
HIDE
High-Level Integrated Design Environment for Dependability

Specification of the Pilot Application
(Automatic Train Control System)

©HIDE Consortium 1998

Version 1.0, October 1998

The HIDE project is partially funded by the European Commission under the 4th

Framework Initiative (ESPRIT Project 27439).

Author:

INTECS Sistemi S.p. A.
Via Livia Gereschi, 32
56127 PISA, Italy
Tel: +39 50 545 111; Fax: +39 50 545 200

i

Executive Summary

This document contains the initial specification of a system which will be
used in the second phase of the HIDE project as a pilot application for
experimenting and assessing the modelling and analysis techniques that
the project is developing.

The selected system is an Automatic Train Control (ATC) system which is
an onboard control system for the new generation of trains for the Italian
railroad system. The ATC is currently in production by Ansaldo, and for
which Intecs Sistemi has a significant involvement in the design and the
implementation of the Basic Software.

The system has significant dependability requirements in terms of
availability, fault tolerance and predictability. To meet these requirements
it exploits state of the art solutions both in its hardware and software
architecture, as replicated communication bus, duplicated processing
nodes and replicated subsystems.

The ATC can be considered as representative of a wide class of real-time,
embedded dependable systems, and as such constitute a valid pilot
application for HIDE.

In general terms, real-time, embedded dependable systems are
characterised by many peculiar factors that make them different from
"normal" computer applications.

The software for this embedded systems is more difficult to construct then
it is for desktop computers. Real-time systems have all the difficulties of
desktop applications plus many more. Usually non real time systems do
not concern themselves with timeliness, robustness or safety - at least not
nearly at the same extent of real time systems.

Real time systems encompass all devices with performance constraints.
Hard deadliness are performance requirements that absolutely must be
met. A missed deadline constitutes an erroneous computation and a
system failure. In these systems, late data is bad data.

Virtually all real time embedded systems either monitor or control
hardware or both. One of the problems that arises with environmental
interaction is that the universe has the annoying habit of disregarding our
opinions on how and when it ought to behave. External events are often
not predictable. Systems must react to event when they occur not when it
might be convenient. A train must stop immediately if something goes
wrong along the track, an ECG monitor must alarm quickly following the
cessation of cardiac activity.

Real time embedded system must often really optimise the usage of
resources. Under Unix, if a developer needs a big array, he might just
allocate space for 1,000,000 floats with little thought of the consequences.
The embedded system developer cannot make these simplifying
assumptions.

Frequently real time developers must design and write software for
hardware that does not exist yet. This creates real challenges since they

cannot validate their understanding of how the hardware functions.
Integration and validation testing become more difficult.

Embedded real time systems must often run continuously for long period
of time. It would be awkward to have to reset your flight control computer
because of a General Protection Fault while in the air. The same applies to
Cardiac Pacemakers or unmanned space probes.

Embedded system environments are often adverse and computer hostile.
Solar storms generate strong radiation outside the atmosphere, cables that
connect two train cars may be damaged or even cut. Even if the damage is
not permanent, it is possible to corrupt memory storage, degrading
performance or introducing system failure.

Apart from increased reliability concerns, software is finding its way even
more frequently into safety systems, as medical devices, defence systems,
nuclear and chemical plants, and vehicle control systems as aircrafts,
spacecrafts, trains and even automobiles.

Because of all these considerations it is quite clear the reason for the
increasing interest of the industry towards the research of better ways to
design and develop embedded real time systems.

The Object Oriented technology claim to be a suitable answer to these
needs.

The primary advantage of Object Oriented development are:

• Consistency of model views

• Improved problem domain abstraction

• Improved stability in the presence of changes

• Improved model facilities for reuse

• Improved scalability

• Better support for reliability and safety concerns

• Inherent support for concurrency

The Unified Modelling Language (UML) is an emerging standard visual
notation for expressing the constructs and the relationships of complex
systems. UML is more complete then other methods in its support for
modelling complex systems. It is applicable in a wide range of application
domains including business applications and processes, but as far as our
specific interest is concerned, it is particularly suitable for modelling real
time embedded systems. Its major features include:

• Object model

• Uses cases and scenarios

• Behavioural modelling with state charts

• Packaging of various kind of entities

• Support for multiple views of the system

• Representation of tasking and task interactions

• Model of physical topology

• Model of source code organisation

• Support for object oriented patterns

iii

In this document we will try to exploit these features to build an initial
specification of the ATC with the UML. This specification reflects the
current actual architecture of the system as already specified using
informal notations or other formal methods as HOOD and SDL. In this
respect the work performed is a kind of reverse engineering activity which
tries to exploit UML features to construct a more complete and
understandable description of the system. This initial specification will be
further elaborated and extended in the second phase of the project in order
to make use and to assess the specific modelling techniques developed in
HIDE.

The document is structured in four main parts:

• An introductory informal description of the system

• A UML model of the static logical architecture of the system

• A UML model of the principal dynamic behaviour characteristics of
the system

• A UML model of the physical architecture of the system.

One of the critical points for the realisation of the system is to define the
appropriate diagrams for the state machines for realising communication
protocols:

• That are complete;

• That have no loops, deadlocks, unreachable states;

• Where all events are handled;

• That implement additional safety features such as sequence numbers
and checksums on messages for each connection;

In the work of the HIDE project, it would be desirable to arrive at state
machine analysis, verification and realisation techniques that easily
adaptable to different underlying configurations in the implementation.

In addition, in the HIDE project we are hoping to identify tools and
methodologies to help in the development of protocols and architectural
solutions and patterns with good characteristics as listed above, and would
like to model protocols and architectures in such a way that we can arrive
at an evaluation of their dependability characteristics.

Other critical issues that would be interesting to investigate are:

• Predictability of the overall communication on the bus

• Level of dependability of a redundant 2/2 architecture for a subsystem,
in comparison with other Hardware redundancy solutions eg. 2/3.

iv

Table of Contents

Table of Contents

1 Introduction..1

1.1 Context ..1

1.2 Overall System Architecture..1

1.3 Communication Architecture...3

1.4 Subsystem Architecture ...3

1.5 Bus Module Architecture..5

2 UML System Modelling ...6

2.1 Logical Architecture ...6

2.1.1 UML notation and logical architecture ..6

2.1.2 BTM Implementation ..8

2.1.3 BTM Basic Software Implementation ..9

2.1.4 Common Software Implementation ...10

2.1.5 BSP1 Implementation ...13

2.1.6 IPC Implementation..14

2.1.7 Serial Lines Implementation ..16

2.1.8 PROFIBUS Driver Implementation ..17

2.1.9 Cyclic Activities Implementation ...19

2.1.10 Safety Layer Manager Implementation...21

2.1.11 Finite State Machines Implementation ...23

2.1.12 Time Manager Implementation..26

2.1.13 BTM Application Software Implementation..27

2.2 Dynamic Architecture...28

2.2.1 UML mechanisms for modelling dynamic architecture28

2.2.2 Description of protocol operation..28

2.2.3 Services provided by the Connection Manager..30

2.2.4 Services provided by the Safety Layer ...31

2.2.5 Interaction between protocol services ..34

2.2.6 State Diagram for Connection Manager ..36

2.3 Physical Architecture ...38

2.3.1 UML Diagrams for Describing Physical Architecture38

2.3.2 Modelling the physical system..38

3 Conclusions...41

1

Errore. Lo stile non è definito.

1 Introduction

1.1 Context

This study is taking place in the context of a critical examination in the
world of safety-critical systems of safety mechanisms that are currently in
use and are expensive to implement and unclear in the relationship of
their costs to their benefits. The goal is to arrive at a more systematic
means of evaluating the costs and benefits of the various measures that
are currently being taken to create reliable, dependable systems. One
possible outcome of such work would be to determine whether, for
example, through the replacement of special purpose hardware by COTS
hardware it is possible to reduce the current high costs of system
development.

1.2 Overall System Architecture

The Automatic Train Control (ATC) system is an onboard control system
for the new generation of trains for the Italian railroad system. The ATC
is currently in production by Ansaldo in Genoa, Italy. The basic system
architecture is composed of a number of subsystems connected through a
communication bus created by Siemens AG and known as PROFIBUS.

