMT)

Data Modeling:

� Entity Relationship Modeling (ERM)

� Structured Entity Relationship Modeling (SERM)

Function Orientation:

� Structured Analysis (SA)

� with Real-time Extension (RT)

� Structured Design (SD)

� Modular Design (MD)

Special Features:

� Mapping OO-ER

� Package Diagrams

15



Client/Server Innovator is designed as a true client/server system. All data is collected

in data pools, or "repositories", which the clients do not have direct access to. The management

of a repository is the responsibility of a server program alone. The server ensures:

� the consistency of the managed data within the projects and models

� the alternating exclusion of users when working on the same objects

� the central management of users and access rights.

One server is responsible for one repository. The content of a repository can be any projects

or models, and any number thereof.

No other software (such as a database management system) is required.

On-line Repository The data management provided by Innovator is referred to as an

on-line repository. In this context, on-line means that every person working on a project or

model is informed of the current state of the project or model at all times. This is guaranteed

in that the clients are in constant contact with the repository server and immediately send

modi�ed data to the server.

This means that no "check out" or "check in" is necessary for modifying data and then

making the modi�cations accessible to other users. This avoids signi�cant consolidation time,

which is always required for o�-line operation.

In principle, any number of users can work on a project or model simultaneously. The

Innovator

registered

repository is equipped with a lock concept to ensure that an object can not be changed by more

than one user at the same time. Instead, it allows one user to reserve an object for modi�cation.

Other users can continue to be informed of the current state of the object, but can not actually

make changes to it.

Network - Teamwork Analysis, design and implementation are usually carried out in

teams. To this purpose, the Innovator architecture is designed for multi-user mode, which is

based on a common data storage (by means of repository servers). Because of this, server and

client programs do not have to be available on the same computer. The only requirement for

working with a repository is that the client and server computers are recognized within the

network and are able to establish a connection between each other. Relationships need not exist

via integrated drive areas.

Neither the number of clients nor repositories participating in the network is limited. Any

number of repository servers can be started in Innovator network operation, and these can be

accessed by any number of users. When a user enters the interface editing mode, he or she is

given the opportunity to work on any of the repositories for which servers have been started

and the projects and models contained within them. In principle, regardless of the physical

16



location of the data within the network, this allows every Innovator user to work on any project

or model. Innovator user and access rights management provides control of the access to and

authorization within individual projects and models.

Platforms (independent and exible) Innovator is available for the following operating

systems, based on the individual graphical user interfaces, Windows, Presentation Manager and

OSF Motif:

� Windows 95 and Windows NT

� OS/2

� UNIX (AIX, Solaris, HP-UX, SINIX)

� AlphaVMS

All features are available for all of the operating systems. The user interface is the same

except for a few, marginal di�erences, which are based on the speci�c interface systems. All

systems can be run within a heterogeneous network and can access the same data stock.

API, adapting to existing systems The Innovator repository allows data to be archived

in a well-de�ned structure, which de�nes data types and their relationships interdependently.

This repository meta-model is freely accessible and can be used to evaluate data from the

repository in any manner and to insert data into the repository.

Innovator provides an interface to this purpose, which supports the Tcl script language (Tool

Command Language). Tcl is public domain and is available for all of the platforms supported

by Innovator.

Tcl is used within Innovator itself for ensuring the availability of generated material for

example for SQL scripts for data modeling, for connecting external implementation tools and

text editors, etc.

Tcl scripts can either be appended as menu commands within the framework of an Innovator

shell or executed as independent programs.

2.2.2 UML Nice

Provided by Intecs Sistemi

Used in �rst phase No

Supported platforms Unix, Windows, Java virtual machine

Repository interface CORBA, JAVA

UmlNICE overview UmlNICE is an integrated set of tools conceived and implemented by

Intecs Sistemi to provide full support for the Uni�ed Modelling Language (UML).

The major features of UmlNICE can be summarised as follows:

17



� Full support for the UML notation.

