
ESPRIT Project 27493

HIDE

High-Level Integrated Design Environment for Dependability

Deliverable 2: Transformations

Report on the Speci�cation of Analysis and Transformation Techniques

A. Bondavalli - CPR/PDCC and CNR/CNUCE
M. Dal Cin - FAU-IMMD3

G. Huszerl - FAU-IMMD3 and TUB
K. Kosmidis FAU-IMMD3

D. Latella - CPR/PDCC and CNR/CNUCE
I. Majzik - TUB

M. Massink - CNR/CNUCE
I. Mura - CPR/PDCC and Univ. of Pisa/Dept. of Inf. Eng.

December 9, 1998

HIDE/T1.2/PDCC/30/v1

Contents

Preface

Chapter 1

Analysis of methods and tools for modeling and assessing quantitative dependa-

bility attributes

A. Bondavalli (CPR/PDCC and CNR/CNUCE), M. Dal Cin (FAU-IMMD3), I. Majzik
(TUB), I. Mura (CPR/PDCC and Univ. of Pisa/Dept. of Inf. Eng.)

HIDE/NT/PDCC/21/v2

Chapter 2

Analysis of methods and tools for modeling and assessing functional dependabi-

lity attributes

D. Latella (CPR/PDCC and CNR/CNUCE)
HIDE/NT/PDCC/9/v1

Chapter 3

From Statechart Diagrams to Kripke Structures

D. Latella (CPR/PDCC and CNR/CNUCE), I. Majzik (TUB), M. Massink (CNR/CNUCE)
HIDE/NT/PDCC/11/v1

Chapter 4

From Structural UML Diagrams to Timed Petri Nets

A. Bondavalli (CPR/PDCC and CNR/CNUCE), I. Majzik (TUB), I. Mura (CPR/PDCC
and Univ. of Pisa/Dept. of Inf. Eng.)
HIDE/NT/PDCC/23/v2

Chapter 5

From Dynamic UML Diagrams to Generalized Stochastic Petri Nets

M. Dal Cin (FAU-IMMD3), G. Huszerl (FAU-IMMD3 and TUB), K. Kosmidis (FAU-IMMD3)

Preface

This is Deliverable 2 of Project ESPRIT 27439 - HIDE (High-level Integrated Design

Environment for Dependability). This deliverable is the result of Task 1.2 (Speci�cation of
analysis and transformation techniques) of WP1 (Speci�cation of the HIDE Method).

The main contributors to this deliverable have been:

� FAU

� PDCC (Responsible for the deliverable)

This deliverable, together with Deliverable 4, represents the conceptual core of the HIDE
project since it contains the detailed description of the main translations from the UML to
several validation models for dependability assessment or semantic models for formal veri�-

cation.
Given the relative independence of each translation from the others this deliverable is

organized more as a collection of reports, one per chapter, than as a single document.
Chapter 1, by A. Bondavalli (CPR/PDCC and CNR/CNUCE), M. Dal Cin (FAU-IMMD3),

I. Majzik (TUB) and I. Mura (CPR/PDCC and Univ. of Pisa/Dept. of Inf. Eng.) gives a
short analysis of existing methods and tools for modeling and assessing quantitative depend-
ability attributes.

Chapter 2, by D. Latella (CPR/PDCC and CNR/CNUCE) gives a short analysis of ex-
isting methods and tools for modeling and assessing functional dependability attributes.

The next chapters give the actual de�nitions of three translations.
Chapter 3, by D. Latella (CPR/PDCC and CNR/CNUCE), I. Majzik (TUB), and M.

Massink (CNR/CNUCE) gives the de�nition of a translation from Statechart Diagrams to
Kripke Structures, necessary for formal veri�cation of UML Statechart Diagrams, like model

checking, since it actually de�nes a formal semantics for such diagrams. The translation is
fully de�ned in a formal setting and it is proven to capture the informal requirements on the

semantics of UML Statechart Diagrams set in the UML de�nition book.
The de�nition of a translation from Structural UML Diagrams to Timed Petri Nets is

given in Chapter 4, by A. Bondavalli (CPR/PDCC and CNR/CNUCE), I. Majzik (TUB)

and I. Mura (CPR/PDCC and Univ. of Pisa/Dept. of Inf. Eng.). This translation pro-
vides a means for assessing quantitative dependability attributes by starting form annotated
Structural UML Diagrams. The choice of the domain for the translation allows the speci-
�er to model dependability attributes of systems at a high level of abstraction, so avoiding

the (state) explosion problems typical of models based on detailed functional descriptions of
systems.

Finally, Chapter 5, by M. Dal Cin (FAU-IMMD3), G. Huszerl (FAU-IMMD3 and TUB),
and K. Kosmidis (FAU-IMMD3), describes a translation from dynamic UML diagrams to

Generalized Stochastic Petri Nets. The dynamic part of a UML model comprises sequence

diagrams, activity diagrams and statecharts. The translation is de�ned mainly informally
and some sketches of algorithms are given. The subset of statecharts used in the translation
comprises also a fault model which allows to evaluate the behaviour of fault-prone systems in
their environment.

1

Analysis of methods and tools for modelling and
assessing quantitative dependability attributes

Andrea Bondavalli CNUCE/CNR and PDCC

Majzik Istvan TUB

Ivan Mura University of Pisa and PDCC

Mario Dal Cin FAU

Abstract

The quantitative analysis of the dependability attributes of computer systems using stochastic

modelling is a process that requires ability and experience. Building the model of a system

needs the introduction of assumptions, simplifications and abstractions, whose impact on the

final results can not be estimated a priori. Also, slight variations in the value of a crucial

parameter might cause dramatic changes in the final measures. Moreover, real systems show

such a complexity that the definition of the model itself easily becomes an error prone task.

Various methods and tools for dependability modelling and analysis have been developed

which provide support to the analyst, during the phases of definition and evaluation of the

models. In general, model types used for dependability analysis are in two categories;

combinatorial and state-space [13]. In the list below, Markov models and high level approaches

which have an underlying Markov model are belonging to state-space models.

1. Combinatorial dependability models

Combinatorial model types include reliability block diagrams, fault trees and reliability graphs.

It was shown in [12] that Fault Tree with Repeated Events (FTRE) is the most powerful type.

However, the major insufficiency of combinatorial models is that they cannot model several

dependencies among model elements, e.g. repair dependency caused by a shared repair facility.

These dependencies can be modelled by state-space models. Moreover, algorithms were

defined (e.g. in [13]) to transform combinatorial models into state-space models.

2

2. Markov chains based models

The approach to the modelling based on Markov processes has been widely accepted in the

dependability community because of their powerful representative capabilities, and the

relatively cheap solution techniques. Constant failure rates are associated with hardware

elements and various software failures. This latter is justified by the fact that failed software is

not discarded (merely restarted at next execution) thus an equivalent failure rate λ j can be

computed as a product of the constant execution rate of the software and the failure probability:

λ j = Pjλ

 where λ is the execution rate, and Pj is a failure probability.

 A similar approach for modelling software fault tolerance architectures is adopted in [5]. The

service of the system is modelled through execution rates and the fault manifestation process by

failure probabilities. The transition rates outputting from the non absorbing states are

λ i, j = Pi, jλ i

where i and j denote states, λ i is the rate associated with the execution in state i, and Pi, j

represents the probability of the transition from state i to j.

3. Combination of Markov chains and fault trees

A method that combines the simplicity of Fault-Trees with the more powerful representative

capabilities of state based approaches has been proposed in [9]. The basic idea of this method

is:

• A Markov model describes the system structure (change of configurations due to

permanent hardware faults). A single failure state (an absorbing state if repair is not

allowed) is included. Parameters of the Markov model are computed using the failure

rates of the hardware elements and coverage factors meaning that the system is able to

survive and perform the change of configuration (otherwise it goes to the failure state).

