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1. Introduction

This document examines certain aspects of the Unified Modeling Language (UML) relevant to
the HIDE framework. The examination is necessary in order to provide a sound basis for a
translation of UML-models to models amenable for formal and quantitative analysis. On one
side, restrictions of the modeling power of UML are to be identified such that precise transfor-
mations become feasible. These restrictions will be relaxed in the future. On the other side,
model analysis requires certain extensions to the UML, since additional information is needed
depending on the kind of analysis someone wants to perform.

We start by giving a short introduction into UML, its purpose, history and future trends (Section
2, contributors: A. Borschet, MID and W. Hohl, FAU). In Section 3 the examination of the
UML-modeling paradigm is provided. We divided this examination into two parts: modeling
of structures and modeling of behavior. The section on modeling the structures addresses the
problems encountered in dependability modeling and analysis of complex systems (contribu-
tor: A. Bondavalli, PDCC). The section on modeling behavior deals with the process view that
represents the system’s concurrency and synchronization mechanisms. This view is captured
mainly in Statecharts and Sequence Diagrams (contributor: M. Dal Cin, FAU). For the purpose
of formal verification it is necessary to aim at a precise formal semantics of Statecharts. UML
does not yet provide such a semantics. Therefore, in this section the informal semantics of
UML-Statecharts is summarized and compared to the semantics of Harel-Statecharts. Then a
suitable subset of UML-Statecharts exhibiting a precise semantics is identified (contributor: D.
Latella, PDCC).

In Section 4 we discuss how to represent requirements relevant to the analysis of quantitative
behavior (contributor: M. Dal Cin, FAU) and those relevant to formal verification (contributor:
D. Latella, PDCC). Finally, in Section 5 dependability attributes like safety and liveness which
can be checked by formal verification are identified, and their representation is discussed (con-
tributor: D. Latella, PDCC). Likewise, in this section also dependability attributes relevant to
the quantitative analysis and their representations are identified (contributor: A. Pataricza,
TUB).

2. Short Introduction into UML

2.1. What is the UML?

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing,
and documenting the artifacts of software systems, as well as for business modeling and other
non-software systems. The UML represents a collection of best engineering practices that have
proven successful in the modeling of large and complex systems. It is the successor of object-
oriented analysis and design (OOA&D) methods that were developed by Booch, Jacobson
(OOSE) and Rumbaugh. The UML as a modeling language is incorporated by many companies
as a standard into their development process. It covers disciplines such as business modeling,
requirements management, analysis & design, programming and testing [21].

The UML was developed at Rational Software. The UML has been submitted to the OMG and
has been accepted as a standard contributed by several organizations and a large list of compa-
nies.

The UML defines a precise language. It benefits future improvements in modeling concepts.
Many advanced techniques can be defined using UML as a base. The UML can be extended
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without redefining the UML core. It addresses the needs of user and scientific communities, as
established by experience with the underlying methods on which it is based.

In future, component-based development will play a more important role to increase the reuse
of classes and frameworks. At the moment there are some efforts by Hewlett-Packard and
ICON Computing to bring their technology into the UML standard. The UML, in its current
form, is expected to be the basis for many tools, including those for visual modeling, simula-
tion, and development environments. As interesting tool integration are developed, implemen-
tation standards based on the UML will become increasingly available.

2.2. UML architecture

The Unified Modeling Language itself is a set of documents that consists of the UML Seman-
tics, UML Notation Guide, and UML Extensions documents, plus appendices:

UML Semantics

The UML Semantics document [19] describes a metamodel that specifies the abstract syntax
and semantics of UML object modeling concepts. The specification provides complete seman-
tics for all modeling notations described in the UML Notation document. The UML metamodel
is a logical model that emphasizes declarative semantics and suppresses implementation de-
tails. It is described in a combination of graphic notation, natural language and formal lan-
guage.

UML Notation Guide

The UML Notation Guide [20] describes the UML notation and provides examples. It contains
brief summaries of the semantics of UML constructs. It is a reference document that explains
the notational representation of the semantic concept, various options for presenting the model
information and stylistic guidelines such as fonts, naming conventions, arrangement of sym-
bols, etc. that are not explicitly part of the notation. It also shows the mapping of notation ele-
ments to metamodel elements.

Graphical diagrams in UML provide multiple perspectives of the system under analysis or de-
velopment. The UML defines the following diagrams:use case diagram,class diagram,state-
chart diagram, activity diagram, sequence diagram, collaboration diagram, component
diagram,deployment diagram.

With those diagrams the UML supports three different views to a system:

• therequirement model:

- Use case diagrams visualize the relationships between the actors and use cases. They
present an outside view of the system.

- Sequence diagrams and collaboration diagrams show the interactions among societies of
objects. They describe how use cases are realized. They are interaction diagrams. A se-
quence diagram displays interactions between objects arranged in a time sequence. Acol-
laboration diagram shows object interactions according to their links to other objects.

• thestatic structure to a system: Aclass diagram shows the existence of a class (of objects)
and their relationships in the logical view of a system.

• thedynamic behavior: A state transition diagram presents the life history of a given class,
the events that cause a transition from one state to another and the action that result from a



____ Deliverable 1 ___________________________________________ 27439 - HIDE ____

5

state change. State transition diagrams are usually needed for objects with significant dy-
namic behavior.

The physical “world” of a system can be described withcomponent diagrams, which illustrate
the organization and dependencies among software components. Components may be for ex-
ample a piece of source code, any run time component or an executable.

The deployment diagrams show the configuration at run time. It presents the distribution of
components across the enterprise.

UML Extensions

User-defined extensions of the UML are enabled through the use of stereotypes, tagged values,
and constraints. Therefore a UML Extension is a predefined set of Stereotypes, TaggedValues,
Constraints, and notation icons that collectively extend and tailor the UML for a specific do-
main or process. Two extensions are currently defined:

- Objectory Process

- Business Engineering.

3. Analysis of the UML-Modeling Paradigm

3.1. Modeling of structures

UML has been proposed as a unifying modeling language and is expected to become a de-facto
standard for the design of many varieties of systems from small control systems to large and
complex open systems.