� Full portability and interoperability across a wide variety of hardware and software plat-

forms; UmlNICE is fully implemented in Pure Java thus making the toolset available on

virtually any platform, including Windows and Unix.

� Scalable, component based architecture. All the major components of the toolset (Desk-

top, Editors, Generators, Analysers, System Model Managers (SMM) and System Models

(SM)) are implemented as CORBA objects, thus making it possible to take full advantage

of the bene�ts brought by a standard distributed object computing platform, including:

transparent distribution (also over intranets and the Internet through the IIOP protocol),

ease of extension and openness.

� Flexible CORBA-compliant Component Communication Infrastructure (CCI). Two im-

plementations of the CCI are available: a lightweight, single address space version, which

supports the single user version of the toolset; and a full-edged CORBA implementation,

including a commercial Object Request Broker (ORB), which supports the Enterprise

version of the toolset that provides multi-user, multi-site support.

UmlNICE is packaged in three con�gurations:

� Entry level: implemented as a lightweight single user version of the toolset, provides a

complete set of modelling functionalities.

� Professional: extends the Entry level version with generation and analysis capabilities,

including code and documentation generations (see below).

� Enterprise: extend the Professional version with multi-user, multi-site functionalities. This

version exploits the availability of a full-edged CORBA Component Communication In-

frastructure to provide sophisticated extensibility and integration mechanisms.

The architecture of the toolset is illustrated by Figure 4:

The Desktop The Desktop provides System Model management functions, such as creation

and deletion, and permits browsing through the existing models in order to select the one to

open by activating the other tools. The browsing is performed by specifying a Repository Host,

which can be any computer reachable through a LAN, an Intranet or even the Internet, and

navigating through the File System visible from such a Server Host. System models of frequent

use can be bookmarked for quick access.

The Editors Di�erent editors are provided to support the various diagram notations of UML:

Use Case diagrams, Class diagrams, Statechart diagrams, Activity diagrams, Sequence dia-

grams, Collaboration diagrams, Component diagrams and Deployment diagrams. Furthermore,

18



Figure 4: Analysis of an UML model

through sophisticated support for the UML extensibility features (Stereotypes, Constraints and

Tagged Values) new Editors can easily be added for supporting customised UML notations.

The Editors share a common System Model Browser which supports navigation within the

System Model independently from the di�erent diagram views.

Figures 5-8 show the browser, a Use Case diagram editor, a Class Diagram editor and a

Statechart diagram editor activated on the state machine associated to a class (Order).

The Generators Under the term Generators we classify a large number of tools: Code

Generators, Documentation Generators, Report Generators including O�-line checkers, Textual

Interchange Format Generators, etc. All these tools share a common technology: a powerful

scripting language. This language provides high level, exible and expressive primitives for nav-

igating a System Model and for extracting information in the desired format (code, documents,

reports, etc.). The availability of such a language makes it easy for the users themselves to de-

velop new generators or to customise existing ones. In order to make this easier for expert UML

users we have decided to base this language on a UML notation: the Object Constraint lan-

guage (OCL), a high level powerful navigation language, and extend it with powerful generation

primitives.

The Analysers The main purpose of the tools in this group is to analyse data external

to the UmlNICE Repository and to import some form of representation of this data into the

Repository. The external data can be source code �les, Textual Interchange Format �les, other

tool repositories, etc. The imported representation can be a translation of the external data or

a set of traceability links among UmlNICE Repository entities and external data components.

Tools of this group are: Reverse Engineering tools, Model Importers, Model translators, etc.

19



Figure 5: The Model Browser

20



Figure 6: The Use Case Diagram Editor

Figure 7: The Class Diagram Editor

21



Figure 8: The Statechart Diagram Editor

The UmlNICE Repository The Repository provides classical services for the management

of model data, which include:

� Management of System Models: creation, deletion, etc. These functions are performed by

the System Model Managers (SMM).

� Manipulation of System Model data, namely all the functions for retrieving and modify-

ing the internal System Model representation, including concurrent access control, access

rights validation and transaction services. These functions are implemented by the System

Model objects (SM).