• In each configuration (except the failure state) a fault tree details the probability of system

failure caused by failures of elements (activation of software and transient hardware

faults).

The solution of the Markov chain provides the probability Pi (t) that the system is in state i at

time t (n states of the system are encountered). The solution of the fault tree provides Qi (t) , a

probability that a failure of the system occurs while the system is in state i. The long-term

behaviour (given by the Markov chain) and the short-term behaviour (described by the fault

tree) are combined as follows. The probability Q(t) of a system failure at time t is:

3

Q(t) = Qi (t)Pi (t)
i=1

n

∑

4. High-level modelling tools based on Petri nets

The success of Markov-based approaches for dependability modelling and evaluation has to

cope with the increasing complexity of systems, and consequently of the models. The state

space combinatorial growth leads to a dramatic increase in the size of Markov chain models,

which tend to become difficult to define and computationally intensive to solve. A solution to

this issue was offered by modelling tools at a higher level than Markov chains, like Queuing

Networks, Stochastic Process Algebras, and Petri nets. Usually, the solution of these models

is based on a direct transformation to Markov models. However, high-level models have

advantages in the model generation phase, because very compact models can be given even for

complex systems, and in the solution phase as well (e.g. state space reduction).

Among these high-level methods and tools, those based on Petri nets models are becoming

more and more popular. The reasons of such a success are:

• the natural way in which concurrence, competition and synchronisation are all easily

represented within the Petri net formalism;

• the appealing graphical visualisation of the models;

• the ability of Petri nets to deal with different abstraction levels of the analysis.

Many different classes of Petri nets have been proposed over the past decade. The basic

untimed class of place/transition Petri nets was augmented with the time for the sake of

quantitative analysis of performance/dependability attributes, thus defining the class of

Stochastic Petri Nets (SPN) [14]. SPNs only consider activities whose duration is an

exponentially distributed random variable. This limitation was overcame with the introduction

of Generalised Stochastic Petri Nets [2] (GSPN), which allow for both exponential and

instantaneous activities. The stochastic process underlying a SPN and a GSPN model is a

discrete space continuous-time homogeneous Markov process. This process must be solved to

derive the measures of interest for the system.

Nearly all the tools for dependability modelling and evaluation that are based on Petri net

models can be used to define and solve GSPNs. What may be different from one tool to the

other is merely a matter of the syntax used to define the model; in this sense, GSPN models can

be seen as a standard language which is understood by the majority of the tools for the

automated evaluation of dependability attributes, like SURF-2 [11], UltraSAN [1], SPNP [8],

GreatSPN [6], TimeNET [10], PANDA [4].

4

Because of this portability, within the HIDE framework we will be considering the GSPNs as

the target class for the quantitative analysis of dependability attributes. Among those cited

above, the tool PANDA has been selected as the HIDE front-end tool for this analysis; a brief

description of PANDA will be given later in this report. Several extensions of the GSPN class

of Petri nets have been farther introduced. These extensions can be distinguished in two

classes, depending whether the representative power of the extended models is increased

beyond that of GSPNs.

For the extensions that do not increase the representative power, the stochastic processes

underlying the models are still Markov processes. In this case the extensions provide useful

shorthand notations to represent in a concise way complex dependencies among the elements of

the model. The Stochastic Activities Networks (SAN) [15] and the Stochastic Reward Nets

(SRN) [16] are two classes of Petri nets that include such extensions. UltraSAN [1] and SPNP

[8] are the automated tools for the solution of SANs and SRNs, respectively.

On the other hand, there are classes of Petri nets whose underlying stochastic process is not a

simple Markov process. For instance, consider the class of Deterministic and Stochastic Petri

Nets (DSPN) [3]. DSPN include transitions having exponentially distributed, immediate and

deterministic firing time, and are therefore able to represent models GSPNs can not deal with.

The tool TimeNET [10] was especially developed to solve DSPN models. An even more

powerful class of Petri nets is represented by the Markov Regenerative Stochastic Petri Nets

(MRSPN) [7], which allow for transitions having generally distributed firing times. No

automated solution tool exists for MRSPNs, yet.

Of course, the transformation from a UML specification to a Petri net model depends on the

particular class of Petri nets we are taking into account. Because of the GSPN class is used, the

final models are probably less compact than if a higher expressive class were used. More

importantly, as only exponential and immediate transitions are allowed for GSPNs, any activity

whose duration does not fit one of these two distributions introduces an approximation in the

model.

To leave a leeway for a possible future exploitation of the higher expressiveness and

representative power of other classes of Petri nets, in this first phase of HIDE we performed a

transformation form UML to an abstract class of timed Petri Nets. This class of Petri nets is

quite close to the GSPNs of the target tool PANDA so that its translation into the PANDA

model definition language is straightforward. At the same time, this class is sufficiently abstract

to represent an intermediate language from which other interesting classes of Petri nets can be

targeted.

5

5. Short description and Assessment of PANDA

PANDA (Petri Net Analysis and Design Assistant [4]) has been developed at the Computer

Science Department of the University of Erlangen-Nürnberg, a member of the HIDE

consortium. The team of tool developers are available to provide assistance and possibly adapt

the source code of the tool for the purposes of the project.

The quantitative, model-based investigation of concurrent interacting systems needs efficient

analysis tools. Analysis tools which are based on Stochastic Petri Nets profit from the clear

semantics of Petri Nets. PANDA is such a tool. A friendly graphical interface for defining the

model is included in the tool. The editor of the net supports an hierarchical description of the

models, in which a large size model can be split into nested layers of subnets. Each subnet can

be viewed and edited separately. The tool, based on GSPNs implements some syntactical

extensions of the GSPN paradigm, like inhibitor arcs, marking-dependent rates and weights of

the arcs, enabling functions on the transitions. It also offers the possibility to use different

distributions for firing times in order to make the numerical analysis process also amenable to

models whose actions do not occur with exponential distributed rates. Hence, phase-type

distributed firing times are supported by the numerical analysis process of PANDA.

Parametrizing phase-type distributions allows the approximation of arbitrary distributions, for

example, that of deterministic actions. PANDA therefore stores additional information within

the underlying state space that is unfolded during analysis. This is transparent to the user.

The Markov chains of the GSPN models are directly produced without compilation. Timeless

states are eliminated "on the fly". PANDA allows also the qualitative, structural analysis of

Petri Nets which can be used for model debugging.

The focus of PANDA is the efficient use of evaluation algorithms. The Multi- Level Method,

which is based on state aggregation, was developed for PANDA. This technique is especially

suited to evaluate stiff Markov chains, which often occur in the modeling of fault tolerant

systems. Through the implementation of that method for shared memory parallel computers, it

is possible to take full advance of their memory capacity and acceleration. For the generation of

reachability graphs with approximately 8 million arcs and 2.3 million states a speed-up of 5

could be obtained on a Convex Exemplar SPP 1600 with 8 processors. For the model analysis

a speed-up of 6.5 was obtained. A PVM-version is currently being developed. For general

time distributions there exists also a simulation component.

Since PANDA is primarily used for dependability analysis, a method for integrating

(generalized) fault trees, through transforming them into Petri Nets, has also been developed.