Automatic
Train Control
Logic Module

ALM

Train
Management

Module

TMM

Man-Machine
Interface
Module

MIM

Balise
Transmission

Module

BTM

PROFIBUS communications bus

Figure 1: Overall System Architecture

Figure 1 illustrates the basic overall architecture of the system, showing
the PROFIBUS and the various subsystems that communicate over it. Each
subsystem plays a specific role in the overall real-time control of the train.

2

Errore. Lo stile non è definito.

• The ATC logic module (ALM) contains most of the signalling logic and
is a communication point for the integration in the European railway
system.

• The BTM is principally responsible for the dialogue with the on-
ground component of the railway control system.

• The TMM is responsible for controlling the physical devices such as
converters, brakes, and sensors.

• The MIM is in charge of managing the interaction with the operator.

Subsystem NSubsystem 1

PROFIBUS A

PROFIBUS B

Figure 2: Redundant bus architecture

Each subsystem can be replicated for fault-tolerant purposes. The
replicated subsystems are in so-called hot redundancy status—that is,
they maintain the same status, performing the same operations at all
times, but their outputs are disabled.

The exchange of messages on the bus is a critical factor in the co-operation
of the subsystems to implement the overall system functions. As a
consequence, message distribution mechanisms have very high availability
and safety requirements.

The basic system architecture choices to match these requirements are

• The replication of the PROFIBUS bus, as illustrated in Figure 2;

• The use of a protocol;

• The elaboration in parallel of the messages in the components of a 2/2
subsystem architecture.

The PROFIBUS protocol is connection oriented. There are three types of
messages:

• Control (connect, accept, switchover, disconnect, etc.)

• Data;

• Life (periodic message always sent on both busses in absence of other
messages within a specified timeout period).

Two subsystems that need to interact each other must establish a double
connection: a Nominal connection along which Control, Data and Life
messages are exchanged, and a Redundant connection where only Control
and Life messages are exchanged. When a predefined shoulder of errors on
the Nominal connection is exceeded the "Switchover" takes place: the
Redundant connection becomes the Nominal one, and a new Redundant
connection is established in place of the old Nominal one.

3

Errore. Lo stile non è definito.

1.3 Communication Architecture

SLa SLb

CM

Application 1

SLa SLb

CM

Application 1

A

B

Figure 3: Communication architecture

Figure 3 shows the basic communication architecture, illustrating several
key measures taken for reliability. There are duplicated components (a 2/2
scheme), which are individually connected to separate buses.

A Safety Layer is a state machine that is capable of initiating and
maintaining a connection among two subsystems. Each subsystem
contains two Safety Layers. Each Safety Layer communicates with a peer
in the other subsystem over a separate bus and exchanges a subset of the
Control and Life messages. A Safety Layer receives Switchover messages
and passes them up to the Connection Manager.

A Connection Manager controls the double connection. All of the logic
associated with the Switchover message is contained within the
Connection Manager.

1.4 Subsystem Architecture

Figure 3 would be valid even for a single (non-duplicated) physical
architecture. In Figure 4, we illustrate with more precision the layout of
the duplicated “two-out-of-two” (2/2) architecture.

4

Errore. Lo stile non è definito.

Application Software

System Software

µA

Bus A

Application Software

System Software

µB

Bus B

IPC

Figure 4: Subsystem architecture

There are two identical boards connected by various communication lines,
and the two CPUs run identical software. There are hardware and
software mechanisms for verifying that the elaboration is carried out in a
consistent manner on the two boards.

The 2/2 architecture has two important consequences:

• The first is that each board is connected to only one PROFIBUS; in
principle each CPU does not have visibility of the messages of the
other. This means that each message must be distributed to the other
CPU in order to elaborate it in parallel.

• The second is that the order of elaboration of messages must be the
same in two CPUs, and therefore an additional mechanism is needed
to buffer messages both in input and in output, and to agree upon the
next message to process.

5

Errore. Lo stile non è definito.

1.5 Bus Module Architecture

Event Handler

SLa SLb

CM

Application

A

B

µA

Event Handler

SLa SLb

CM

Application

µB

Watch Dog

IPC

Figure 5: Bus module architecture

The additional mechanisms described in the second point mentioned in the
previous section are implemented in the Event Handler that is in charge
of controlling the 2/2 architecture, as shown in Figure 5. The Event
Handler manages all interactions with the actual PROFIBUSes, and feeds
its respective state machine with a consistent sequence of events.

The watchdog is not replicated (and therefore is a single point of failure—
in fact, it is very expensive because it cannot be allowed to fail). At regular
intervals each of the (replicated) Software systems must send a series of
signals to the watchdog. If either of the Software Systems should miss a
deadline, the watchdog disables both of them.

6

Errore. Lo stile non è definito.

2 UML System Modelling

The Unified Modelling Language (UML) is based upon the concept of
multiple viewpoints of the system being modelled. For the purposes of our
treatment, three viewpoints are of particular interest:

• The logical architecture of the system. This viewpoint considers the
static structure of the system software, including how it is logically
divided into classes, interfaces, and larger organisational units such as
packages; as well as the relationships among these logical units.

• The dynamic architecture of the system. This viewpoint considers
aspects of the system that are not captured by the static, logical
viewpoint; for example, the behaviour of the software modules
responsible for sending and receiving messages within the
communications protocol.

• The physical architecture of the system. Finally, this viewpoint
captures aspects of the system that are not captures by the other
viewpoints, involving the physical connections among system devices
and the physical allocation of software components to those devices.
This viewpoint is also important in our application, since much of the
functionality delivered with respect to dependability and reliability is
provided by the physical rather than the logical architecture.

2.1 Logical Architecture

2.1.1 UML notation and logical architecture

2.1.1.1 Class and Package Diagrams

The basic mechanisms for modelling logical architecture in the UML are
classes and the associations among them. An interface is a special case of a
class, exporting only operations but no implementation. Packages are a
general mechanism within the UML for organising model elements.

All three of these mechanisms have been used to organise the logical
model of the system under study. The original design of the system was
carried out with the HOOD (Hierarchical Object Oriented Design)
methodology, which yields an essentially hierarchical system structure.
We have mapped this hierarchical structure onto a series of UML class
diagrams that follow a particular scheme:

• At any given level in the hierarchy, an interface is created which
specifies the operations that are collectively exported by the system
elements at that level.

7

Errore. Lo stile non è definito.

• Accompanying that interface is the specification of a package
corresponding to the system elements that are visible at that level,
together with a class diagram that shows the associations among those
elements.

Thus, the overall logical architecture of the system is reflected in a series
of nested UML packages, whereby the nesting reflects the hierarchical
structure of the system.

Interface

Package

Class

Figure 6: Hierarchical logical structure

Figure 6 illustrates the concepts of hierarchical organisation. The entire
system is contained in a top-level package that exports an interface.
Within that package, there are classes and other packages (with
associated interfaces) that have relationships (associations) with each
other. The inner packages in turn have their own hierarchical
decomposition. In the description that follows, it was necessary to
“serialise” the hierarchical packages, so that their presentation is not
nested, but rather sequential.

2.1.1.2 Stereotypes

We make heavy use of UML stereotype notation in order to make the
documentation not only more readable, but also to reflect the underlying
technical characteristics of the software more precisely.

• The «Interface» stereotype is seen often on the following class
diagrams, and as explained above, it corresponds to the interface of a
package. Thus, when the «Interface» stereotype is encountered, it is an
indication of the fact that another class diagram will follow that
depicts the contents of the package that corresponds to that interface.

• The «OpControl» stereotype is used for a special kind of class that is
mainly used in this system for the initialisation of other classes at a
given level in the hierarchy (a kind of global initialisation operation
for the objects at a given level). This technique is derived from the
HOOD methodology originally used in the system design. By default,
when an «OpControl» class exports a single operation the operation
has the same name as the class and it is not shown in the diagrams.

8

Errore. Lo stile non è definito.

• The «Protected» stereotype on a class means that the operations of the
class are carried out in mutual exclusion.

• The «Interrupt» stereotype is used to denote the class that corresponds
to an interrupt handler.

• The «Cyclic» and «Sporadic» stereotypes are used to indicate the kind
of threads that are contained within the associated active classes.