Two Interfaces to the Repository are provided:

� a CORBA Interface, which is the IDL speci�cation of the Repository services;

� a Java Interface which is implemented on top of the CORBA interface and extends it

with additional functions which make transparent the loading of model data and their

management in the run time memory.

Flexible and powerful mechanisms for extending Repository functionalities are provided: in

addition to standard CORBA facilities, the possibility of capturing any communication between

the tools and the Repository and of executing Pre and Post access actions is provided. These

extension mechanisms are also completely available to third-party providers and to end users.

22



Extensions to Repository services which are planned include: System Model Dictionaries

for managing libraries of reusable components, Process support engines, and Gateways to other

repositories.

UmlNICE Extensibility mechanisms One of the principle objectives in the design of Uml-

NICE has been easy extensibility and easy of customisation. To achieve this objective, a number

of mechanisms are provided to the user for supporting the customisation of the tool and the

development of new functionalities that can be easily integrated with UmlNICE.

The major mechanisms are the following:

� Full support to the UML extensibility mechanisms, as stereotypes,tagged values and con-

straints. UmlNICE allows the user to easily de�ne new stereotypes and to associate them

to any model element. Model elements can be annotated with tagged values and with

constraints expressed in the OCL.

� The OCL interpreter integrated with UmlNICE allows to execute the constraint expres-

sions. The OCL language has been extended adding the possibility to invoke Java methods

from within an expression. This allows to easily generate reports or in general to extract

information from the Repository while an expression is evaluated.

� Activation of external tools. Through the User menu available both from the Desktop

and the Browser, external tools can be activated. The mechanism provided allow both

the activation of an external process and the invocation of a method of a Java class.

� Availability of API for accessing the major tool services. In particular the repository

services are made available both through a Java API 5 and a CORBA IDL API.

� Availability of a Generation Framework which implements a Visitor pattern on the Repos-

itory. This Framework allow to navigate the repository in a transparent way and to code

just the semantics actions that have to be executed when a node is visited.

2.3 Veri�cation tools

2.3.1 Spin

Provided by Bell Labs

Used in �rst phase Yes

Supported platforms UNIX, Windows95 or WindowsNT

General Description Spin is a widely distributed software package that supports the formal

veri�cation of distributed systems. The software was developed at Bell Labs in the formal

methods and veri�cation group. Some of the features that set this tool apart from related

veri�cation systems are:

5The detailed documentation of the Java API can be obtained from the tool provider

23



� Spin targets e�cient software veri�cation, not hardware veri�cation. Spin has been used to

trace logical design errors in distributed systems design, such as operating systems, data

communications protocols, switching systems, concurrent algorithms, railway signaling

protocols, etc. The tool checks the logical consistency of a speci�cation. It reports on

deadlocks, unspeci�ed receptions, ags incompleteness, race conditions, and unwarranted

assumptions about the relative speeds of processes.

� Spin works on-the-y, which means that it avoids the need to construct of a global state

graph, or a Kripke structure, as a prerequisite for the veri�cation of any system properties.

� Spin can be used as a full LTL model checking system, supporting all correctness require-

ments expressible in linear time temporal logic, but it can also be used as an e�cient

on-the-y veri�er for more basic safety and liveness properties. Many of the latter prop-

erties can be expressed, and veri�ed, without the use of LTL.

� Correctness properties can be speci�ed as system or process invariants (using assertions),

or as general linear temporal logic requirements (LTL), either directly in the syntax of

next-time free LTL, or indirectly as B�uchi Automata (called never claims).

� Spin supports dynamically growing and shrinking numbers of processes, using a rubber

state vector technique.

� Spin supports both rendezvous and bu�ered message passing, and communication through

shared memory. Mixed systems, using both synchronous and asynchronous communica-

tions, are also supported. Message channel identi�ers for both rendezvous and bu�ered

channels, can be passed from one process to another in messages.