6

Very important for all the transformations is the possibility provided by PANDA to assign state

dependent guards and rates to transition firings of the GSPN which represent the actions

taking place in the modeled system. Guards assure that a certain action is only possible if the

required conditions on the current global system state are met. State dependent rates are needed

to have infinite server semantics within the model: the rate at which certain actions occur varies

from state to state. Another feature integrated in PANDA are the state dependent arc

multiplicities needed, for example, to model synchronizing actions in parallel systems that are

non-blocking.

When these guard, rate and multiplicity functions are exhaustively used in the GSPN

specification, computation times for state space generation and numerical analysis increase. To

compensate for this, PANDA's parallel analysis is very suitable. Moreover as automatic

transformations often lead to less efficiently designed models than manual system

specifications do, the size of the unfolded state space during numerical analysis becomes even

more limiting. This problem is faced by parallelization which in the shared-memory case

makes the large global shared memories of modern multipocessors efficiently usable and in the

distributed-memory case lets the memories of clustered workstations be combined to store the

state space.

At the end of the analysis process the computed results have to be filtered in an suitable way to

gain the results that are of interest. Though the GUI for model construction and the analysis

components of the PANDA tool are quite efficient, not much has yet been implemented

towards an integrated presentation of the analysis results. In earlier releases of the tool,

standard GSPN results (e.g. the average number of tokens in a place or the probability of

places not being empty) were converted to bar graphs for plotting programs, but this approach

seems not very advantageous with PANDA's new, flexible ways of specifying reward

measures, and it is certainly not very useful for large Petri Nets.

Therefore, it seems important to spend work for providing a flexible, integrated, easy-to-use

facility that enables the modeler to specify which analysis results (e.g. which of the reward

measures computed by PANDA) are selected for presentation and how they should be

formatted. The result-presentation module should be operable from within the GUI, and it

should include an online graphical display of the selected result data as well as output to files in

formats that can be post-processed or printed with standard programs (e.g. Gnuplot or

PostScript). The first step would be to implement an extension of to PANDA language for

specifying result function and reward measures; this extension should allow the modeler to

annotate the reward measures of interest for presentation. Then, appropriate forms for

controlling technical details of output data formatting and the online display have to be added.

7

References

[1] “UltraSAN,” Center for Reliable and High-Performance Computing Coordinated Science Laboratory,
University of Illinois, Urbana, USA. User Manual, 1994.

[2] M. Ajmone Marsan, G. Balbo and G. Conte, “A Class of Generalized Stochastic Petri Nets for the
Performance Analysis of Multiprocessor Systems,” ACM TOCS, Vol. 2, pp. 93-122, 1984.

[3] M. Ajmone Marsan and G. Chiola, “On Petri nets with deterministic and exponentially distributed firing
times,” Lecture Notes in Computer Science, Vol. 226, pp. 132-145, 1987.

[4] S. Allmaier and S. Dalibor, “PANDA - Petri net ANalysis and Design Assistant,” in Proc. Tools
Description, 9th Int. Conference on Modeling Techniques and Tools for Computer Performance
Evaluation, Saint Malo, France, 1997, pp.

[5] J. Arlat, K. Kanoun and J.C. Laprie, “Dependability Modelling and Evaluation of Software Fault-Tolerant
Systems,” IEEE Transactions on Computers, Vol. 39, pp. 540-513, 1990.

[6] G. Chiola, “GreatSPN 1.5 Software Architecure,” in Proc. 5th Int. Conf. on Modelling Techniques and
Tools for Computer Performance Evaluation, Torino, Italy, 1987, pp.

[7] H. Choi, V. G. Kulkarni and K. S. Trived, “Markov regenerative stochastic Petri nets,” Performance
Evaluation, Vol. 20, pp. 337-357, 1994.

[8] G. Ciardo, J. Muppala and K. S. Trivedi, “SPNP: stochastic Petri net package,” in Proc. International
Conference on Petri Nets and Performance Models, Kyoto, Japan, 1989, pp.

[9] J. B. Dugan and M. R. Lyu, “Dependability modeling for fault-tolerant software and systems,” in
“Software fault-tolerance”, M. R. Lyu Ed., Wiley & Sons, 1995, pp. 109-137.

[10] R. German, C. Kelling, A. Zimmermann and G. Hommel, “TimeNET: a toolkit for evaluating non-
Markovian stochastic Petri nets,” Performance Evaluation, Vol. 24, pp. 1995.

[11] LAAS-CNRS, “SURF-2 User guide,” LAAS-CNRS 1994.
[12] M Malhotra and K. S. Trived, “Power-hierarchy among dependability model types,” IEEE Transactions on

Reliability, Vol. 43, pp. 493-502, 1994.
[13] M. Malhotra and K. S. Trived, “Dependability modeling using Petri nets,” IEEE Transactions on

Reliability, Vol. 44, pp. 428-440, 1995.
[14] M. K. Molloy, “Performance analysis using stochastic Petri nets,” IEEE Transactions on Computers, Vol.

31, pp. 913-917, 1982.
[15] W. H. Sanders and L. M. Malhis, “Dependability evaluation using composed SAN-based reward models,”

Journal of parallel and distributed computing, Vol. 15, pp. 238-254, 1992.
[16] L. A. Tomek and K. S. Trivedi, “Analyses using stochastic reward nets,” in “Software fault-tolerance”, M.

R. Lyu Ed., Wiley & Sons, 1995, pp. 139-166.

Analysis of methods and tools for modeling

and assessing functional dependability attributes

D. Latella - CPR PDCC and CNR Ist. CNUCE

In this section we shall brie
y discuss methods and tools for formal modeling and ver-
i�cation of systems which are relevant for HIDE. It is outside the scope of this deliverable

to give a comprehensive overview on the subject. The reader interested in such an overview
is referred to the excellent papers [2, 3], which also contain a very rich bibliography on the

subject.
Nowadays, society is highly dependent on computer systems and with no doubt it can

be stated that in the near future complex, multimedia, computer-based systems will more
and more permeate our society and our activities, including the most critical ones. There is

therefore need for higher quality computer systems, both from the reliability point of view and
from the performance one. The use of formal methods for the speci�cation and veri�cation of
properties of systems is one methodological improvement of the system production process,

which, together with other techniques, can make it possible to reach high quality standards.
The study of formal methods for the speci�cation, design, and analysis of distributed

systems has been an important research topic over the past decade. Initially, the research
in this area has concentrated on the dynamic, functional aspects of such systems, like their

observable behaviour, control
ow, and synchronization as properties in relative time.
More recently, formal methods for the representation and analysis of functional properties

in combination with quantitative aspects of system behaviour have come into focus. They
allow the speci�cation of the delay of activities (or, actions) or the probability of actual

occurrence of actions.

1 Speci�cation

There are nowadays several notations available for formally specifying the desired behaviour
of systems. Among them we can mention Z and VDM, mainly suited for the speci�cation of
sequential system, and process algebras (CSP, CCS, LOTOS, ACP, etc), temporal logic and

Statecharts, which instead focus on the behaviour of concurrent systems.
We shall not further elaborate here on speci�cation methods since the UML already pro-

vides a notation for that, mainly Statechart Diagrams. We only want to point out that

� within the HIDE framework, in order to use powerful veri�cation tools based on model
checking (see below) it is necessary to extend the set of HIDE notations with temporal

logic ones, to be used as requirements speci�cation notations, and

� in order to further pursue the objectives of HIDE it is necessary that, during the second
phase, possible deterministically-timed, stochastically-timed and probabilistic exten-
sions of Statechart Diagrams and related semantic models are studied and developed.