2.1.2 BTM Implementation

BTM Basic Software
<<Interface>>

BTM Application Software
<<Interface>>

Figure 7: Top Level Diagram of Balise Transmission Module

We show the logical structure of the Balise Transmission Module. As
shown in Figure 7, the BTM software is divided into two basic types: the
application software, and the basic software. The «Interface» stereotype
indicates that each of the elements in the diagram corresponds to a
package of further elements that will be shown in class diagrams in
subsequent sections.

9

Errore. Lo stile non è definito.

2.1.3 BTM Basic Software Implementation

SubsysInit
<<OpControl>>

BTM Specific Software

Common Software
<<Interface>>

SubsysVersion
<<OpControl>>

Figure 8: BTM Basic Software Class Diagram

Figure 8 illustrates the overall structure of the basic software of the BTM.
It is divided into two parts: the common software, which is reusable in all
of the onboard devices of the Automated Train Control system; and the
part that is specific to the Balise Transmission Module. In the following
subsections we examine each briefly in turn.

2.1.3.1 BTM Specific Software

BTM Specific Software
Put_Local()
Get_Local()
Init_Specific_SW()

Figure 9: BTM Specific Software Class

This object is dedicated to the specific functions of the Balise Transmission
module, and thus is not present in the other devices.

2.1.3.2 Subsystem Init

Subs ysInit
<<OpControl>>

Initialize_Application_SW()
Initialize_Specific_SW()

Figure 10: Subsystem Init Class

As an «OpControl» stereotyped class, its main purpose is to carry out
initialisation procedures for the two major components of a bus module:
the application software and the specific software.

10

Errore. Lo stile non è definito.

2.1.3.3 Subsystem Version

SubsysVersion
<<OpControl>>

Figure 11: Subsys Version Class

This class acquires the configuration data of the subsystem and returns it
to the caller.

2.1.4 Common Software Implementation

Common SW Version
<<OpControl>>

Voter

Thread Manager

Time Manager
<<Interface>>

Cyclic Activities
<<Interface>>

BSP1
<<Interface>>

Initializer Common SW
<<OpControl>>

Figure 12: Common Software Class Diagram

As illustrated in Figure 12, the common software package contains several
modules. The Thread Manager has the function of furnishing to the
application software the service of creating sporadic and cyclic threads,
guaranteeing that the priority of the application thread remains within
the allowed values. The Time Manager provides the application software
with services for time management. Remote Channels constitutes the
logical interface structure between the application software and the
software objects that manage the communication on the PROFIBUS. There
is a remote channel for every logical point-to-point connection between two
devices that are connected to the PROFIBUS. Voter provides the
“consolidating” service for verifying consistency between the data of Micro-
A and Micro-B. Cyclic Activities contains services that consist of
cyclic threads, such as self-test for security and the safety layer of the
PROFIBUS. BSP1 constitutes the interface toward the hardware necessary
for the functioning of the common software. It contains various services,
each of which has the function of managing a specific hardware resource,
for example a serial line or the ASPC2 ASIC of the PROFIBUS.

11

Errore. Lo stile non è definito.

2.1.4.1 Thread Manager

Thread Manager
CreateThread()
CreateCyclic()
CreateSporadic()
CyclicThread()
SporadicThread()
DeleteThread()
InitThreadManager()

Figure 13: Thread Manager Class

(Full operation signatures are not shown because of the large numbers of
arguments.). This class provides services for cyclic and sporadic threads.
Two categories of threads are distinguished

• Software application threads. These have limitations both on priority
levels and on the period. They must be created with the
CreateThread service, which verifies that the limitations are
respected. CreateThread is exported at the level of the Basic
Software, affecting the ALM, BTM, TMM, and MIM modules, all of
which have priority limitations. The CreateCyclic and
CreateSporadic services are created. These operations are exported
at the level of the Common Software class.

• Common software threads. These threads, in contrast, do not have
limitations. They are created by the CyclicThread and
SporadicThread services. They are not exported from Common
Software .

In any case, the caller of the provided services furnishes a reference to a
subobject that carries out the sporadic or cyclic action. The code associated
with this subobject must not contain statements that cause the repetition
of the action. This code is “added” by the service, which guarantees
continuous activation in the case of sporadic threads, and activation with
the correct period in the case of cyclic threads. Note that as a consequence,
it is expected that the code associated with a sporadic action contains one
or more calls to suspending operations (such as GetRemote); otherwise
the sporadic thread would occupy all of the CPU time available at that
priority level.

It is assumed that each thread has a unique priority in the system; no
mechanism is provided for managing time sharing. Finally, it should be
kept in mind that the periods are expressed in milliseconds and are
rounded to the multiple that is greater than or equal to the resolution of
the timer in the operating system (two milliseconds). The offsets indicate
the phase of the period respect to the time of activation of the system (in
milliseconds).

Thread Manager must be initalised by calling InitThreadManager .

12

Errore. Lo stile non è definito.

2.1.4.2 Common Software Version

Common SW Version
<<OpControl>>

Figure 14: Common SW Version Class

This class acquires the configuration data of the Common Software
component and returns it to the caller.

2.1.4.3 Initializer Common Software

Initializer Common SW
<<OpControl>>

Figure 15: Initializer Common SW Class

This class initialises the components in Common Software :

• Thread Manager ;

• Cyclic Activities ;

• Time Manager ;

• BSP1.

2.1.4.4 Voter

Voter
Consolidate()

Figure 16: Voter Class

This class provides the voting service, through a single operation
(Consolidate). It supports two function modes, according to the call
made:

• Directly executes the comparison between the local and remote values
according to the selected criterion. In this case, the shutdown is
directly executed in the case where the values are not mutually
conformant, and there is no return to the caller.

• The comparison of values is left to the caller. The service returns,
providing also the remote value, and does not carry out any
comparison at all.

13

Errore. Lo stile non è definito.

2.1.5 BSP1 Implementation

IdentifierMicro
<<OpControl>>

Serial Lines
<<Interface>>

PROFIBUS Driver
<<Interface>>

IPC
<<Interface>>

Initializer Bs p1
<<OpControl>>

Figure 17: BSP1 Class Diagram

2.1.5.1 Identifier Micro

IdentifierMicro
<<OpControl>>

Figure 18: Identifier Micro Class

This class identifies the local microprocessor as “A” or “B”—that is, an
identification of which physical CPU underlies the software component.

2.1.5.2 Initializer Bsp1

Initializer Bs p1
<<OpControl>>

Figure 19: Initializer Bsp1

This class carries out the initialisation of the following components:

• Serial Lines

• IPC

• PROFIBUS Driver

14

Errore. Lo stile non è definito.

2.1.6 IPC Implementation

IPCDriver
<<Protected>>

InitializerIPC
<<OpControl>>

SporadicBuffers
<<Protected>> RISC Driver

(from Serial Lines Implementation)

<<Protected>>

Thread Mana ger
(from Common Softw are Implementation)

SporadicReceiver
<<Sporadic>>

Figure 20: Inter-Process Control (IPC) Class Diagram

2.1.6.1 InitializerIPC

InitializerIPC
<<OpControl>>

Figure 21: Initializer IPC Class

This class activates in sequence the initialisation of the IPC Driver and
the Sporadic Receiver .

2.1.6.2 IPCDriver

IPCDriver
<<Protected>>

IPCSend()
IPCReceive()
IPCExchange()
InitIpcDriver()

Figure 22: IPC Driver Class

15

Errore. Lo stile non è definito.

(Full operation signatures not shown because of large numbers of
arguments.)

The Interprocess Communication (IPC) services are realised in a different
fashion according to the value of the parameter of class t_ipc_level that
is passed by the caller.

• If the level evaluates to Safety Layer IPC, then operation is assumed
to be on a dedicated line and that a single thread (the Safety Layer
driver) is using it. IpcSend and IpcReceive are realised by calling
operations of Serial Lines ; IpcExchange activates in sequence
IpcSend and IpcReceive .

• If the level evaluates to Cyclic IPC, then operation is assumed to be on
a dedicated line that is used concurrently by all cyclic threads in the
system. IpcSend and IpcReceive are realised as in the preceding
case. IpcExchange this time activates IpcSend and IpcReceive in a
critical region (mutex of the RTOS), in order to avoid that a higher
priority thread inserts itself between the two calls.