� Spin supports random, interactive and guided simulation, and both exhaustive and partial

proof techniques. The tool is meant to scale smoothly with problem size, and is speci�cally

designed to handle even very large problem sizes.

� To optimize the veri�cation runs, the tool exploits e�cient partial order reduction tech-

niques, and (optionally) BDD-like storage techniques.

To verify a design, a formal model is built using PROMELA, Spin's input language. PRO-

MELA (a Process Meta Language) is a non-deterministic language, loosely based on Dijkstra's

guarded command language notation and Hoare's language CSP, extended with powerful new

constructs.

Spin can be used in three basic modes:

1. as a simulator, allowing for rapid prototyping with a random, guided, or interactive sim-

ulations

2. as an exhaustive state space analyzer, capable of rigorously proving the validity of user

speci�ed correctness requirements (using partial order reduction theory to optimize the

search)

24



3. as a bit-state space analyzer that can validate even very large protocol systems with

maximal coverage of the state space (a proof approximation technique).

The Spin software is written in ANSI standard C, and is portable across all versions of

the UNIX operating system. It can also be compiled to run on any standard PC running a

Windows95 or WindowsNT operating system.

2.3.2 Panda

Provided by University of Erlangen-N�urnberg

Used in �rst phase Yes

Supported platforms UNIX

PANDA (Petri net ANalysis and Design Assistant) is a software tool for the analysis of timed

Petri nets which is being developed at the Computer Science Department of the University of

Erlangen- N�urnberg.

Some of the new capabilities of PANDA are:

� Development of faster algorithms. PANDA uses specially developed methods for the solu-

tion of the underlying mathematical problems in order to decrease the user's turnaround

time.

� Inclusion of optimisation methods. Since modelling tools such as Petri nets are often

used at the design phase, the ability to automatically perform optimisation according

to selected target functions and boundary conditions will be an attractive feature of the

software package.

� General distribution functions. The standard type of timed Petri nets commonly found

in software tools (so-called GSPNs) is characterised by allowing only exponentially dis-

tributed �ring times. In practice, however, one frequently requires more general distri-

butions. Thus one objective of PANDA is to allow the use of these functions. Since this

prevents the use of numerical solution methods, PANDA also provides discrete simulation

techniques.

� Parallel computing. The mathematical analysis of Petri nets frequently requires the solu-

tion of extremely large systems of equations. The ability to use modern parallel architec-

tures will give access to the substantially larger memories and computing performance of

these machines.

� Fault models. PANDA includes additional fault-modelling tools for designing success

diagrams and fault trees and converting them automatically into Petri nets.

These graphs provide much easier handling of complex systems while retaining all the

advantages of Petri nets.

25



Components Requirements

CASE tools

All UML features which are supported and used by the HIDE framework

Extensibility features for the end-user: internal script language

Requirements of

the script language

Reading interface for the CASE tool's UML repository

Writing interface for the CASE tool's UML repository

Input-output features

Optional: supporting database connections

Optional: development of graphical interface

Databases

Relational database

PL/SQL as internal DML language

Storage of PL/SQL packages

Various platforms

Client-server architecture

Reachability from clients from di�ernt platforms

Veri�cation

tools

Known input �le syntax

Known internal representation

Batch mode execution

Table 2: Requirements for the HIDE components

PANDA o�ers the user a graphical interface for the input and editing of the Petri nets.

The user can de�ne his or her own evaluation criteria based on inherent properties of the net.

Both transient and steady-state analysis are available, which can be computed via numerical

or simulative algorithms. The results of the analysis are presented in textual and graphical

form. Although it is still under development, PANDA is already in research use at Erlangen

University.

2.4 Fault-tolerant components library

Not implemented in the Phase 1. However, the database system based HIDE repository provides

an easy interface for implementation of the fault-tolerant components library inside the database

3 Requirements on external tools

As the HIDE framework uses many o�-the-shelf components and does not have the possibility

to alter them for its need, it is obvious that some requirements must be formulated for the

integrated external tools. These requirements are summarized in Table 2.

26