1.1 Temporal Logics

Several di�erent temporal logics with di�erent expressive power have been proposed in the
literature. Essentially two categories can be mentioned; Linear Time TL (LTL) and Branching

Time TL (BTL). Roughly speaking, in the LTL framework the behaviour of a system is
modeled as the set of all the runs of the system where a run is the sequence of states the
system resides during a computation. In this context a formula is interpreted on runs and it
is satis�ed by the system if it holds for all runs. On the other hand, in the BTL framework

the behaviour of a system is modeled as a tree on which formulas are interpreted, so that
the branching structure of the behaviour due to non-determinism is maintained. During the
�rst phase of HIDE temporal logics is not an issue per se since no de�nitive choice has been

made both in the particular temporal logics to be used and on the related model-checking
tools. Nevertheless, as a matter of fact, examples have been given using a simple linear time
temporal logic.

During the second phase it is important to take into consideration at least one LT logic

and one BT logic because of the above mentioned complementary expressive power.

1.2 Quantitative Extension

In recent years a considerable amount of work has been done in the area of extensions of

formal speci�cation notations and models with information related to non-functional as-
pects of system behaviour. Notable examples are deterministically-timed process algebras,
stochastically-timed process algebras, probabilistic process algebras, probabilistic and timed
temporal logics. The general aim is the de�nition of general notations and models where

functional and non-functional issues are integrated within the same formal framework in such
a way that a sound mathematical link is provided between formal speci�cation/veri�cation
(of functional properties) and assessment of non-functional parameters (like performance or

fault-tolerance attributes).
In order for such extensions to be of any practical use, it is essential that the underly-

ing notations provide powerful abstraction mechanisms. This is indeed the case for process
algebras and temporal logics.

Within the context of HIDE it is very important that similar studies be performed

(at least) with respect to Statechart Diagrams, which also o�er high abstraction mecha-
nisms. This actually means equipping Statechart Diagrams with annotations concerning
time/probability/stochastic-variables and enrich the operational semantics proposed in this

deliverable in order to cope with such extensions.
Timed extensions of statecharts have already been proposed in the literature, but the

semantics speci�city of UML Statechart Diagrams requires further study and/or adaptation

of such results.
The bene�ts of such studies should be obvious since they not only match the overall goal

of HIDE but also allow for integration within the same kind of diagrams and in a sound way
with respect to formal semantics and formal veri�cation.

2 Veri�cation

Many approaches and tools are nowadays available for formal veri�cation as well. Two main
categories of techniques and related tools can be mentioned. Namely model-checking and

theorem proving. In the following we shall focus on model checking since theorem proving
still requires quite some interation with the (skilled!) user, which is not so much in line with
the HIDE objectives.

2.1 Model-checking

In this technique, a �nite model of the behaviour of the system is checked in order to verify
that a certain property holds for that model. The model has usually the form of a state-
transitions graph. Depending on the way the property is expressed, di�erent kind of model-

checking techniques can be used:

� LTL model-checking

Properties are expressed as LTL formulas

� BTL model-checking
Properties are expressed as BTL formulas

� behavioural relations model-checking
Properties are expressed as another state-transitions graph

The choice between LTL model-checking and BTL model-checking may depend both on
requirements on the expressive power of the unrelying logic and on the availability of e�cient

tools, in combination with the kind of system modeling language such tools support. In the
case of LTL one of the most successful tools is the SPIN model checker. It provides a C-like
speci�cation language, PROMELA, plus a simple LTL for the speci�cation of requirements,
where basic predicates are speci�ed essentially as PROMELA boolean expressions. The model

checker embodies powerful state compression techniques and related search algorithms. It
embodies also an approximate representation technique which allows to store almost as many
states as it is the size, in bits, of the machine main memory. A friendly graphical user interface

is available.
During the �rst phase of HIDE some preliminary study on the implementation of the

translation from Statechart Diagrams to Kripke Structures as a translation from Statechart
Diagrams to PROMELA has been done. The detailed and rigorous (i.e. proven correct

whenever possible) systematic implementation of such a translation is one of the main tasks

for the second phase.
In the case of BTL, there are several tools available, using di�erent state-space represen-

tation technologies. In particular, the use of binary decision diagrams (BDD) allows for the

veri�cation of systems with up to 10120 states.
It is worth mentioning here that a model-checker for an action based BTL is available

within the JACK toolset, developed at PDCC-CNR/IEI and that a new BDD implementation

of such a tool is under way. Several speci�cation languages, including LOTOS, and a graphical
interface are also available.

Some study on how to use the results of the work on the translation from Statechart Dia-
grams to Kripke Structures in the framework of BTL would be of great bene�t to HIDE during

its second phase since this way the power of LTL model-checking would be complemented by
that of BTL, BDD-based model-checking.

Essentially all temporal model-checker provide a counter-example whenever a certain logic
formula is not satis�ed by a model.

In behavioural relations model-checking, two models of behaviors are compared according
to some criterion, expressed as a formal algebraic relation of such models.

For instance one could (naively) compare the set of runs of two behaviours and conclude
that a certain behaviour as a sub-behaviour of the other one if the runs of the �rst one are

contained in the runs of the second one. Unfortunately, things are not so simple and the
relation between sub-behaviours and behavioural relations is still subject of research. An
account of such a research can be found in [1].

Nevertheless, it must be pointed out that such a study is essential for providing the UML,
and in particular its behavioural part, including Statechart Diagrams, with a notion of sub-
behaviour which is based on solid mathematical foundations. Moreover, certain behavoiural
relations, namely congruences, are also essential as a formal basis for reusability which is

another key issue within the UML (and software engineering in general).
Several tools are available for behavioural model-checking. We can mention here the

Concurrency Workbench, and, again the JACK toolset which also includes AUTO, a tool for
behavioural model-checking developed at INRIA.

We close this section by mentioning the fact that tools for timed/hybrid extensions of
the above mentioned models are also available nowadays. Here we can mention UPPAAL,
HyTech and KRONOS as examples. These tools should be considered for enriched translations

from quantitative extensions of Statechart Diagrams to models like timed automata or hybrid
automata.

References

[1] H. Bowman and J. Derrik. A junction between state based and behavioural based speci�-
cations. In P. Ciancarini and R. Gorrieri, editors, IFIP TC6/WG6.1 Third International

Conference on Formal Methods for Open Object-Oriented Distributed Systems. Kluwer,
1999. (To appear).

[2] E. Clarke, J. Wing, and et. alt. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626{643, 1996.

[3] R. Cleaveland, S. Smolka, and et.alt. Strategic directions in concurrency research. ACM

Computing Surveys, 28(4):606{625, 1996.

From Statechart Diagrams to Kripke Structures
D. Latella - CPR PDCC and CNR Ist. CNUCE

I. Majzik - TUB
M. Massink - CNR Ist. CNUCE

1 Informal Description of the translation

In this section we shall present an informal description of the translation from statechart

diagrams to Kripke Structures. We shall start with some motivations for the translation,
which will be done in Sect. 1.1, followed by a short description of the subset of the UML

for which the translation is currently available (Sect. 1.2) and a brief discussion on possible

extensions of the UML in order to fully exploit the potentials of the translation (Sect. 1.3).
The intuitions behind the translation will be illustrated by means of a small example in
Sect. 1.4. For the terminology peculiar to the UML (like event queue, step etc.) we refer to
the UML literature [1]. An extended abstract of the work described here can be found in [2].

1.1 Purpose

Formal veri�cation is a hot topic nowadays in the �eld of software engineering, specially for
the development of critical dependable systems.

The use of formal methods for the speci�cation and veri�cation of properties of systems

is one methodological improvement of the system production process, which, together with
other techniques, can make it possible to reach high quality standards.