3.1.1. Dependability modeling and analysis

Complex and huge systems consisting of a large number of components including interactions
of redundant hardware and software components as well, introduce some problems in depend-
ability modeling and analysis. These problems arise independently of the design methodology
applied. Thus, they are present also in systems designed using UML toolkits, and must be ad-
dressed from any approach to model such systems. Among these problems the most important
to solve is complexity. To master complexity a modeling methodology is needed so that only
the relevant aspects are detailed, still enabling numerical results to be computable. Simplifying
hypotheses are often necessary to keep the model manageable. A feasible approach is to start
with simple models and make it step by step complex and detailed by releasing those assump-
tions having unacceptable impact on the results. An other problem is that models need many
parameters whose meaning is not always intuitive for the designers. Moreover, it may be very
difficult to assign values to the parameters (usually by way of experimental tests). The models
of the dependability characteristics for small systems can be obtained by applying a transfor-
mation at the fine granularity of the behavioral, dynamic (mainly Statecharts) level of a UML
description, which allows to maintain in the model itself other system characteristics like tim-
ing aspects and a detailed behavioral description. However, as the systems described grow in
size and complexity, this approach is no more viable: the available tool’s capacity is by far ex-
ceeded by the state space explosion associated to system-wide models of such detailed view.
Moreover, the complete set of Statecharts for the system might not be available till the design
has reached an advanced development stage, whereas some still partial and not yet very precise
analysis may provide useful hints much before.
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Thus, there is a role for approaching the dependability modeling from a structural perspective,
building (maybe) coarse models by looking primarily to the static structural views. Such mod-
els are built so that only the dependability related features are represented filtering from the
mass of information contained in the entire specification. They allow to compare different ar-
chitectural and design solutions and to select the most suitable one. The sensitivity analysis that
can be carried out after modeling allows to identify dependability bottlenecks, thus highlight-
ing problems in the design and to identify the critical parameters (out of the many that are usu-
ally employed at this stage), those to which the system is highly sensitive.

The automated transformation from UML structural diagrams to timed Petri nets serves in the
HIDE framework:

i) to provide a means to analyze dependability attributes of the system while it is still being de-
signed. This way, a designer can easily verify whether the system that is being built satisfies
predefined requirements on dependability attributes, without dealing with the background
mathematical aspects of Petri net modeling and solution. The results of the dependability mod-
el evaluation are automatically back-annotated into the UML diagrams.This choice allows the
transformation to provide preliminary evaluations of the system dependability during the early
phases of the design.

ii) to allow a less detailed but system-wide representation of the dependability characteristics
of the analysed systems. Such coarse models offer a significant advantage in terms of the com-
plexity necessary to perform such an evaluation. Let us observe that, in principle, to analyze
the dependability figures of systems of large size one could ideally build a model of the system
accounting for all the details, the fine grained behavior of each system component that can be
obtained by the behavioral UML models. Due to the limitations of existing tools however, this
approach is not viable, the state explosion prevent it. Therefore the model to build must be of
a reduced size where only the features relevant to dependability are captured and all other in-
formation is left aside.

iii) to deal with various level of details, ranging from very preliminary abstract UML descrip-
tions, up to the refined specifications of the last design phases. On one side, the UML higher
level models, that is the structural diagrams, are available before the detailed, low levels ones
and the analysis on models derived from the structural view provides indications about the crit-
ical parts of the system which require a more detailed representation. On the other side, by us-
ing well defined interfaces, such models can be augmented by inserting more detailed
information coming from refined UML models of the identified critical parts of the system and
provided by other HIDE transformations dealing with UML behavioral and communication di-
agrams.

With this approach other attributes (and the above ones at a more refined precision) can be an-
alysed depending on the amount of relevant information provided by the designer. In any case,
the standard sub-models used to build the model of the system, which are those to be used when
no specific information is available, can always be substituted by more detailed models derived
when information is available.

3.1.2. The Dependability Model

According to this approach, the dependability model of a system (composed of elements) con-
sists of the following general parts: thefault activation processes which model the fault occur-
rence in system elements and results inbasic events, thepropagation processes which model
the consequences of basic events and results inderived failure events and therepair processes
which model how basic or derived events are removed from the system. This overall structure
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of the dependability model is shown in Fig. 1. The failure of a system is one of the derived
events in this model. Note that repair means here a general service restoration (automatic ser-
vice restoration if underlying faults disappear; explicit diagnosis, repairing or replacing of
hardware; restoring the state and re-integration of software etc.).

The fault activation processes are determined by environmental conditions, and physical or
computational properties of the elements of the system. The propagation processes are influ-
enced by the structure of the system (e.g. interactions, redundancy, fault tolerance schemes).
The repair processes are determined by the (physical or) computational policy implemented in
the system. In our case, the information necessary for developing the dependability model are
retrieved from the structural views of the system specification given in UML.

3.2. Modeling of behavior

3.2.1. Dynamic models

According to Grady Booch [2] 'the architecture of a software-intensive system can best be mod-
eled by five interlocking views, with each view being a projection into the structure and behav-
ior of the system, and each view focuses on a particular aspect of that system.' These views are:
the design (logical) view, the process view, the deployment view, the component view and, last
but not least, the use view, Fig. 2.

Section 3.1 deals with the structural view of a model(i.e. with design, deployment and compo-
nents), whereas the quantitative analysis of the model’s dynamic deals mainly with the process
view. 'The process view of a system encompasses the treads and processes that form the sys-
tem's concurrency and synchronization mechanisms. This view primarily addresses the perfor-
mance, scalability and throughput of the system' - and its dependability, that is, its reliability

Fig. 1. General parts of a dependability model
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and safety, as we may add. 'With the UML the static and dynamic aspects of this view are cap-
tured in the same kinds of diagrams as for the logical view, but with a focus on the active classes
that present these threads and processes' [2]. The dynamic aspects of this view are captured in
interaction diagrams or sequence diagrams, statecharts and activity diagrams. For short, we re-
fer to the realization of the process view by these diagrams as theDynamic Model.