• If the level evaluates to Sporadic IPC, then operation is assumed to be
on a dedicated line that is used concurrently by all sporadic threads in
the system. In this case, it is not guaranteed that the participants in
an exchange activate the service at the same time. As a consequence, a
service (Sporadic Buffers) is realised that is capable of managing
receive requests in a way that is independent of the scheduling of the
threads. IpcSend is realised as in the other cases, except that every
message is “annotated” with the buffer service, in which sender and
receiver are associated with each other by means of the thread
identifier. IpcExchange is still realised as IpcSend together with
IpcReceive .

2.1.6.3 SporadicBuffers

SporadicBuffers
<<Protected>>

GetSporadicMessage()
PutSporadicMessage()
InitSporadicBuffers()

Figure 23: Sporadic Buffers Class

This class manages the sender/receiver association in messages, on the
basis of the thread identifier. It buffers the messages acquired from the
serial line until the local thread requests to receive it. It suspends the local
thread that makes the receive request if the corresponding message has
not yet arrived. The two exported operations are called concurrently by
different threads, and therefore must be executed in mutual exclusion.

16

Errore. Lo stile non è definito.

2.1.6.4 SporadicReceiver

SporadicReceiver
<<Sporadic>>

InitSporadicReceiver()

Figure 24: Sporadic Receiver Class

This class contains a thread that is normally suspended, awaiting a
message from the serial line that is used for communication among
sporadic threads. Upon reception of a message, it extracts the thread
identifier and inserts the message in the Sporadic Buffers .

2.1.7 Serial Lines Implementation

RISC Driver
<<Protected>>

RISC Interrupt
<<Interrupt>>

Figure 25: Serial Lines Implementation Class Diagram

2.1.7.1 RISC Driver

RISC Driver
<<Protected>>

GetTxBuffer()
SendTxBuffer()
GetRxBuffer()
ReleaseRxBuffer()
InitSerial()
InitRiscDriver()
EndOfTransmission()
EndOfReception()
CommunicationError()

Figure 26: RISC Driver Class

(Full operation signatures are not shown, due to the large numbers of
arguments.)

This class manages the interface buffers between the 68360 CPU and the
RISC processor. The buffers can be allocated either in the internal RAM (2
kbyte), which is a Dual Port RAM contained on the same chip that hosts
the 68360 and the RISC, or in the external RAM on the board.

The internal RAM is arbitrated at the level of 32-bit words and guarantees
efficiency at greater lengths. On the other hand, its dimensions do not
permit the allocation of buffers for all lines. In the configuration
parameters of a serial line, there is a flag that allows the choice of one of
the two possibilities. The initialisation code, however, takes into account

17

Errore. Lo stile non è definito.

the internal RAM that is still available and allocates the buffers in the
external RAM if necessary.

The configuration parameters make it possible to obtain either
asynchronous or synchronous functionality, and in the latter case it may
be managed either by interrupt or by a busy-wait condition. In the
interrupt-driven case, the RiscInterrupt class collaborates in the
management of communication. If reception is synchronous, then it is
possible to define a time-out. Finally, in the configuration parameters it is
possible to specify the number and size of send and receive buffers. The
configuration parameters of the serial lines constitute part of the
configuration of the Common Software .

The 68360 RISC interface is based on a contiguous sequence of buffer
descriptors. These are allocated to an address that is communicated to the
RISC during the initialisation phase. Each descriptor contains a control
word, a counter of data sent and received, and a reference to the current
data area. The descriptors are always allocated in the internal RAM. The
control word allows the 68360 and the RISC to realise the protocol for
transmission and reception on the serial lines.

2.1.7.2 RISC Interrupt

RISC Interrupt
<<Interrupt>>

Figure 27: RISC Interrupt Class

This is the driver of the interrupt generated by the RISC processor of the
68360. According to the configuration parameters of each of the serial
lines managed by the RISC, an interrupt is generated (or not generated)
for the following events:

• End of transmission;

• End of reception;

• Communication error.

By interpreting the appropriate registers, it is possible to determine the
serial line affected, as well as the event being signalled.

2.1.8 PROFIBUS Driver Implementation

ASPC2 Driver
<<Protected>>

ASPC2 Interrupt
<<OpControl>>

Figure 28: PROFIBUS Driver Class Diagram

18

Errore. Lo stile non è definito.

2.1.8.1 ASPC2 Driver

ASPC2 Driver
<<Protected>>

InitASPC2()
GetLifeList(theList : t_life_list_ref)
GetFromIndicationList() : t_aspc2_buffer_ref
InsertInSapList(sap : t_sap, buffer : t_aspc2_buffer_ref)
GetFromOkList() : t_aspc2_buffer_ref
GetFromNokList() : t_aspc2_buffer_ref
IsLifeListChanged() : Boolean
LifeListChanged()

Figure 29: ASPC2 Driver Class

This class exports operations on the list of buffers operated on by the
ASC2. It permits the insertion of buffers into the receive list, specifying
from which Service Access Point (SAP) they arrived; and into the (unique)
send list. It is possible to extract buffers from the Indication List and from
the OK and NOK transmission acknowledgement lists. Furthermore, it is
possible to obtain the complete Life List, as well as notification that the
Life List has been modified.

All operations must be executed with the lock activated on the memory
shared between the 68360 and the ASPC2.

2.1.8.2 ASPC2 Interrupt

ASPC2 Interrupt
<<OpControl>>

Figure 30: ASPC2 Interrupt Class

This class corresponds to the interrupt procedure connected to the signal
provided by the ASPC2 when the Life List is modified. The procedure calls
the notification service LifeListChange of the ASPC2 Driver class.

19

Errore. Lo stile non è definito.

2.1.9 Cyclic Activities Implementation

RAM_Test
<<Cyclic>>

Create Activities
<<OpControl>>

Delete Activities
<<OpControl>> BSP1

(from Common Software Implementation)

<<Interface>>

Voter
(from Common Software Implementation)

Common Software
(from BTM Basic Software Implementation)

<<Interface>>

ROM_Test
<<Cyclic>>

Safety Layer Mana ger
<<Interface>>WD_Refresh

<<Cyclic>>

Figure 31: Cyclic Activities Class Diagram

As illustrated in Figure 31, this package contains the cyclic activities that
constitute the core security mechanisms that are present in all of the
subsystems.

2.1.9.1 Create Activities

Create Activ ities
<<OpControl>>

Figure 32: Create Activities Class

This class activates the initialisation of the following components:

• RAM Test ;

• ROM Test ;

• WD Refresh ;

• Safety Layer Manager .

20

Errore. Lo stile non è definito.

2.1.9.2 RAM Test

RAM_Test
<<Cyclic>>

StartRamTest()
StopRamTest()

Figure 33: RAM Test Class

This class contains the cyclic activity that is dedicated to the run-time test
of the subsystem RAM. StartRamTest creates the cyclic thread dedicated
to the RAM test; StopRamTest destroys the cyclic thread dedicated to the
RAM test.

2.1.9.3 ROM Test

ROM_Test
<<Cyclic>>

StartRomTest()
StopRomTest()

Figure 34: ROM Test Class

This class contains the cyclic activity that is dedicated to the run-time test
of the subsystem ROM (EPROM and Flash memory). StartRomTest
creates the cyclic thread dedicated to the ROM test; StopRomTest
destroys the cyclic thread dedicated to the ROM test.

2.1.9.4 WD Refresh

WD_Refresh
<<Cyclic>>

StartWdRefresh()
StopWdRefresh()

Figure 35: WD Refresh Class

This class contains the cyclic activity dedicated to the refresh of the Watch
Dog on the board. StartWdRefresh creates the associated cyclic thread;
StopWdRefresh destroys the associated cyclic thread.

2.1.9.5 Delete Activities

Delete Activities
<<OpControl>>

Figure 36: Delete Activities Class

21

Errore. Lo stile non è definito.