The purpose of the translation from statechart diagrams to Kripke Structures is to de�ne
a reference formal operational semantics for statechart diagrams within HIDE. Formal se-
mantics are obviously necessary whenever formal veri�cation is at issue: they are a necessary
prerequisite for any sensible formal veri�cation or analysis. In particular, the Kripke Struc-

ture resulting from the translation can be conveniently used as a basis for model checking,
which is a major and widely used technique for formal automatic veri�cation.

A nice aspect of the semantics de�nition proposed in this deliverable is that it is parametric
in aspects which are not (yet) completely de�ned for UML, like the management of the

event queue and the priorities. In particular, parametricity of our semantics de�nition w.r.t.
priorities makes it suitable for describing the behaviour of systems under di�erent priority
schemas. All the results on the semantics are preserved since they do not depend on the

particular priority schema, provided the notion of con
ict and orthogonality satisfy the general
constraints which are usually satisi�ed by meaningful priority schemas.

1.2 Constraints

During the �rst phase of the project we considered a strict subset of UML statechart diagrams
containing though all the interesting conceptual issues related to concurrency in the dynamic
behaviour, like sequentialization, non-determinism and parallelism. Some of the restrictions

1

we imposed can be easily relaxed in the future, others require some deeper research. In the
following we list the restrictions:

� States: History, deep history states as well as action and activity states (and corre-
sponding completion transitions and completion events) are not allowed. Initial (�nal)
pseudostates are used only to identify the initial and �nal states, their outgoing (incom-
ing) transitions can not have actions.

� Events: Events are restricted to signal and call events without parameters (method
execution is not modeled). Time and change events, object creation and destruction
events as well as deferred events are not allowed.

� Transitions: Branch segments are not allowed1. In the following, compound transitions
mean transitions containing join and/or fork segments but no branch segments.

Completion transitions (without trigger) are not allowed. A transition (characterized
by its source and target states, trigger event, guard and action sequence) may appear

at most once in a statechart. Interlevel transitions are allowed in our subset.

� Transition labels: In guards, only Boolean combinations of predicates about the current

state con�guration are allowed, variables and data dependency are excluded. Actions
are restricted to generate global events (termination, creation and destruction of objects
as well as send clauses are not allowed). Synchronous calls should be modeled by explicit
wait states.

� Internal actions of states: Common internal actions as well as \do" actions are not

allowed in states.

A further simpli�cation applies to special internal actions. In the UML semantics, upon

taking a transition, the following actions have to be executed in order: exit actions of
states that are exited explicitly or by default (in the order of the exit hierarchy, i.e.

�rst the lower level ones), normal actions assigned to the transition (in the syntactical
order) and then the entry actions of states entered explicitly or by default (in the order
of the entry hierarchy, i.e. �rst the higher level ones). Note that the order of entering

or exiting regions of a concurrent composite state is not de�ned.
We abstract from entry and exit actions of states and handle them in the following
together with the normal actions as a (single) sequence of actions executed when the
transition �res. Methodologically, it is easy to consider the exit and entry actions as

the dynamic semantics keeps track of states that are exited and entered.

� Single statechart: The translation applies to a single statechart diagram. Collections of
diagrams must �rst be reduced to a single one, usually by means of enclosing them into
a single parallel state.

� No class hierarchies: In this version of our work we do not deal with more "object-

oriented" features like class hierarchies, etc.

1They could be resolved by replacing each possible path of segments from the source state to targets with
a simple transition. The guard of this transition is the conjunction of the guards on the segments, the action
sequence of this transition is the sequence of actions along the segments, following their linear order.

2

The subset of UML we considered is rather small. Many features which we did not consider
are not of conceptual importance from the semantics de�nition point of view. Others, like the
more "object oriented" ones (e.g. object management, inheritance) are not to be considered
as slight extensions of the ideas presented in this paper: they need further research. On the

other hand, we consider the semantics presented here as an essential �rst step towards a more
complete model for statecharts.

1.3 Extensions

The translation as such does not require any extension to the UML. When using the transla-
tion for formal veri�cation, depending on the kind of veri�cation one wants to perfom there
might be the need of additional information. For the purpose of this deliverable and as an

example of how our semantics could be used, we assume model checking as the veri�cation
technique to be used. In such a technique the system designer produces a model of the be-
haviour of the system or subsystem (s)he has to design and the model checking tool checks if
such a model satis�es a certain requirement. In the context of HIDE, the system behaviour

is modeled by a statechart diagram. In the context of model checking the requirement is to
be speci�ed as a Temporal Logics formula. In this deliverable we consider a Linear Time
Temporal Logic.

An informal description of the logics is given below. Examples of its use are given in the

next section.
Given a statechart diagram, we assume there exist a predicate in(s) for each state s of

the statechart. The meaning of in(s) is that state s is in the current state con�guration

(simply con�guration in the sequel). We will also use the generalization of the predicate
in(s1; : : : ; sn) meaning that the current con�guration contains all the states listed in the in
predicate. Moreover, the notation [e1; : : : ; en] will be used for denoting the fact that the
events in the current event queue are e1; : : : ; en, where e1 is the �rst element in the queue

and en is the last one (here a FIFO discipline is assumed)2.
Predicates of the form in(s) and [e1; : : : ; en] will be called atomic formulas. A formula

can be either an atomic formula or a composition of formulas. We assume usual boolean
composition operators so, if f1 and f2 are formulas, then also f1 AND f2, f1 OR f2, NOT

f1 and f1 ==> f2 are formulas and their meaning is the standard one.
For example, the formula in(s0) AND [e0] means that state s0 is in the current con�gu-

ration and e0 is the only event currently in the event queue.

As a second example, suppose state s2 is a substate of state s1. Then the formula
[e10; e25; e0] ==> in(s1; s2) is violated if the current queue is composed by events e10; e25;
and e0 with e10 (e0) being the �rst (last) element and s1 or s2 are not in the current
con�guration. In the following, we shall call a pair (con�guration, event queue) a status.

The set of formulas of interest for us is enriched as follows (where f is any formula). []f
(to be read as "f forever") informally means "f holds in every status of every run of the
system". <> f (to be read as "evetually f") means "In every run of the system there is a
status in which f holds". Finally f1 U f2 (to be read as "f1 until f2") means "In every run

of the system there is a status in which f2 holds and in all the previous statuses (in the same
run) f1 holds".

So, for instance, [][e10; e25; e0] ==> in(s1; s2) means that we require that whenever the

2More interesting predicates on the queue can be de�ned, but we leave them out here for simplicity reasons.

3

queue is composed by the events e10; e25; and e0, the current con�guration must contain
states s1 and s2.

Obvioulsy formulas containing the above temporal connectives []; <>;U can in turn be
composed using logical as well as temporal connectives.

For the sake of readability, it is often convenient to assign names to formulas by means of
de�ning equations and then use such names (recursive de�nitions are not allowed here). For
example, the above formula coud be rewritten as []f , or as [](p ==> q) where:

p = [e10; e25; e0]
q = in(s1; s2)
f = p ==> q

1.4 Example

In this section we shall informally describe the translation by means of a simple example.

Consider the statechart diagram of Figure 1.

s0 s1

s4

s5

s8

s6 s7

s9

s3

s2a1 / r2
f1 / r1

e1 / f1

e2 / e1

a2 / e1f2 / -

r1 / a1

e1 / -
r2 / a2

Figure 1: Example of an UML statechart

The �rst step of our translation is a purely syntactical one and consists in translating the
statechart diagrams into what is usally called an extended hierarchical automaton. Extended
Hierarchical Automata can be seen as an abstract syntax for statechart diagrams in the sense
that they abstract from the purely syntactical/graphical details and describe only the essential

aspects of the statechart. Thus they are composed of simple sequential automata related by
a re�nement function. A state is mapped via the re�nement function into the set of (parallel)
automata which re�ne it.