The automated transformation from the UML dynamic model to Generalized Stochastic Petri
Nets (GSPN) serves in the HIDE framework:

i) to provide a means to analyze robustness and fault tolerance of object behavior without deal-
ing with the background mathematical aspects of GSPN modeling and its solution techniques,

ii) to provide likewise a means to derive performance characteristics of object behavior, such
as throughput or mean response time,

iii) to provide input parameters for the analysis of the structural UML models.

As mentioned, the dynamic part of a UML-model comprises sequence diagrams, activity dia-
grams and statecharts.

Within the process view scenarios show typical paths through the state space of the Dynamic
Model. (Scenarios are, of course, also instances of use cases). Scenarios are modeled byse-
quence diagrams and collaboration diagrams. Here we will consider sequence diagrams only.
Each statechart model gives rise to many scenarios some of which may be performance or re-
liability critical. The evaluation of these scenarios will deal, for instance, with the probability
that a certain scenario can happen, with the mean duration time of a scenario, or with the prob-
ability that a scenario does not lead to failure when messages can get lost.

Statechartsmodel the state-driven or reactive behavior of objects. A more detailed introduction
to their syntax and semantics is provided in Section 3.2.3. What Statecharts do not show are
typical paths through the state space as the system is used, that is, scenarios. The evaluation of
object behavior deals, for instance, with the mean duration of a behavioral cycle, the probability
for tolerating a state perturbation, or the probability for object failure. However, considering
event sequences and event hierarchies one runs into serious problems, if one wants to interpret
the modeled object behaviors as Markov processes for quantitative analysis.

Activity chartsbest describe the concurrent behavior of objects and their interactions. They can
be viewed as a combination of statecharts and Petri Nets. Hence, activity charts can be viewed
as a subclass of statecharts. Here we introduce another subclass, so-called Guarded Statecharts.

Statecharts are widely used to model the dynamic behavior of concurrent embedded systems.
Also high level Petri nets are used for this purpose [16]. In attacking the modeling of the be-
havior of embedded systems such as the production cell of the demonstrator, a trade-off has to
be made between the degree of detail in modeling the possible behaviors of the system and the
degree of automation of the analysis process [5]. This necessity leads us to define a sub-class
of Statechart comprising so-called Guarded Statecharts.

Guarded Statecharts: A Guarded StateChart (GSC) is a finite set A of actions with guards and
a finite set S of states one of which is the i-state (initial state) of the GSC. Each state and guard
event has a name. Actions denote state transition. When state transitions are depicted graphi-
cally, they are labelled with labels of the form [guard], where 'guard' is a name of a guard.

- Guardsare boolean expressions of the predicatesin(<state>) wherein(<state>) evaluates
to true, if<state> is the (actual) i-state of the GSC, i.e. an element of S or of some concurrent
GSC.
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- Actions are of the form:

<guard>*<set_of_states>

where <set_of_states> is a subset of S.

For instance, an action of a feedbelt (see Deliverable 5) could be:

in(Table.down)AND (in(Feed_Belt.move) OR in (Feed_Belt.Stop)*(Feed_Belt-stop)

or, graphically (Fig. 3.):

The <guard> is a guard expression. We restrict guards of an action by stipulating that, if a guard
contains more than one state of S, the predicates of these states are OR-connected. The action
is such that it is executed atomically and instantaneously, if its guard evaluates to true. The ef-
fect of the execution is that exactly one state of <set_of_states> is chosen non-deterministically
as next i-state of the GSC.

A guard expression of GSC may not contain predicates of states of S. If such a guard evaluates
to true, the GSC takes one of the target states irrespectively of its actual i-state. That is, the OR-
connection of all state predicates of S always evaluates to true. Outputs are considered to be
part of the state in which they occur. Guards can be considered as high-level abstractions of
synchronization mechanisms.

Using Guarded Statecharts we can abstract continuous signals to discrete signals assuming a
finite set of critical values. For example, 'it is only important to observe whether a robot arm is
directed in a position allowing for unloading the rotary table, or pointing toward the press; all
intermediate positions can be collapsed into a single third value' [5]. This way, we model sen-
sors and actuators via states. A state representing an actuator being active means that the actu-
ator is set; analogously if a component is in a state which represents a sensor, it means that this
sensor is set. Moreover, in Guarded Statecharts hardware and software components are only al-
lowed to communicate via such sensor and actuator states. This interaction is expressed via
guard expressions containing predicates over sensor or actuator states (public states). Likewise,
interactions between tasks of the control software are also modeled by guarded state transi-
tions: this corresponds to an asynchronous synchronization pattern between tasks. This pattern
is inherently multi-threaded, because it models a message being passed to another object with-
out the yielding of control [8].

3.2.2. Remarks on fault modeling in object behavior

Considering the quantitative analysis of the behavior of embedded systems, it is necessary to
model the environment (device models) as well as the control software and their interactions
via sensors and actuators (closed loop modeling), since the environment can be the source of
faults which can give rise to errors in the execution of the control software.

Fig. 3. Action

Feed_Belt.move Feed_Belt.stop
[Table.down]
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For a dependability analysis, faults, errors and failures are modeled by message losses, loss of
synchronization, erroneous states, and erroneous state transitions. Many of these faults and er-
rors can be modeled by so-called state perturbations. State perturbations include distinguished
states corresponding to degraded performance of the modeled system, paths leading to those
states, erroneous state transitions, trigger events due to external faults giving rise to erroneous
state transitions and the use of guards to express fault-tree like failure conditions. Thus, a wide
spectrum of possible errors can be modeled by state perturbations. State perturbations are ade-
quate modeling techniques, particularly when dealing with GSCs.

The fault/error-model for Guarded Statecharts is based on the notion of state perturbations. For
example, unintended state transitions are such state perturbations. An unintended transition
from states to stateq may be due to a permanent or temporary fault andq may be an erroneous
state [4], [15]. An unintended state transition due to a temporary fault occurs at most once in
the considered period. An unintended state transition caused by a permanent fault can occur
whenever the system is in the state that gives rise to the erroneous transition.