This class manages the calls to the procedures for destroying the
operations executed by the four threads dedicated respectively to the
management of the:

• RAM test

• ROM test

• test and refresh of the Watch Dog

• Safety Layers

2.1.10 Safety Layer Manager Implementation

BSP1
(from Common Software Im plementation)

<<Interface>>

RTOS
(from Environment Classes)

<<Environment>>

Common Software
(from BTM Basic Software Im plementation)

<<Interface>>

Remote Channels
<<Protected>>

Finite State Machines
<<Interface>>

Thread Mana ger
(from Common Software Im plementation)

Event Handler
<<Cyclic>>

Figure 37: Safety Layer Manager Class Diagram

This package contains the elements that realise the security controls on
communication over the PROFIBUS, through two mechanisms:

• first, the PROFIBUS protocol with management of a duplicated
connection;

• second, redundant verification of correct message structure by two
separate microprocessors.

Event Handler is the only element that is aware of the 2/2 architecture.
It arranges for redundant verification of incoming and outgoing messages,
and feeds the protocol manager with the same sequence of messages on
both microprocessors.

Finite States Machines does not depend on the 2/2 architecture. It
only is aware of the existence of two connections (nominal and reserve)

22

Errore. Lo stile non è definito.

and of an application software that injects data messages for transmission
over the connections.

Finally, Remote Channels resolves the interface with the application
software, providing mechanisms for synchronous and asynchronous
transmission and monitoring of the state of the connections.

2.1.10.1 Event Handler

Event Handler
<<Cyclic>>

InitializeSlEngine()
StopSlEngine()

Figure 38: Event Handler Class

This class contains a cyclic thread that drives the Safety Layer . At
every activation, it manages the events that are accumulated at the level
of the PROFIBUS—that is, notifications of changes in the Life List,
acknowledgements of transmitted messages, or the reception of messages.

As a consequence of this analysis and of the scanning of the send and
receive buffers, an action is generated to carry out during the current
activation—that is, the elaboration of a message received, the
transmission of a data or control message, transmission error handling, or
changes in the Life List.

The action to be carried out is agreed upon by the threads executing on the
two microprocessors by means of an initial exchange of information. Once
the action is agreed upon, the threads carry it out in a doubly redundant
fashion while carrying out, if necessary, further exchanges of data through
the IPC channel.

The elaboration of a message received includes the generation of an event
to be sent to the state machines that manage the Safety Layers .
Furthermore, at each activation the cyclic thread calls the TimersUpdate
operation to enable the handling of timeouts.

2.1.10.2 Remote Channels

Remote Channels
<<Protected>>

PutRemote()
GetRemote()
GetRemoteStatus()
WriteStatus()
PutCnf()
GetCnf()
InitRemoteChannels()

Figure 39: Remote Channels Class

(Full operation signatures are not shown, due to the large numbers of
arguments.) This class implements the interface to the application

23

Errore. Lo stile non è definito.

software from the Remote Channels that manage communication among
PROFIBUS nodes.

The operations PutRemote , GetRemote , and GetRemoteStatus permit
the threads to send messages, to receive messages in synchronous or
asynchronous mode, to query the status of the Remote Channel in terms of
active connections and communications errors.

The management of the Remote Channels is necessarily integrated with
the management of the related Safety Layers , which are realized by the
Finite States Machine class. For this reason, Remote Channels
exports other additional services that manage the events generated by this
class (PutCnf , GetCnf). The execution of the services PutRemote and
GetRemote causes the events CmPutReq and CmGetReq to be generated
and sent to the Finite States Machine .

In addition, a procedure exists (InitRemoteChannels) for initialising the
internal structures of the class.

2.1.11 Finite State Machines Implementation

Remote Channels
(from Safet y Layer Manager Implementation)

<<Protected>>
Connection
Number

Connection Mana ger

Safety Layer

2

1

2

1

BSP1
(from Common Software Implementation)

<<Interface>>

PROFIBUS Buffers

1
2
1
2

Figure 40: Finite State Machines Class Diagram

This diagram illustrates a technique in UML that is used to reflect the
instantiation of software multiple times, for each individual bus module.
The Connection Manager is modelled as a parameterised class. This is
related to the concept of generics in Ada, and templates in C++.
Furthermore, it is in a composition relationship with two Safety
Layers . The composition relationship implies coincident lifetimes of
objects created from those classes: that is, they “live” and “die” together. A
Connection Manager object (and two accompanying Safety Layer
objects) is instantiated for each connection, whereby it is given a number
corresponding to the connection number. This number is used by each
instance of the Connection Manager to “know” which connection it
manages.

24

Errore. Lo stile non è definito.

Only the Connection Managers know which Safety Layer is nominal
and which is redundant. They always send messages on the nominal state
machine. But the connection managers do not know whether they reside
on the corresponding physical connection.

Only the Event Handlers know who is connected to which physical
connection.

Messages are always handed to the Event Handlers for passing on to
their counterparts.

2.1.11.1 Connection Manager

Connection Number

Connection Manager
CmPutReq(Channel : T_Remote_Channel)
CmGetReq(Channel : T_Remote_Channel)
Status(Channel : T_Remote_Channel)
TimersTick()
InitCm(Channel : T_Remote_Channel)
SafPidCnf(Channel : T_Remote_Channel)
SafConnInd(Channel : T_Remote_Channel)
SafConnCnf(Channel : T_Remote_Channel)
SafDataInd(Channel : T_Remote_Channel)
SafSoInd(Channel : T_Remote_Channel)
SafSoCnf(Channel : T_Remote_Channel)
SafDiscInd(Channel : T_Remote_Channel)

Figure 41: Connection Manager Class

This class realises a state machine that provides a service for each of the
events defined by the protocol. The (fixed) number of the connection that it
manages parameterises it. The events Put_req and Get_req are
generated by the Remote Channel by the application software, to
transmit or receive a data telegram. The other events (Saf_*) are
generated by the Safety Layer state machines. On the basis of the
current state, each procedure updates the value of the condition and of the
state and/or generates events that are transmitted to the Safety Layer
machines (A_Saf_*) or to the Remote Channels (Put_cnf , Get_cnf). The
Timers_Tick service causes the update of the times inside the
Safety_Layer machines by activating the corresponding service in each
of them. This class manages a separate state machine for each Remote
Channel .

25

Errore. Lo stile non è definito.

2.1.11.2 PROFIBUS Buffers

PROFIBUS Buffers
PbSdaReq()
PbSdnReq()
InitPfBuffers()
PendingInput()
PendingOutput()
GetBuffer()
IndicationMsg()
OkListMsg()

Figure 42: PROFIBUS Buffers Class

(Full operation signatures are not shown due to the large numbers of
arguments.) The buffers used for communication on the PROFIBUS are
allocated from partitions managed by the Real Time Operating System
(RTOS). The partitions are created during initialisation of the
configuration database of the Remote Channels .

The configuration data of the Remote Channels specify both the number
of input buffers and the number of output buffers. For each channel, two
partitions are created: one for the specified input buffers, one for the
specified output buffers.

In addition, a partition is created of memory blocks to be used for output
buffers for Control Telegrams. This is done to prevent the application
software from saturating the output buffers and thereby preventing the
transmission of control information.

2.1.11.3 Safety Layer

Safety Layer
ASafPidReq(Channel :
T t Ch l)ASafConnReq(Channel :
T t Ch l)ASafDataReq(Channel :
T t Ch l)ASafSoRsp(Channel :
T t Ch l)ASafSoReq(Channel :
T t Ch l)ASafDiscReq(Channel :
T t Ch l)ASafConnRsp(Channel :
T t Ch l)APbSdaInd(Channel :
T t Ch l)APbSdaCnf(Channel :
T t Ch l)APbSdnInd()
APbSdnCnf()
ATimersTick()
StatusSlA(Channel :
T t Ch l)InitSLA()

Figure 43: Safety Layer Class

This class realises the Safety Layer state machine. It defines a service
for each of the events defined by the protocol.

26

Errore. Lo stile non è definito.

Events of the form Saf_* are generated by the Connection Manager
machine. Events of the form A_Pb_* are generated by the thread Event
Handler through the procedure Telegram Distribution when control or
data messages are received over the PROFIBUS.

Each procedure, on the basis of the current state, updates the value of the
condition and state variables and/or generates events to send to the
Connection Manager machine (Saf_*) or inserts messages to transmit
in the PROFIBUS Buffers.

The service Timers_Tick causes time updates and may in turn cause the
generation of events and/or the transmission of messages.