Our sample sample statechart diagram is mapped into the extended hierarchical automa-
ton of Fig 2.

It should be already clear that the extended hierarchical automaton of Fig. 2 can be
taken as an alternative representation for the statechart of Fig. 1. In fact there is a clear

correspondence between the states of the two structures. Also the re�nement of a state into
one or more substates in the statechart is properly represented by the re�nement function �;
in our example we have �s1 = fA1; A2g and �s = ; for any other state s. In the �gure this
is represented by dotted arrows.

Non-interlevel transitions are represented in the obvious way. Consider now the interlevel
transition from s6 to s2 in Fig. 1. Such a transition is represented in the extended hierarchical
automaton by the transition from s1 (the highest ancestor of s6 "crossed" by the transition

4

s1 s2
t3

t2

t1

s3

t8

s8 s9

t4

t6

s6 s7t7 t9

A0

A2A1

t5

Figure 2: Example of an Extended Hierarchical Automaton

in the statechart) to s2, named t1. The indication of the fact that the real "origin" of such
a transition is state s6 is coded in the label of the transition (not shown in the �gure). In
particular, it is coded in what is called the source restriction of the transition. The source

restriction of t1 will be s6. In general, for join transitions the source restriction will be a
set of pairwise orthogonal states. In the label we will also �nd the event which triggers
the transition and the corrensponding actions to be performed when the transition is �red.
Finally, in the label of a transition, we also �nd the so called target determinator. The target

determinator explicitly lists all the basic states which must be reached when a transition is
�red. For example, the transition from s3 to s9 in Fig. 1 is represented in Fig. 2 by the
transition labeled t5, the target determinator of which is fs6; s9g.

The complete information related to the transition labels for our extended hierarchical
automaton is given by the table below:

t t1 t2 t3 t4 t5 t6 t7 t8 t9

EV t r1 a1 e1 r2 a2 e1 f1 e2 f2
SR t fs6g ; ; fs8g ; ; ; ; ;
TD t ; fs6; s8g ; ; fs6; s9g ; ; ; ;
AC t a1 r2 � a2 e1 f1 r1 e1 �

Table 1: Transition Labels

In the following we shall refer to the extended hierarchical automaton of Fig. 2. The

initial con�guration is the set of states in which the system resides in the beginning of any
run, namely fs1; s6; s8g. Suppose initially the event queue contains only event e2 which is
then selected. Then transition t8 is �red, event e1 is generated and the system will move

to con�guration fs1; s6; s9g. In our semantics, the event generated (e1) is put back into
the event queue. At this point both transition t3 and t6 are anabled, but t6 will �re since,
according to the UML statechart diagrams priority rule, it has priority over t3.

The above procedure can be modeled by using an automaton. The states of such an au-

tomaton are the statuses of the system, i.e. pairs (con�guration, event queue). Its transitions
represent the steps of the system and, for easyness of exposition, here they are labeled by the
name(s) of the transition(s) of the extended hierarchical automaton which are �red in the

5

corresponding steps. The automaton for our sample system is given in Fig. 3.

{t1}

{s1,s6,s8} e2

{s1,s6,s9} e1

{t8}

{t6}

{s1,s7,s9} f1

{t7}

{s1,s6,s9} r1

{s2} a1

{t2}

r2{s1,s6,s8}

{t4}

a2{s3}

{t5}

Figure 3: Example of an Extended Hierarchical Automaton

In the formal semantics, the existence of a step from status (C; E) to status (C 0; E 0) is
modeled as an assertion which needs to be proven within a formal system of logical deduction.

So the semantics de�nition amounts to a set of deduction rules. All the relevant details are
given in Sect.2.

We close this section by stating some typical temporal logics properties related to our

sample statechart and its semantics automaton.
A �rst simple property, which is satis�ed by our system is [e2] AND in(s1; s6; s8). It

simply states that the initial status of the system is (fs1; s6; s8g; e2) which is indeed the case.
The following is a typical response property stating that whenever s2 is entered, sooner

or later (starting from that point in the run) s3 is reached: [](in(s2) ==><> in(s3)). You
can imagine s2 as a state entered immediately after a request of some service is issued and s3
as the state entered immediately after such a request is granted. So the above requirement
means that every request must eventually be granted and our system ful�lls it.

Suppose now we want to model the following requirement: "Every request must be pre-
ceded by a distinct reception of event e2". It should be easy to understand that the preceding
statement is equivalent to the following (maybe more tedious but certainly more precise): "In

6

every run of the system, and in every status reached during the run, call it S, the following
must hold: it must not be the case that a request is made without e2 having occurred from
status S to the status in which the request is made". This statement is coded into the follow-
ing formula: []NOT (NOT [e2]Uin(s2)). This formula is not satis�ed by our system since the

formula NOT (NOT [e2]Uin(s2)) is not satis�ed by the statuses in the loop.
We conclude this section by pointing out that the way we have expressed temporal logics

formulas here is probably not the most user friendly one can conceive. There are ways for

expressing the above formulas in which the user does not need to be cercerned with the
notational details. In fact there are also graphical notations to serve the purpose of formulas
speci�cations. All these issues are to be dealt with at the level of user interface design and
this is the reason why we do not deal with them here. Here we simply wanted to sketch the

main concepts of model checking in a as much intuitive fashion as possible.

2 Formal Description of the translation

In the following we will present a formal de�nition of the translation from Statechart Diagrams
to Kripke Structures. Following the approach proposed in [4], we will proceede in two steps:
we �rst map Statechart Diagrams into (a slightly modi�ed variant of) Extended Hierarchical

Automata, which provide essentially an abstract syntax for diagrams, and then we de�ne
a formal operational semantics for Extended Hierarchical Automata, which amount to a
translation of Extended Hierarchical Automata to Kripke Structures.

In Section 2.1 the intermediate model is introduced. Section 2.2 de�nes the translation
from a subset of UML statecharts to Extended Hierarchical Automata. Section 2.3 introduces
our formal operational semantics of Extended Hierarchical Automata.

All proofs are omitted here. They can be found both in [3] and in Deliverable 4 of Task

3.1 of the HIDE Project.
The results presented in this Deliverable are also summarized in the paper "Towards a

Formal Operational Semantics of UML Statechart Diagrams" by D. Latella (CNR-PDCC,
Pisa), I. Majzik (TUB, Budapest) and M. Massink (CNR, Pisa) to appear in the proceedings

of the Third IFIPTC6/WG6.1 International Conference on Formal Methods for Open Object-
Based Distributed Systems to be held in Florence, Italy, on February 15-18, 1999.

2.1 Extended Hierarchical Automata

In this section we recall the notion of Extended Hierarchical Automata de�ned in [4], although
our notation is slightly di�erent from that used therein. We start by the notion of (sequential)
automaton3.

Def. 1 (Sequential Automata) A sequential automaton A is a 4-tuple (�A; s
0
A; �A; �A)

where �A is a �nite set of states with s0A 2 �A the initial state, �A is a �nite set of transition

labels and �A � �A � �A � �A is the transition relation.

3In the following we will freely use a functional-like notation in our de�nitions where: (i) currying will be
used in function application, i.e. f a1 a2 : : : an will be used instead of f(a1; a2; : : : ; an) and function application
will be considered left-associative; (ii) for function f : X �! Y and Z � X, f Z = fy 2 Y j 9x 2 Z: y = fxg,
rng f denotes the range of f and fjZ is the restriction of f to Z.