Any binary and reflexive relation over state space S of a Guarded Statechart GSC is called an
error of SC. An error is called temporary, if it is “effective only once”; that is, it does not change
the transitions of SC. If the error is due to a permanent fault, it changes the transition of the
GSC. Then also the error is called permanent. This modified GSC is non-deterministic.

An other type of state perturbations arises, if guards of a Guarded Statecharts are not observed.
For example, the guardin(Table.down) may not be observed by the feed belt; that is, this guard
always evaluates to true. This way, sensor and actuator faults can easily be modeled.

Finally, using guards fault trees over component states can be integrated into statecharts. As an
example see Fig. 4. (Robot R with two arms feeding two presses).

From these Guarded Statecharts certain scenarios can be derived, and, for example, faults mod-
eled as non-observance a guard are represented as lost or spurious messages in sequence dia-
grams.

3.2.3. Introduction to UML statechart diagrams

In the following, the syntax (model elements) and the concepts of the (informal) semantics of
UML statecharts are summarized. The detailed description can be found in [19] and [20]. At
the end of this section, we introduce the restrictions we adopt in the context of formal verifica-
tion of object behavior.

Fig. 4. Action with Fault Tree

R.Hw Pos1 R.fail

[(R.Arm1.extended AND Press1.busy)
OR (R.Arm2.extended AND Press2.busy)]
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Elements of the notation

UML statecharts is an (object-oriented) variant of classical Harel statecharts [12]. The state-
charts formalism itself is an extension of traditional state transition diagrams including the fol-
lowing additional concepts:

• State hierarchy and concurrency. A state is called acomposite state if it contains one or
more substates. A composite state can be decomposed into mutually exclusive disjoint
substates (using OR relationship) or into orthogonal substates (using AND relation-
ship). In the latter case, the composite state isconcurrent and its direct substates are
calledregions. Regions must be refined by OR relationship. Note that each substate is
uniquely owned by its superstate. The statechart diagram itself is the hierarchical de-
composition of a single composite top state.

• Compound transitions. Asimple transition indicates that the system may change its
state and perform asequence of actions when a specified event occurs and a specified
guard condition is satisfied.Compound transitions have multiple segments separated
by pseudostates.Join segments originate in multiple states (representing synchroniza-
tion), fork segments are connected to multiple states (representing a splitting of control).
Branch segments labeled with guards represent different possible paths depending on
conditions.

• Interlevel transitions. Transitions that cross the boundaries of composite states can be
used to represent an arbitrary state change in the statechart.

• Transitions from/to composite states and history states. A transition drawn to a bound-
ary of a composite state is meant as a transition to its initial substate or to the initial sub-
states of its regions. A transition drawn from a boundary of a composite state means that
all of its active substates are exited when the transition is taken (fires). From the seman-
tics point of view, if a transition enters a region of a concurrent state, then the other re-
gions are also entered (explicitly by fork segments or by default entering their initial
states). Similarly, if a transition exits a region of a concurrent state then all of the other
regions are also exited.
A transition drawn to a history state is equivalent to a transition to the last active direct
substate of the composite state in which the history state resides. Firing of a transition
drawn to a deep history state causes the last active substates of the composite state be
entered recursively.

• Enriched set of events and actions. Events may have parameters. Actions are distin-
guished as call, return, send, terminate, create and destroy actions, according to the (ob-
ject-oriented) software context.

An example is presented in Fig. 5. The statechart is a refinement of s0, the top state, wheres1
is a concurrent state with regionss4 ands5. Transitions triggered by eventsr1,r2 anda2 are
interlevel ones.
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Core concepts of the semantics

The semantics of UML statecharts are close to that defined for the statechart variant implement-
ed in the tool STATEMATE [13]. However, the adaptation to object-oriented design required
changes [14]. The simplifications and modifications introduced in UML can be summarized as
follows:

• Single event processing. The hypothetical state machine which implements the state-
chart diagram processes event instances that are selected by an (unspecified) dispatcher
from an event queue. Events are processed one after the other. Accordingly, transitions
(including compound transitions) are triggered by at most one event.

• Run-to-completion processing. An event stimulates arun-to-completion step. Transi-
tions that fire have to be fully executed and the state machine has to reach a stable state
configuration before it can respond to the next event.

• Priority concept. Transitions are in conflict when the intersection of the sets of states
they exit is non-empty. Some conflicts can be resolved by using priorities. A transition
has higher priority than another transition if its source state is a substate of the source
of the other one. If the conflicting transitions are not related hierarchically then there is
no priority defined between them, and the conflict is resolved by selecting one of the
transitions non-deterministically. Priority of a join transition is according to the priority
of its lowest level source state. Notice that the definition of the priority of join transi-
tions in actually not a good definition since in some cases the “lowest level source state”
does not exist.

• Execution step. The set of transitions that will fire is a maximal set of enabled transi-
tions (i.e. they are triggered by the current event, their guards are satisfied and their
source states are active), without conflicting transitions, and such that no enabled tran-
sition outside the set has higher priority than a transition in the set. The order in which
the transitions in the set fire is not defined. itemize

A subset of UML statecharts

 During the first phase of the HIDE Project we considered a strict subset of UML statechart di-
agrams containing though all the interesting conceptual issues related to concurrency in the dy-

Fig. 5. Example of an UML statechart
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namic behavior, like sequentialization, non-determinism and parallelism. Some of the
restrictions we imposed can be easily relaxed in the future. These restrictions are in line with
formal verification of Statecharts (Restrictions in line with their quantitative analysis are de-
fined in Section 3.2.1.) In the following we list the restrictions:

• States: History, deep history states as well as action and activity states (and correspond-
ing completion transitions and completion events) are not allowed. Initial (final) pseu-
dostates are used only to identify the initial and final states, their outgoing (incoming)
transitions can not have actions.

• Events: Events are restricted to signal and call events without parameters (method exe-
cution is not modeled). Time and change events, object creation and destruction events
as well as deferred events are not allowed.