The class also exports an operation for initialisation of the state of the
machines. The class manages a separate state machine for each Remote
Channel .

2.1.12 Time Manager Implementation

Calendar_Tick
<<Cyclic>>

Time
<<Protected>>

Voter
(from Common Software Implementation)Calendar

<<Protected>>

Figure 44: Time Manager Class Diagram

2.1.12.1 Calendar Tick

Calendar_Tick
<<Cyclic>>

CalendarTickInit()

Figure 45: Calendar Tick Class

This class contains a cyclic thread that supports the management of the
calendar, activating a periodic update. The update period is given by a
configuration parameter. After update, the current value of the calendar is
consolidated. The CalendarTickInit operation:

• Acquires the update period from the configuration data;

• Creates the cyclic thread with the assigned period.

27

Errore. Lo stile non è definito.

2.1.12.2 Calendar

Calendar
<<Protected>>

CalendarSet(toValue : t_ref_calendar)
CalendarGet(inBuffer : t_ref_calendar)
CalendarUpdate(byTime : t_seconds, newValue : t_ref_calendar)
CalendarInit()

Figure 46: Calendar Class

This class contains, updates, and distributes the value of the calendar;
that is, the data structure that specifies the current year, month, day,
hours, minutes and seconds.

The resolution of the calendar is expressed in seconds, as a whole number
whose value is specified in the configuration of the Common Software as
the period of the CalendarTick Thread.

The loading of a calendar value is executed in a secure fashion. It is
assumed that the caller of CalendarSet has already voted the provided
value.

The services carried out on the calendar structure are executed in mutual
exclusion (corresponding to the «Protected» stereotype in the class
diagram).

2.1.12.3 Time

Time
<<Protected>>

TimeGet() : t_milliseconds
TimeDelay(milliseconds : t_milliseconds)

Figure 47: Time Class

This class provides services for reading the operating system time, and for
requesting the suspension of the caller for a determined amount of time.
The operating system time is a structure described by the
T_Absolute_Time class in the Global Types package, which represents
the number of seconds and nanoseconds that have passed since the
activation of the system. The TimeGet service translates the value into
milliseconds.

2.1.13 BTM Application Software Implementation

BTM Basic Software
(from BTM Implementation)

<<Interface>>
Main

Figure 48: BTM Application Software Class Diagram

28

Errore. Lo stile non è definito.

2.2 Dynamic Architecture

The principal emphasis in the dynamic architecture of the system is on the
protocol used for communication among the various devices. We chose to
focus on this part of the dynamic architecture.

2.2.1 UML mechanisms for modelling dynamic architecture

There are several UML diagrams associated with dynamic modelling:
sequence, collaboration, state, and activity diagrams. In this treatment we
have found the sequence and state diagrams to be most appropriate,
partly because they are traditionally associated with the analysis of
communication protocols.

2.2.2 Description of protocol operation

The purpose of the Connection Manager (CM) and the Safety Layer
(SL) is to provide several highly dependable communication channels for
safety-critical applications. Each channel connects two applications in a
point-to-point fashion. All of the functionalities internal to the CM and SL
are completely invisible to the applications: each application “sees” only
the channels that permit it to exchange data telegrams with a remote
application. In particular, the application does not see the existence of
multiple busses. The goal of the SL is to provide a set of highly reliable
connections, each using a single PROFIBUS. As a working hypothesis, it is
assumed that there are two PROFIBUS busses (whereby the treatment is
generalisable in a simple fashion). In this hypothesis, for each CM channel
there are two corresponding SL connections. One of the connections is
active and is used for the transfer of data telegrams, while the other is
redundant, and is maintained in case of problems on the active connection.

29

Errore. Lo stile non è definito.

APPLICATION

CONNECTION
MANAGER
LAYER

SAFETY
LAYER

PROFIBUS
LAYER

Put_req Get_req

Get_cnf Put_cnf

Saf_CONN_req
Saf_CONN_resp
Saf_DATA_req
Saf_DATAB_req

Saf_SO_req
Saf_SO_resp
Saf_DISC_req

Saf_CONN_ind
Saf_CONN_cnf
Saf_DATA_ind
Saf_DATAB_ind

Saf_SO_ind
Saf_SO_cnf
Saf_DISC_ind

SDA_req
SDN_req
SRD_req

SDA_ind
SDA_cnf
SDN_ind
SDN_cnf

Figure 49: Messages passed between layers

Figure 49 presents a multilevel description of the communication system,
showing also the messages/events that are generated and exchanged. The
CM and SL layers provide to the application layer a number of
communication services, which in turn use the services of the ISO/OSI
Layer 2 provided according to the PROFIBUS standard. In contrast to the
functions provided by the PROFIBUS level, the functions provided by SL
and CM are vital, and therefore must be implemented in a dependable
fashion. The services provided by the CM and SL layers encapsulate
several functions that augment the reliability of the communication and
guarantee security, in particular:

• Mechanisms for the generation/deletion/automatic regeneration of
connections;

30

Errore. Lo stile non è definito.

• Automatic activation of the redundant connection in case of
malfunctioning of the active connection (Switch Over);

• Constant monitoring of the state of the PROFIBUS connection;

• Automatic retransmission of the message in case of a PROFIBUS level
error;

• Mechanisms for error detection (Cyclic Redundancy Check, sequence
numbers).

The Connection Manager handles the first two items listed above,
whereas the others are the responsibility of the Safety Layer .

2.2.3 Services provided by the Connection Manager

The CM can provide its services to two classes of application: those for
whom the loss of messages is critical, and those who can tolerate the loss
of messages due to the fact that they are only interested in the most recent
arriving information.

The CM level guarantees against the corruption of data received with
extremely high reliability, but it is not able to guarantee against the
possible loss of messages (for example, during the switchover phase). In
the following we assume that the CM is interfaced only with applications
in the second category. Services possibly provided by the CM for recovery
after message losses (necessary for a mechanism to protect against loss),
may be considered in a more advanced phase of the project.

For each channel between the CM and an application, the CM
communicates with the application by means of two queues:

• A transmission queue, the Put_queue , in which the application places
the messages to send to the other application;

• A reception queue, the Get_queue , in which the application reads the
messages that have been received by the other application.

Thus, the service for data exchange furnished by the CM is divided into
two basic categories: sending data (put) and receiving data (get). (There
are also services for configuration of parameters, but they will not be
considered in the current treatment.)

2.2.3.1 Connection Manager data send services (PUT)

This service allows the application to send messages to another application
through the appropriate channel.

The primitive PUT_req requests the placement of a data telegram into the
transmission queue of the specified channel. The primitive PUT_cnf
executed by the CM responds immediately, confirming the successful
placement into the queue (e.g. there was sufficient room available in the
queue), or signalling the possible failure of the request (e.g. the queue is
full). The CM sends the queued message through the PROFIBUS to the
address of the receiving application. If the transmission takes place
correctly, the message is placed in the reception queue of the remote
application.

31

Errore. Lo stile non è definito.

2.2.3.2 Connection Manager data receive services (GET)

This service permits the application to access and receive data telegrams
that are received through the specified channel. This access may occur in
one of two modes: blocking and non-blocking. In the non-blocking mode,
the application requests the CM to read the first message in the queue
through the primitive Get_req . The CM responds immediately with the
primitive Get_cnf , returning the first message (if it exists) in the queue,
or an indication of empty queue.

In the blocking mode, the application requests the CM to read the first
message in the queue through the Get_req primitive, after which it
remains suspended, awaiting a response. The CM responds through the
primitive Get_cnf when at least one message is in the queue, returning
the first message in the queue to the application. Or, it reports a possible
error (e.g. in the case when the channel is closed, or if no message arrives
within a predetermined amount of time).

2.2.4 Services provided by the Safety Layer

In the following, we assume that the broadcast services for enabling and
disabling of a station (called send enable/disable) are not used; nor
the data broadcast services (Saf_DATAB). In this case, therefore, the
services provided by the Safety Layer to the Connection Manager fall
into four categories:

• Connection establishment with authentication (Saf_CONN);

• Data Transfer (Saf_DATA);

• Switchover procedure (Saf_SO);

• Connection release (Saf_DISC).

(There are also configuration services which are not considered in this
treatment.)