7

We shall use a particular structure for the labels in �A which will be described later. For
sequential automaton A let functions SRC; TGT : �A �! �A be de�ned as SRC(s; l; s0) = s

and TGT (s; l; s0) = s0. Extended Hierarchical Automata [4] are de�ned as follows:

Def. 2 (Extended Hierarchical Automata) An extended hierarchical automaton H is a

3-tuple (F;E; �), where F is a �nite set of sequential automata with mutually disjoint sets of
states, i.e. 8A1; A2 2 F: �A1

\�A2
= ; and E is a �nite set of events; the re�nement function

� :
S
A2F �A �! 2F imposes a tree structure to F , i.e. (i) there exists a unique root automaton

Aroot 2 F such that Aroot 62
S
rng �, (ii) every non-root automaton has exactly one ancestor

state:
S
rng � = F n fArootg and 8A 2 F n fArootg: 91s 2

S
A02FnfAg �A0: A 2 (� s) and (iii)

there are no cycles: 8S �
S
A2F �A: 9s 2 S: S \

S
A2�s �A = ;.

We say that a state s for which �s = ; holds is a basic state. An example of an extended

hierarchical automaton is presented in Figure 2. Here F = fA0; A1; A2g, and state s1 of the
root A0 is re�ned by A1 and A2: � s1 = fA1; A2g. All states except s1 are basic. Initial
states are indicated by double boxes.

In the sequel we will implicitly make reference to a generic extended hierarchical automa-

ton H = (F;E; �).
Every sequential automaton A 2 F characterizes an extended hierarchical automaton

in its turn: intuitively, such a extended hierarchical automaton is composed by all those

sequential automata which lay below A, including A itself, and has a re�nement function �A
which is a proper restriction of �.

Def. 3 For A 2 F the automata, states, and transitions under A are de�ned respectively as
A A = fAg [(

S
A02

�S
s2�A

(�As)

�(A A0)), S A =
S
A02A A �A0 , and T A =

S
A02A A �A0

The following lemmata state some useful properties of A A;S A and T A.

Lemma 1 For A;A0; �A; �A0 2 F , s 2 S H, the following holds: (i) A0 2 A A implies A A0 �
A A, S A0 � S A, and T A0 � T A. (ii) A;A0 2 (�s); A 6= A0; �A 2 (A A); �A0 2 (A A0) implies
A �A \ A �A0 = S �A \ S �A0 = T �A \ T �A0 = ;. (iii) s 2 (S A) implies 91A

0 2 (A A): s 2 �A0 .

Lemma 2 For A;A0 2 F , s 2 �A, s
0 2 �A0 the following holds: s0 2 S (�s)) A0 2 (A A).

The de�nition of sub-extended hierarchical automaton follows:

Def. 4 (Sub-Extended Hierarchical Automata) For A 2 F , (FA; E; �A), where FA =
(A A) and �A = �j(S A), is the extended hierarchical automaton characterized by A.

In the sequel for A 2 F we shall refer to A both as a sequential automaton and as
the sub-extended hierarchical automaton of H it characterizes, the role being clear from

the context. H will be identi�ed with Aroot. Sequential Automata will be considered a
degenerate case of Extended Hierarchical Automata. In Figure 2, automaton A0 refers to
both the sequential automaton A0 = (fs1; s2; s3g; s1; �A ; ft1; t2; t3; t4; t5g) and the extended
hierarchical automaton H = (fA0; A1; A2g; E; �) where � s1 = fA1; A2g.

Def. 5 (State Precedence) For s; s0 2 S H, s � s0 i� s0 2 S (� s). Let also � denote the
re
exive closure of �.

8

Proposition 1 Relation � is a partial order.

The following holds of �:

Lemma 3 For s; s0; �s 2 (S H) the following holds: (s � �s) ^ (s0 � �s)) (s � s0) _ (s0 � s)

Lemma 4 For all A;A0 2 F and all s 2 �A, s
0 2 �A0 the following holds: s � s0)

(S A) \ (S A0) 6= ;

Def. 6 (Orthogonal States) Two states s; s0 2 S H are orthogonal, written s jj s0, i�
9s00 2 (S H); A;A0 2 (�s00): A 6= A0 ^ s 2 S A ^ s0 2 S A0

Obviously s jj s0 implies s 6= s0. Orthogonal states in Figure 2 are, among others, s6 and
s8, since s6 2 S A1, s8 2 S A2 and there is s1 for which A1; A2 2 � s1.
It is easy to see that orthogonal states enjoy the following property:

Lemma 5 For all s; s0 2 S H the following holds: s jj s0) s 6� s0

We say that S � S H is a set of pairwise orthogonal states i� 8s; s0 2 S: (s 6= s0) s jj s0).
An obvious consequence of the above lemma is that for S � S H a set of pairwise orthogonal
states, the following holds: s; s0 2 S and s � s0 implies s = s0. The following de�nition lifts
� to sets of states:

Def. 7 For all S; S0 � S H, S �s S0 i� 8s 2 S: 9s0 2 S0: s � s0

Notice that �s is only a preorder. Take for instance S = fs1; s2g and S0 = fs2g with s1 � s2.
Now S �s S0 and S0 �s S, but S 6= S0. The following proposition holds:

Lemma 6 For S; S0 � S H sets of pairwise orthogonal states S �s S0 ^ S0 �s S implies
S = S0.

For the purpose of representing statechart diagrams using Extended Hierarchical Au-
tomata we shall require transition labels of transitions t of sequential automata A 2 F be
5-tuples (sr; ev; g; ac; td) where (i) the source restriction sr � S (�(SRC t)) is a set of pair-

wise orthogonal states; (ii) ev 2 E [f�g is the event which triggers the transition, with �
representing that no event is required for triggering the transition; (iii) g Is the guard, i.e. a
boolean expression on states (which we shall not further specify in this paper); (iv) ac 2 E�

is the sequence of events to be generated when the transition is �red, i.e. the sequence of

actions to be executed; and the target determinator td � S (�(TGTt)) is a maximal (under
set inclusion) set of pairwise orthogonal basic states.

The role of target determinator and source restriction will be clear when the transforma-
tion from UML statecharts to Extended Hierarchical Automata is introduced (Section 2.2).

Here we only mention that compound and interlevel transitions of UML statecharts will be
represented by simple transitions at the level of uppermost states they exit and enter, and the
original sources (resp. targets) of these transitions will be represented in the source restriction

(resp. target determinator) of such simple transitions.
In the sequel we shall use the following functions SR;EV;G;AC; TD de�ned in the ob-

vious way: for transition t = (s; (sr; ev; g; ac; td); s0), SR t = sr;EV t = ev;G t = g;AC t =

9

ac; TD t = td. Finally, for transition t 2 �A for A 2 F let ORIG t be de�ned as follows:

ORIG t = fs j s 2 (SRC t) ^ (SR t) = ;g [(SR t)

The following de�nition establishes when two transitions are con
icting:

Def. 8 For t; t0 2 (T H), t is con
icting with t0, written t#t0, i� t 6= t0 and (SRC t �
SRC t0) _ (SRC t0 � SRC t)

The following lemma relates orthogonality and con
ict:

Lemma 7 For t; t0 2 (T H) the following holds: (SRC t) jj (SRC t0) implies :(t#t0).

The following de�nition characterizes those structures which can be used for imposing prior-
ities on transitions.

Def. 9 [Priority Schema] A Priority Schema is a triple (�;v; �) with (�;v) a parial order

and � : (T H) ! � such that: 8t; t0 2 (T H): (�t v �t0) ^ t 6= t0) t#t0 We say that t has
lower priority than (equal priority as) t0 i� �t v �t0.