• Transitions: Branch segments are not allowed1. In the following, compound transitions
mean transitions containing join and/or fork segments but no branch segments. Com-
pletion transitions (without trigger) are not allowed. A transition (characterized by its
source and target states, trigger event, guard and action sequence) may appear at most
once in a statechart. Interlevel transitions are allowed in our subset.

• Transition labels: In guards, only Boolean combinations of predicates about the current
state configuration are allowed, variables and data dependency are excluded. Actions
are restricted to generate global events (termination, creation and destruction of objects
as well as send clauses are not allowed). Synchronous calls should be modeled by ex-
plicit wait states.

• Internal actions of states. Common internal actions as well as “do” actions are not al-
lowed in states.
A further simplification applies to special internal actions. In the UML semantics, upon
taking a transition, the following actions have to be executed in order:exit actions of
states that are exited explicitly or by default (in the order of the exit hierarchy, i.e. first
the lower level ones), normal actions assigned to the transition (in the syntactical order)
and then theentry actions of states entered explicitly or by default (in the order of the
entry hierarchy, i.e. first the higher level ones). Note that the order of entering or exiting
regions of a concurrent composite state is not defined.
We abstract from entry and exit actions of states and handle them in the following to-
gether with the normal actions as a (single) sequence of actions executed when the tran-
sition fires. Methodologically, it is easy to consider the exit and entry actions as the
dynamic semantics keeps track of states that are exited and entered.

1. They could be resolved by replacing each possible path of segments from the source state to targets
with a simple transition. The guard of this transition is the conjunction of the guards on the segments, the
action sequence of this transition is the sequence of actions along the segments, following their linear
order.
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4. Specification of Requirements

4.1. Specification of requirements relevant to qualitative evaluation

In the first phase of the HIDE project, the representation of model behavior by Markov process-
es is considered as the major analysis technique to be used. These processes can best be spec-
ified by Stochastic Petri nets.The designer tool has to produce a Petri net model. A Petri net
tool transforms this model to a Markov process and computes state probabilities. By examining
these probabilities one can check whether the model satisfies certain performance and/or de-
pendability requirements. These requirements are specified by reward functions and their ex-
pected value domain.

An advanced way to specify requirements and to filter information is to use rewards. To this
end, a language for specifying result functions and reward measures has been designed and im-
plemented user friendly; it allows the modeler to express the reward measure of interest to be
computed in an application oriented syntax. An example is given below.

Therefore, following the outlines from [11], a language for the formulation of reward measures
together with an automated computation of these measures from Markov analysis results has
been integrated into the tool PANDA [1], [6].

The specification of reward measures is a two-tier process:

• First, states or transitions in the Petri net which represent aspects of interest for the stochas-
tic analysis are selected asreward functions. Several reward functions can be assigned to a
model. The body of the measures is constructed from basicresult measures, which in turn
are built by applying arithmetic and boolean operations oncharacterizing functions, where
the latter access the reachability graph elements.

Examples:

• The simplest characterizing functions for rate rewards are
mark(placename) and enabled(tranition)

evaluating the number of tokens in a place, respectively the state of a transition.

• Likewise for impulse rewards, the characterizing functions
fire(transition) and rate(transition)

 An example for the use of such simple result functions together with arithmetic operations
is

reward_func1(
    (mark(place1) + mark(place5)) * enabled(trans1)
)

returning the number of tokens in place 1 and place 5 if transition 1 is enabled (and 0 oth-
erwise).

Far more complex result functions can be formulated, including more elaborated character-
izing functions or even nested if-then-else clauses for sophisticated conditional queries of
the reachability graph. An example would be:

reward_func2(
IF (enabled(trans1) AND (mark(place5) < mark(place8)) THEN (

          summark
      ) ELSE (
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          IF (minmark < 3) THEN (
              probfire(transition3)
          ) ELSE (
              probfire(transition2)
          )
      )
  )

evaluating to either the normalized firing probability of transition 3 or 2 (depending of
whether there are at least 3 tokens in the net) or the sum of all tokens, under the condition
that transition 1 is enabled and there are fewer tokens in place5 than in place 8.

Result functions are tagged with identifiers, and variables can be assigned to complicated
expressions or to terms which are to be reused. Nesting of result functions is also possible
for ease of use.

• In the second step, stochastic operators can be evaluated for each defined result measure.
In the current implementation, this can be the standard functions expected value and vari-
ance; more complicated stochastic functions can be built by defining ``result functions''
which consist of arithmetic operations of standard operators.

Classical GSPN analysis results (like expected number of tokens in a place, throughput of
a transition etc.) have been predefined as result functions for convenience.

Examples:

result_func1(

      E(reward_func1, NULL) + ENTOKEN(place5)

 )

computes the expected value of the reward function defined above and adds the average
number of tokens in place 5.

The covariance of two impulse reward functions can be computed as
covariance(

      E(NULL, product_impulse) - E(NULL, factor1) * E(NULL, factor2)
  )

with the definition
  product_impulse(
      factor1 * factor2
  )

The goal of the stochastic analysis of Petri nets is to get answers for model-specific questions;
however, the results obtained from the solution of the Markov process described by the Petri
net state space are not directly related to the input net. The computed results have to be filtered
in a suitable way as to gain the results of interest.

4.2. Specification of requirements relevant to verification

In the first phase of the HIDE project, model checking is considered as the major verification
technique to be used. In such a technique the system designer produces a model of the behavior
of the system or subsystem (s)he has to design and the model checking tool checks if such a
model satisfies a certain requirement. In the context of HIDE, the system behavior is modeled
by a statechart diagram. In the context of model checking the requirement is to be specified as
a Temporal Logics formula. In this deliverable we consider a Linear Time Temporal Logic
(LTL in the sequel).
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An informal description of the logics is given below. Examples of its use are given in Deliver-
able 2.

Given a statechart diagram, we assume there exist a predicatein(s) for each states of the state-
chart. The meaning of in(s) is that states is in the currentstate configuration (simplyconfigu-
ration} in the sequel). We will also use the generalization of the predicatein(s1,...,sn) meaning
that the current configuration containsall the states listed in thein predicate. Moreover, the no-
tation [e1,..., en] will be used for denoting the fact that the events in the current event queue are
e1,..., en, wheree1 is the first element in the queue anden is the last one (here a FIFO discipline
is assumed)1.