The state machine from which services are requested is denoted as local,
while the state machine on the other end of the connection is denoted as
remote.

32

Errore. Lo stile non è definito.

2.2.4.1 Connection establishment with authentication (Saf_CONN)

Local CM Local SL Remote SL Remote CM

1: Saf_CONN_req
2: CR

5: Saf_CONN_ind

6: Saf_CONN_resp

3: CC

8: Saf_CONN_cnf PROFIBUS
level
messages

4: A1

7: A2

Figure 50: Connection Establishment

This is a service with confirmation. The purpose of this service is the
establishment of a Safety Layer connection (both active and redundant
types) with a remote Safety Layer . The service may be used only if the
SL connection is in the non-connected state (that is, both the local and
remote state machines are in the IDLE state).

The CM of the initiating station requests via the primitive Saf_CONN_req
the establishment of the connection, specifying whether the connection is
active or redundant. After the sequential exchange of the CR, CC, A1 and
A2 messages (at the Safety Layer level), the CM of the non-initiating
side receives from its own SL the connection indication Saf_CONN_ind , to
which it responds with the primitive Saf_CONN_resp , followed by sending
the A2 PDU to the initiating station.

The Safety Layer state machines of the two sides both enter the DATA
state if the connection is currently active, otherwise the STANDBY state.

2.2.4.2 Data transfer service (Saf_DATA)

Local CM Local SL Remote SL Remote CM

1: Saf_DATA_req
2: DT

3: Saf_DATA_ind

Figure 51: Data Transfer

33

Errore. Lo stile non è definito.

This is a service without confirmation. The purpose of the service is to
transmit information to the remote Safety Layer . The service may be
used only if the SL connection is active and connected (that is, both local
and remote state machines are in the DATA state).

The CM of the transmitting station relays the transmission request by
means of the operation Saf_DATA_req , containing the data itself. The
Safety Layer of the sending station sends the DT PDU to the Safety
Layer of the remote station. The remote station, after verifying the
correctness of the PDU, passes it up to its own Connection Manager by
means of the primitive Saf_DATA_ind .

The two Safety Layer state machines remain in the DATA state.

2.2.4.3 Connection release service (Saf_DISC)

Local CM Local SL Remote SL Remote CM

1: Saf_DISC_req
2: DI

3: Saf_DISC_ind

Explicit
disconnection

Figure 52: Explicit Disconnection

This is a service without confirmation. The purpose of the service is to
allow the deletion of a connection (disconnection).

The CM of the transmitting station relays the disconnection request by
means of the operation Saf_DISC_req . The Safety Layer of the
sending station goes into the IDLE state. According to the particular case,
the SL sends the DI PDU to the remote station (explicit disconnection
request) or it communicates the fact that the disconnection has occurred
through the primitive Saf_DISC_ind to its own Connection Manager ,
which in turn will take the necessary steps to inform the remote station
through the switchover procedure (implicit disconnection).

Local CM Local SL Remote SL Remote CM

Impl icit
disconnection

1: Saf_DISC_ind 2: DI

3: Saf_DISC_ind

Figure 53: Implicit Disconnection

The Safety Layer may also carry out a disconnection procedure
automatically, without an explicit request on the part of its own
Connection Manager , as a result of noting a malfunction of the

34

Errore. Lo stile non è definito.

connection. In this case, the Safety Layer goes into the IDLE state and
informs the Connection Manager by means of the Saf_DISC_ind
primitive. Depending on the situation, the SL first sends the DI PDU to
the remote SL (explicit disconnection) or it leaves it to its own
Connection Manager to inform the remote station of the disconnection
through the switchover procedure (implicit disconnection).

If the remote station receives a DI PUD, then it informs its own
Connection Manager by means of the _ind primitive and it goes into the
IDLE state.

2.2.4.4 Switchover service (Saf_SO)

Local CM Local SL Remote SL Remote CM

1: Saf_SO_req

2: SOI

3: Saf_SO_ind

4: Saf_SO_resp

5: SOA

6: Saf_SO_cnf

Figure 54: Switchover from active to redundant connection

This is a service with confirmation. The purpose of the service is the
activation of a Safety Layer connection that is currently in STANDBY.
The service can be carried out successfully only if the SL connection is not
active and connected (i.e. the local and remote state machines are both in
the STANDBY state).

The Connection Manager of the initiating station requests the
activation of the connection currently in STANDBY mode by means of the
primitive Saf_SO_req . After the sequential exchange of the SOI and the
SOA PDUs, the CM of the initiating station receives from the Safety
Layer the confirmation of successful activation by means of the primitive
Saf_SO_cnf . After receiving the SOI PDU, the Safety Layer of the
remote station informs its own Connection Manager of the successful
activation by means of the primitive Saf_SO_ind , to which the
Connection Manager responds with the primitive Saf_SO_resp ;
followed by transmission of the SOA PDU to the calling station.

The local and remote state machines both enter the DATA state, and the
connection becomes active.

2.2.5 Interaction between protocol services

The most interesting behaviour exhibited by the protocol, of course,
concerns the boundary conditions and interactions between the various
services. In this preliminary analysis we have not treated several of the

35

Errore. Lo stile non è definito.

boundary conditions—for example, timeout conditions. Nor have we
analysed scenarios associated with anomalous interactions among
services—for example, when the arrival of messages from one protocol
element (e.g. Connection Establishment) overlaps in time with the arrival
of messages from another protocol element (e.g. Switchover). These are an
important part of the analysis of a protocol for completeness and freedom
from errors, deadlocks, dead states, etc. In a more advanced phase of the
project, such analyses could be undertaken.

We give an example of protocol element interaction in the diagram in
Figure 55.

Local CM Local SL Remote SL Remote CM

1: Saf_DISC_ind

2: Saf_SO_req

3: SOI

4: Saf_SO_ind

5: Saf_DISC_req

6: Saf_DISC_ind

7: Saf_SO_resp

8: SOA

9: Saf_SO_cnf

10: Saf_CONN_req

1: The local SL detects a
malfunction on the active
connection and releases i t

2: Local CM decides to try to
switch over to the redundant
connection

4: Remote CM is notified
of the switchover request

5: And so he reqests a
disconnect from his local
SL, which is granted (6)

7: Now he can respond
to the switchover request

9:Local CM is notified
that switchover is
complete

10: and now he can
try connection
establ ishment on the
newly active connection

Figure 55: Complete Disconnection / Switchover / Re-Connection Scenario

36

Errore. Lo stile non è definito.

2.2.6 State Diagram for Connection Manager

We have chosen to analyse in depth one particular aspect of the
communication protocol: the finite state machine associated with the
Connection Manager class. This class exhibits some of the most interesting
dynamic behaviour, and has proven to be a suitable candidate for
modelling. The Safety Layer class is another candidate for state
diagram modelling, but the associated diagram is considerably larger and
more complicated, and thus suitable for analysis at a later stage in the
project.

The UML uses an extended version of Harel StateCharts for state
modelling, which exhibits several advantages over traditional state
machines. However, the particular modelling tool that we used does not
directly support conditional branches in state transitions, forcing us to
duplicate some transitions while placing guards on them to distinguish the
two transitions.

We were able to take advantage of internal state actions in order to model
protocol errors (that is, reception of events in the wrong state), thus
avoiding the self-transitions that would have been necessary with
traditional state diagram notation.

The states shown in the diagram are:

• IdleA_IdleR . Idle active connection, idle redundant connection.

• WcA_IdleR . Active connection waiting for connection confirm, idle
redundant connection. This is an “intermediate state” that is needed
during connection establishment.

• DataA_IdleR . Active connection in DATA mode, Idle redundant
connection.

• DataA_StandbyR . Active connection in DATA mode, redundant
connection in STANDBY mode.

• SO_init . Switchover initialisation. This is the first state entered
during the execution of a switchover message exchange.

• WsocA, StandbyR . Active connection waiting for switchover confirm,
redundant connection in STANDBY mode. This is an intermediate
state during the switchover exchange of messages.

• WdisA, IdleR . Active connection waiting for disconnection,
redundant connection in the IDLE state.

• Disconnected . No connection at all is active.

• Error . This is a general error state. In further analyses, it may be
possible to use the state nesting feature of Harel StateCharts to
“factor” transitions to error states. This feature has not been examined
closely in the current treatment.