Predicates of the formin(s) and [e1,..., en] form theatomic formulas. The syntax of a generic
formula is given by the following grammar:

LTL_formula ::= atomic_formula

| LTL_formula AND LTL_formula

       | LTL_formula OR LTL_formula

       | NOT LTL_formula

       | [] LTL_formula

       | <> LTL_formula

       | LTL_formula U LTL_formula

A formula can be either anatomic formula or a composition offormulas.

We assume usual boolean composition operators so, iff1 andf2 are formulas, then alsof1 AND
f2, f1 OR f2, NOT f1 andf1 ==> f2 are formulas and their meaning is the standard one.

For example, the formulain(s0) AND [e0] means that states0 is in the current configuration
ande0 is the only event currently in the event queue.

As a second example, suppose states2 is a substate of states1. Then the formula
[e10,e25,e0] ==> in(s1,s2) is violated if the current queue is composed by eventse10,e25, and
e0 with e10 (e0) being the first (last) element ands1 or s2 are not in the current configuration.

In the following, we shall call a pair (configuration, event queue) astatus.

The set of formulas of interest for us is enriched as follows (wheref is any formula). []f (to be
read as “f forever”) informally means “f holds in every status of every run of the system”. <>f
(to be read as “eventually f”) means “In every run of the system there is a status in whichf
holds”. Finallyf1 U f2 (to be read as “f1 until f2”) means “In every run of the system there is a
status in whichf2 holds and in all the previous statuses (in the same run)f1 holds”.

So, for instance, [][e10,e25,e0] ==> in(s1,s2) means that we require thatwhenever the queue
is composed by the eventse10,e25, ande0, the current configuration must contain statess1 and
s2.

Obviously formulas containing the abovetemporal connectives [],<>,U can in turn be com-
posed using logical as well as temporal connectives.

1. More interesting predicates on the queue can be defined, but we leave them out here for simplicity rea-
sons.
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For the sake of readability, it is often convenient to assign names to formulas by means of de-
fining equations and then use such names (recursive definitions are not allowed here). For ex-
ample, the above formula could be rewritten as []f, or as [](p==>q) where:

p=[e10,e25,e0]

q=in(s1, s2)

f=p==>q

5. Identification of Dependability Attributes and their Representation
in UML

5.1. Identification of dependability attributes for qualitative evaluation

The following attributes of dependability are defined in [17]:availability is the measure of the
delivery of correct service with respect to the alternation of correct and incorrect service,reli-
ability is a measure of the continuous delivery of the correct service,safety is the non-occur-
rence of catastrophic consequences,security is the non-occurrence of unauthorized access. In
this document reliability, availability and safety modeling will be considered.

5.1.1. Dependability parameters and system structure

“A dependability model of an integrated fault tolerant system must include at least three differ-
ent factors: computation errors, system structure and coverage modeling” [9]. In the following
we concentrate on the first two, by investigating how system structure and (failure and related)
parameters of system elements can be captured in dependability models.

5.1.2. Reliability analysis

Reliability of a system is a measure of the time to failure. Reliability analysis investigates how
failures of system elements lead to a failure of the system.

Both hardware and software elements are characterized by failure parameters as follows:

• Independent failures. Independent failures are caused by unrelated faults of the elements.
Hardware elements are affected by physical faults and design faults, software elements are
affected by design faults.

• Common mode failures. Specification mistakes or dependencies in the design and imple-
mentation cause related faults. Related faults manifest themselves as similar errors which
lead to common mode failures. Note that independent faults or distinct errors may also lead
to common mode failures.

A failure is characterized by a probabilistic parameter which expresses whether a correspond-
ing fault leads to the failure during execution or not. In this way, error handling and fault treat-
ment at the level of individual components is taken into account. The kind of parameter
depends on the execution model of the system. In the case of continuous service, failures are
characterized by afailure rate (i.e. arrival rate of active faults) while in the case of demand-
driven service,failure probability (i.e. a probability that a fault is activated during the execu-
tion) is used.

If the state of the element is taken into account, i.e. the causes of failures are to be modeled,
then the notion oferror is introduced. Faults are resulting in erroneous state of the element,
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which may lead to failure of the element. This process is characterized byfault activation rate
anderror latency.

The key point in reliability modeling is the identification ofredundant elements and their use
to tolerate failures of (other) system elements. To represent the fault tolerance in the depend-
ability model the understanding of the following points is necessary:

• Identification of redundant elements in the system. Redundant elements are present in the
form of replicas or variants.

• Identification of the dynamics of the redundancy scheme, i.e. how the redundant elements
are used.

The tolerance of faults is characterized by acoverage factor, which is a probability that the giv-
en fault (a failure of a system element) will be tolerated by the system, i.e. the system provides
its services in spite of the fault (maybe in a degraded mode).

The restoration of failed system elements during the normal operation of the system is dis-
cussed and parameterized below.

Safety analysis

Safety of a system is a measure of the time to catastrophic failure. In general, catastrophic fail-
ures are identified by the designer, depending on the application task and environment of the
system. Detection of a failure of a system element is a prerequisite to handle it in a safe way by
the system. Thus, detected failures are often termed as benign failures, undetected failures are
termed as catastrophic failures. This way the major difference between a reliability and a safety
model is the further categorization of the system failure.

Error detection capability can be captured at the level of individual elements as well as at the
level of the system. A proportion of failures is detected by the element itself, while other fail-
ures can be detected only by external system elements (e.g. a monitor).

Individual system elements are characterized by alocal detection coverage, which is a proba-
bility that a failure of the element is detected by itself.

Focusing on the system structure, those redundant elements are considered which are assigned
to other system elements to detect their failure (often without the ability to tolerate it). These
redundant elements are characterized by a(global) detection coverage, which is a probability
that a failure of the assigned element (which is not detected locally) is detected, but not toler-
ated.

Availability analysis

Availability of a system is the probability that the system provides a correct service. The long-
term ability of the system to recover from failures is taken into account.

Detected failures of system components trigger fault treatment. The fault is judged to be per-
manent or transient.

Theoretically, from the point of view of temporal persistence, faults can be categorized as being
either permanent (presence is not related to internal or external pointwise conditions) or tem-
porary ones (present for a limited amount of time). Temporary faults are called transient or in-
termittent faults, according to whether their conditions are defined by the external environment
or some internal system activity. Practically, faults are declared to be hard (requiring passiva-
tion) or soft faults (with negligible probability of recurrence, therefore no need of passivation)
by a decision mechanism [3]. A hard fault may be due to a permanent fault, a dangerously fre-
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quent intermittent fault or a transient fault. Soft faults are due to intermittent or transient faults.
A more precise diagnosis may further categorize hard faults to be permanent or transient.

If a hard fault is diagnosed to be permanent then the system is degraded and an explicitrepair
action is required to restore the original state. If it is declared as soft or diagnosed to be as tran-
sient then the system element may bereintegrated by some mechanism. Repair and reintegra-
tion will be referred to as maintenance in the following.

Maintenance can be characterized a follows:

• Theproportion of faults of an element that are diagnosed to be permanent.

• Therepair rateof the element in the case of permanent faults.

• Thereintegration rate of an element in the case of faults diagnosed to benot permanent (i.e
soft faults and hard faults diagnosed to be transient).

• The key point related to the system structure in availability modeling is the identification of
maintenance dependency among elements, i.e. shared repair facilities.

The proposed model parameters and distinguished elements of the system structure are sum-
marized in Table 1.

5.1.3. Identifying system structure

The granularity level of redundancy in object oriented systems can be described as operation,
object or class level [22]. In practice, the class level redundancy is the most widely used for
implementing fault tolerance schemes. The following types of implementations are well-
known:

• Predefined (library-based) class hierarchy:
Predefined system classes are responsible for the implementation of a given solution. Non-
functional characteristics (persistence, recovery, fault tolerance) are inherited from these
system classes [7]. Abstract classes may be defined forvariants, adjudicator andredundan-
cy manager.

• Reflective languages and metaobject protocols:
A reflective language can manipulate a representation of its own behavior, which is called
the system’s meta-level [18]. In object oriented languages, the execution of an object is con-
trolled by a meta-object: that represent both the structural and computational aspects of the
original one. The use of reflection helps to improve the transparency of fault tolerance

Model type Parameters Distinguished elements

Reliability Separate failure rate
Common mode failure rate

Fault activation rate
Error latency

Redundant elements (variant,
redundancy manager)

Availability Proportion of permanent faults

Repair (reintegration) rate

Safety Error detection coverage
(global or local)

 Error detector

Table 1. Model parameters and distinguished elements of the structure
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mechanisms, the mixing of functional and non-functional programming is eliminated, the
programmer does not have to be aware of which fault tolerance mechanism is used and how
to use it.

• Pattern-based design:
Design patterns are widely used by practitioner engineers to solve common problems
which arise at the level of the system. Basic fault tolerant structures can be provided as gen-
eral, reusable design patterns.

Since the reflective approach depends heavily on the implementation language, we focus on the
approach using a (predefined) class hierarchy.

In class level redundancy schemes the identification of the scheme requires the identification
of the distinguished components (e.g. variants, adjudicator, redundancy manager) and identifi-
cation of the dynamics of the scheme. Structure level diagrams do not contain enough informa-
tion to identify the dynamics, this way either behavioral level modeling or the identification of
predefined behavior is required:

• In most of the cases, the dynamics of the scheme can be assigned to a distinguished object,
the redundancy manager, which is responsible to coordinate the execution of the other ob-
jects. It can be characterized as follows:

- If the redundancy manager implements a predefined scheme then it can be stereotyped to
indicate that scheme. This way the dynamics can be estimated automatically, based on a
library of predefined schemes and the corresponding managers. The behavioral level
modeling is not necessary, the designer can select the redundancy manager of a pre-
defined scheme fitting to the needs of the application.

- In a more general way (covering also cases when the redundancy manager implements a
special scheme which is not available in the library of predefined ones) the designer
should describe the redundancy manager by behavioral level (activity or statechart) dia-
grams. This way, in order to identify the dynamics of the scheme, the behavioral view has
to be analyzed. Note that the behavioral view of the other elements of the scheme is not
necessary (corresponding to the approach of partially refined models where only critical
parts of the system should be refined).

• In some cases the dynamics of the scheme can not be assigned to a single object (e.g. in a
distributed scheme like NSCP in which there is no distinguished controller responsible to
coordinate the other objects). However, the set of objects implementing the scheme can be
characterized in a similar way as in the previous case.

The above approaches can be unified to a methodology which uses library based classes for re-
dundancy managers and objects of predefined schemes and also enables the behavioral level
description of special schemes not available in the library. The designer can decide to use one
of the schemes available in the library or describe the detailed behavior of objects.

5.2. Identification of dependability attributes for formal verification

In the context of formal verification, important properties are those ofsafety, liveness andpre-
cedence. A very convenient way for expressing these properties is by means of Temporal Log-
ics formulas. It is outside the scope of this deliverable to discuss in detail these classes of
properties and how they can be expressed in Temporal Logics. The interested reader is referred
to the valuable tutorial [10].
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In the following we shall give some examples of typical safety, liveness and precedence prop-
erties and their representation in linear time temporal logics. To our knowledge, there is cur-
rently no direct way for expressing Temporal Logics formulas as requirements within the
UML. We refer to Sect. 4 of this deliverable for a short introduction to the (limited) temporal
logics considered during the first phase of HIDE. For UML related terminology we refer to
[19].

Safety Properties

Informally, a safety property states that “nothing bad happens” with the system.