37

Errore. Lo stile non è definito.

DataA_IdleR

on Saf_DATA_ind: PROTOCOL ERROR
on Saf_DATA_req: PROTOCOL ERROR
on Saf_SO_ind: PROTOCOL ERROR
on Saf_SO_cnf: PROTOCOL ERROR

WcA_IdleR

on Saf_CONN_ind: PROTOCOL ERROR
on Saf_DISC_ind: PROTOCOL ERROR
on Saf_DATA_ind: PROTOCOL ERROR
on Saf_DATA_req: PROTOCOL ERROR
on Saf_SO_ind: PROTOCOL ERROR
on Saf_SO_cnf: PROTOCOL ERROR

IdleA_IdleR

on Saf_CONN_cnf: PROTOCOL ERROR
on Saf_DISC_ind: PROTOCOL ERROR
on Saf_DATA_ind: PROTOCOL ERROR
on Saf_DATA_req: PROTOCOL ERROR
on Saf_SO_ind: PROTOCOL ERROR
on Saf_SO_cnf: PROTOCOL ERROR
on Saf_CONN_ind[non INIT]: PROTOCOL ERROR

DataA_StandbyR

on Saf_DATA_req: ^SL.CM_put_req(n)
on Saf_DATA_req: ^APPL.CM.put_cnf
on Saf_DATA_ind: ^APPL.CM_get_conf
on Saf_CONN_cnf: PROTOCOL ERROR
on Saf_CONN_ind: PROTOCOL ERROR
on Saf_SO_cnf: PROTOCOL ERROR

ERROR

DISCONNECTED

SO_Init

on Saf_SO_ind: ^SL.Saf_SO_rsp(r)
on Saf_CONN_cnf: PROTOCOL ERROR
on Saf_DATA_ind: PROTOCOL ERROR
on Saf_DATA_req: PROTOCOL ERROR

WdisA_IdleR

WsocA_StandbyR

on Saf_SO_ind: ^RSL.Saf_SO_rsp
on Saf_CONN_cnf: PROTOCOL ERROR
on Saf_CONN_ind: PROTOCOL ERROR
on Saf_DISC_ind: PROTOCOL ERROR
on Saf_DATA_ind: PROTOCOL ERROR
on Saf_DATA_req: PROTOCOL ERROR

Saf_CONN_rsp(x)[not INIT] /
 if x=a n:=a;r:=b; else r:=a; n:=b; end if;

 ^SL.Saf_CONN_rsp(n)

[INIT] / n=a;r=b
 ^SL.Saf_CONN_req(n)

Saf_SO_cnf

Saf_CONN.req(x)[x=n]
^Saf_CONN.req(r)

Saf_CONN_req(x)[x=r]

Saf_CONN_cnf(x)
[x=r]

Saf_CONN_ind(x)[x=r]
^SL.Saf_CONN_rsp(r)

Saf_CONN_cnf(x)[x=n]

Saf_CONN_ind(x)[INIT]

Saf_CONN_ind(x)[x=n]

Saf_DISC_ind(f, x)[f=TRUE]

Saf_DISC_ind(f, x)[f=FALSE & x=n]

Saf_CONN_ind[not INIT] / SWAP N and R
^SL.Saf_CONN_rsp

Saf_DISC_ind(x)[x=r]
^NSL.Saf_DISC_req

Saf_SO_cnf[INIT] /
Swap n & r ^SL.Saf

_CONN_req(r)

Saf_SO_cnf[not INIT] /
Swap n & r

Saf_DISC_ind(f, x)[f=TRUE]

Saf_DISC_ind(f, x)[f=FALSE & x=n]
^SL.Saf_SO_req(r)

Saf_DISC_ind(f, x)[f=FALSE &
x=r &INIT] ^SL.Saf_CONN_req(r)

Saf_SO_ind ^SL.Saf_DISC_req(n)

Connection Manager
State Diagram

38

Errore. Lo stile non è definito.

2.3 Physical Architecture

2.3.1 UML Diagrams for Describing Physical Architecture

There are essentially two mechanisms in the UML for depicting physical
architecture.

• Component diagrams;

• Deployment diagrams.

Component diagrams are used to show the physical realisation of software
in modules (e.g. executables, tasks, link modules). Deployment diagrams
show the allocation and connections among physical resources such as
microprocessors and boards.

2.3.2 Modelling the physical system

There are many possibilities for modelling the physical architecture of two
communicating modules. The major challenge is in reflecting the bus
architecture, and its redundancy. One diagram that suggests itself is
shown in Figure 56. Here we have shown the MIM and ALM bus modules
as objects of the a node class “OBTCSystem” representing all the
communicating modules. The communication link between the modules is
stereotyped as a PROFIBUS link, and the link is simply duplicated.
However, this deployment diagram does not reflect the more detailed
physical architecture whereby only specific subsystems communicate over
specific channels. Nor are other important physical devices such as the
watch dog shown.

OBTCSystem: MIM
«PROFIBUS»

«PROFIBUS»

OBTCSystem: ALM

Figure 56: Deployment diagram with explicit redundant connection

A more detailed deployment diagram that captures these aspects is shown
in Figure 57.

39

Errore. Lo stile non è definito.

Watchdog

µA

µB

«IPC»Watchdog

µA

µB

«IPC»

«PROFIBUS»

«PROFIBUS»

Figure 57: Deployment Diagram for two communicating modules

Here we see that the physical connections between the devices are made
explicit. The redundant PROFIBUS connections are shown (as stereotyped
connections), and furthermore it is shown explicitly who is connected with
whom: that is, it is shown that within each unit, only the local MicroA
talks with the remote MicroA, and similarly for the B-Micros.

Also shown is the explicit IPC communication between MicroA and MicroB
within each board module, again stereotyped as a connection. Finally, the
separate watchdog processors are shown explicitly.

OnboardTrainControlSystem: ALM

ALM1 ALM2

Figure 58: Physical placement of software components in module

Figure 58 illustrates how the physical placement of two software
components within a single bus module might be depicted, using the UML
mechanisms for allocating components to nodes. Here it is shown that
within the ALM module, two ALM software modules reside.

Capturing the overall spirit of a bus architecture, where “everybody is
connected with everybody,” may be captured in a general fashion by
having a connection to self with multiple cardinality, as shown in Figure
59.

40

Errore. Lo stile non è definito.

Bus Module
1..*

1..*

«PROFIBUS»

Figure 59: Modelling general PROFIBUS architecture

41

Errore. Lo stile non è definito.

3 Conclusions

One of the critical points for the realisation of the system is to define the
appropriate diagrams for the state machines for realising protocols:

• That are complete;

• That have no loops, deadlocks, unreachable states;

• Where all events are handled;

• That implement additional safety features such as sequence numbers
and checksums on messages for each connection;

In the work of the HIDE project, it would be desirable to arrive at state
machine realisation techniques that easily adaptable to different
underlying configurations in the implementation. For example, the
PROFIBUS allows an arbitrary choice for the architecture, ranging from 1/1
to 1/n.

In addition, in the HIDE project we are hoping to identify tools and
methodologies to help in the development of protocols and state machines
with good characteristics as listed above, and would like to model protocols
in such a way that we also can arrive at an evaluation of their
dependability characteristics.

We would like to arrive at a deeper understanding of the relative
contribution of the protocol and the 2/2 architecture to the overall
dependability of the system. If, for example, we can determine that the
protocol already delivers 90% of the dependability needed by the system,
and the 2/2 architecture only delivers the remaining 10% contribution,
then in a cost/benefit analysis we may choose not to implement the 2/2
architecture. Another goal is to evaluate alternative architectural patterns
of software for their dependability characteristics.

PROFIBUS is becoming a standard in this particular industrial application
niche. Therefore, to have one well-constructed example of a model around
PROFIBUS will have great value to the industry.

Another possibility for investigation is an analysis of the traffic on the
PROFIBUS. Today there is no knowledge of whether it is deterministic; that
is, whether messages will always arrive within deadlines.

In order to do this, we will surely need a notation that is sufficiently
powerful and expressive for containing all of the information necessary to
carry out the evaluation. The Unified Modelling Language appears to fulfil
this requirement, based upon the experience reported in this document.