A typical safety property ispartial correctness which states that if the initial status of the sys-
tem satisfies a certain preconditionφpre then if the system reaches a final status, it will satisfy
a certain postconditionφpost. Assuming that formula I characterizes the initial status and for-
mula F characterizes a final status, the above property can be written as

(I AND φpre) ==> ([](F ==> φpost))

Another common safety property ismutualexclusion . Supposing that two subsystems both ac-
cess a shared resource and that formulaCSj characterizes those statuses where subsystem j is
in the critical section, forj=1, 2, the property can be formalized as

[]NOT(CS1 AND CS2)

Liveness Properties

Informally, a liveness property stipulates that “eventually something good will happen”.

A typical liveness property istotal correctness which states that if the initial status of the sys-
tem satisfiesφpre then the system will eventually reach a a final status which will satisfy for-
mula φpost. Assuming again that formulaI characterizes the initial status and formulaF
characterizes a final status, the above property can be written as

(I AND φpre) ==> <>(F ANDφpost)

Another useful liveness property isresponsiveness. Suppose predicateReq characterizes those
statuses where a certain request is issued andGrant characterizes those statuses where the re-
quest is granted. Then the fact that whenever a request is made eventually a response is given
can be formalized as

[](Req ==> <>Grant)

Precedence Properties

Precedence properties ensure a certain ordering of events or situations. They are of the form

NOT((NOT p) U q)

and the intended meaning is that the first occurrence of a status satisfyingq, if any, must be

preceded by an occurrence of a status satisfyingp. One can think ofp as a formula expressing
for instance a request andq denoting a response.

5.3. Representation of dependability attributes in UML

An UML specification does not cover all non-functional aspects required for dependability
modeling. The specification should be extended in order to be able to construct the dependabil-
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ity model. UML provides the following facilities to introduce such extensions assigned to any
model element:

• Tagged values.Tagged values are pseudo-attributes assigned in the form of a tag (name of
a property) and a value. E.g. coverage=78%

• Constraints. Constraints are (Boolean) expressions given e.g. in the Object Constraint Lan-
guage OCL. Note that constraints can be applied also to the system structure, since the con-
straint language provides mechanisms to browse the structure of model elements.

• Stereotypes.Stereotypes introduce a new class of modeling elements introduced at model-
ing time. A high-level classification (meaning/usage) of elements can be described. Usual-
ly, a stereotype qualifies the base class with additional constraints (that must be satisfied)
and tagged values (that must be present). Stereotypes are generalizable, i.e. subtypes and
hierarchy can be defined.

• Comments. Comments are arbitrary, unstructured annotations.

Extensions can be used to identify specific structure (e.g. redundancy structures) or to assign
dependability related parameters.

The role and form of these extensions will be described in the following sections.

5.3.1. Identifying redundancy structures

If a class-based redundancy approach is adopted, then elements and dynamics of the redundan-
cy structure have to be identified.

• In the case of a library-based scheme, the name (ID) of the scheme (as stored in the library)
has to be given.

• In the case of a scheme specified by the designer, the roles of system elements (redundancy
manager, variant, adjudicator) have to be identified. Moreover, since the dynamics of the
redundancy scheme has to be derived based on the behavioral description of the redundancy
manager, some elements of its statechart has to be distinguished. States and events are ste-
reotyped as follows:

- Failure state: the redundancy manager detects that the set of objects in the scheme can not
provide the service.

- Failure event: the redundancy manager notifies the client(s) that the service of the scheme
is not available.

- Response event: the redundancy manager provides the service of the scheme to the cli-
ent(s).

For the sake of the automatic analysis of the behavior, the role of adjudicator can be further
refined ascomparator, voter, etc.

The precise form of the stereotypes and the corresponding model elements will be specified in
Deliverable 2. Here a short summary is presented in Table 2.
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5.3.2. Assignment of parameters

The model parameters can be included in UML models as standard extensions in the form of
tagged values. The use of tagged values can be prescribed by stereotypes. Since tagged values
can not be applied to a group of model elements, the common parameters like common mode
failure rates have to be given by using other mechanisms. A possible solution is to place the
tagged value into a comment, and attach the comment to multiple model elements.

Tagged values can represent the following characteristics:
- fault occurrence
- common mode failure occurrence
- percentage of permanent faults
- error latency
- detection coverage
- propagation probability
- repair delay.

The form of these stereotypes and the corresponding UML model elements are specified in De-
liverable 2.

As an example, the structure of stereotypes and tagged values of a general software element
(object or component) is presented in Fig. 6. Similar stereotypes and tagged values are applied
in the case of hardware elements (Fig. 7.).

Stereotype Role

<<redundancy manager>>
General identification of classes or ob-
jects of redundancy schemes

<<variant>>

<<adjudicator>>

<<comparator>> Subtypes of <<adjudicator>> in user-
defined redundancy schemes<<voter>>

<<failure>> State in the statechart of redundancy
manager

<<failure>> Events in statechart of the redundancy
manager<<response>>

Table 2. Stereotypes used to identify system structure
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5.3.3. Definition of requirements

The easiest way to define requirements in UML diagrams is the application of constraints. For
a single UML element, the constraint may be placed near to the (name of the) symbol. For two
elements, a dashed line connecting the elements is labeled by the constraint. For three or more
elements, the constraint is placed into a comment, which is attached to the elements.

The following requirements can be expressed in the form of constraints:

• requirements relevant to verification (in the form of a Linear Time Temporal Logic)

• requirements relevant to quantitative dependability analysis (i.e. reliability or availabil-
ity measures)

• performance (timing) requirements.

The form and semantics of the requirements are specified in Section 4 and in Deliverable 2.

Fig. 6. Stereotypes and tagged values of software components

<<stereotype>> stateful

{fault occurrence = 0.01}

{error_latency = 0.8}

{repair_delay = 1.9}

<<stereotype>> stateless

{fault occurrence = 0.01}

Fig. 7. Stereotypes and tagged values of hardware components

<<stereotype>> stateful

{fault occurrence = 0.01}

{error_latency = 0.8}

{repair_delay = 1.9}

<<stereotype>> stateless

{fault occurrence = 0.01}

{permanent = 10%} {repair_delay = 1.9}

{permanent = 10%}
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