The following lemma relates orthogonality and priority:

Lemma 8 For t; t0 2 (T H) the following holds: (SRC t) jj (SRC t0) implies �t 6v �t0.

The priority system we use in this paper is based on the origin of transitions. Let PWO =
fX � (S H) j X pairwise orthogonalg and function f de�ned as ft = ORIG t.

Proposition 2 (PWO;�s; f) is a priority schema.

2.2 Translation of UML statecharts to extended hierarchical automata

The translation maps a UML statechart to an extended hierarchical automaton H = (F;E; �) by
de�ning the set of sequential automata F , the composition function � and the set of events E. For
the sake of simplicity and readability, here we give just an informal sketch of the translation.

Set of sequential automata. Each automaton A 2 F;A = (�A; s0A; �A; �A) is de�ned as follows.

� States. States of the statechart are uniquely mapped to states of sequential automata.

{ Root automaton H. If the (composite) top state s0 of the statechart is concurrent then it
is mapped to the single (initial) state of a degenerate root automaton H. Otherwise the
direct substates of the top state are mapped to states �H of the root automaton H.

{ Sub-automata in A H. Each non-concurrent composite substate s of the statechart de�nes
the states of a unique sequential automaton As, as direct substates of s are mapped to
states of �As

. Note that regions (direct substates of a concurrent composite state) are not
mapped to any state in the extended hierarchical automaton.

� Initial state. The initial state s0A of an automaton A is the state that corresponds to the state
of the statechart marked by an initial pseudostate.

10

� Transitions. In order to de�ne the mapping of the transitions, we need the following de�nitions.
A transition of the statechart is characterized by its least common ancestor (LCA) state, which
is the lowest level non-concurrent state that contains all the source states and target states (here
the de�nition of [1] is slightly modi�ed). The main source (main target) of a transition is the
direct substate of its LCA that contains the sources (targets). According to the above rules,
main sources and main targets are always transformed to states of the same automaton.

Each transition � in the statechart is mapped to a unique transition t of the extended hierarchical
automaton as follows. The source SRC t (target TGT t) of t is the state that corresponds to
the main source (main target) of � . This means that a compound or interlevel transition of the
statechart is mapped to a transition of the automaton containing the states corresponding to
its main source and main target (this automaton is a sub-automaton of the state representing
the LCA). The original source and target states will be included in the label of the transition
in the form of source restriction and target determinator, as described below.

� Transition labels. The label of a transition t is of the form (SR t;EV t;G t;AC t; TD t). SR t

and TD t are generated using the source(s) and target(s) of � , while the EV t, G t and AC t of
t are inherited from � :

{ Source restriction. If the set of states that corresponds to the source(s) of � is the same
as SRC t, then SR t must be empty, otherwise it is such a set of source(s).

{ Target determinator. TD t is the normalized set of states that corresponds to the target(s)
of � . Normalizing means computing the maximal set of orthogonal basic states that are
substates of the states entered by � explicitly or by default. In this way, TD t explicitly
contains all the states which have to be entered when the transition is �red, while some of
these states are not explicitly pointed to by � . The following is a sketch of a normalization
algorithm which visits the states reached by (segments of) � , starting from its main target:

� If a basic state is reached then it is added to TD t and recursion stops.

� If a composite state is reached at its boundary then the algorithm is applied recursively
to its initial substate, or to the initial substate of each of its regions.

� If a non-concurrent composite state is reached and its boundary is crossed then the
algorithm is applied recursively to its direct substate where the transition continues
(note that branch segments are not considered in this paper).

� If a concurrent composite state is reached and its boundary is crossed then the al-
gorithm is applied recursively to (i) the direct substate(s) of those regions where the
transition continues and (ii) the initial substates of the other regions.

{ Trigger events. In UML statecharts, each transition (including compound transitions) can
have at most one trigger event, since join, fork and branch segments can not have a trigger.
Accordingly, EV t is exactly the trigger event of � .

{ Guards. Since fork and joint segments have no guards, each transition may have a single
guard (note that branch segments are not considered in this paper). Accordingly, G t is
exactly the guard of � .

{ Actions. AC t is exactly the sequence of actions of � .

Composition function. � is determined by the substate relationships of composite states. If a
composite state s is non-concurrent and it is not a region then its direct substates form the states
of As, a sub-automaton of s, where fAsg = (� s). If a composite state s is concurrent then every
one of its regions forms a sub-automaton of s, in such a way that this automaton contains the direct
substates of the region.

Set of events. E is de�ned as the union of two (not necessarily distinct) sets: the set of events used
in the statechart as triggers of the transitions and the set of events generated by actions. In open
systems, the set of events generated by the environment is also included.

11

Figure 2 together with Table 1 is the result of applying the translation to the statechart in Figure 1.

2.3 UML Formal Operational Semantics of Extended Hierarchical Au-

tomata

In this section we develop a formal semantics for Extended Hierarchical Automata which is di�erent
from that proposed in [4] in that it has to deal with the peculiarities of UML statechart diagrams. The
main di�erence is the need to deal explicitly with priorities since UML priority rules do not directly
match the hierarchical structure of Extended Hierarchical Automata, as is the case with classical
statecharts. Moreover, the environment is treated di�erently.

2.3.1 Operational Semantics Rules

We �rst de�ne con�gurations. A con�guration denotes a global state of an extended hierarchical
automaton, composed of local states of component sequential automata.

Def. 10 (Con�gurations) A con�guration of H is a set C � (S H) such that (i) 91s 2 �Aroot
: s 2 C

and (ii) 8s;A: s 2 C ^ A 2 � s) 91s0 2 A: s0 2 C

For A 2 F the set of all con�gurations of A is denoted by ConfA. Possible con�gurations of the
extended hierarchical automaton of Fig 2 are: fs2g, fs1; s6; s8g, fs1; s7; s9g whereas fs1g is not (it
is not downward closed), as well as fs7g (no state from the root) or fs1; s2g (two states belonging to
the same sequential automaton). The following result easily follows from the de�nitions:

Proposition 3 For A 2 F and A0 2 �A �A: C 2 ConfA ^ C \ �A0 6= ;) C \ S A0 2 ConfA0

The operational semantics of an extended hierarchical automatonwill be de�ned as a Kripke struc-
ture, which is a set of states related by a (transition) relation. Usually, the states are called statuses
and the transition relation is called the STEP relation. Each status is composed by a con�guration
and the current environment with which the extended hierarchical automaton is supposed to interact.
While in classical statecharts the environment is modeled by a set, in the de�nition of UML statechart
diagrams the particular nature of the environment is not speci�ed (actually it is stated to be a queue,
but the management policy of such a queue is not de�ned). We choose not to �x any semantics such
as a set, or a bag or a FIFO queue etc. for the environment. In the following de�nition we will
then assume that for set X, �X denotes the set of all structures of a certain kind (like FIFO queues,
or bags, or sets) over X and we shall assume to have basic operations for inserting and removing
elements from such structures. In particular (add E e) will denote the structure obtained by adding
e to environment E . Similarly, (join E E 0) denotes the environment obtained by merging E with E 0.
Moreover, by (Sel E e E 0) we mean that E 0 is the environment resulting from selecting e from E , the
selection policy depending on the choice for the particular semantics of the environment. Finally, nil
is the empty structure and given sequence r 2 X�, (new r) is the structure containing the elements
of r (again, the existence and nature of any relation among the elements of (new r) depends on the
semantics of the particular structure).

So, for instance, if sets are chosen, then (add E e) = E [feg, (join E E 0) = E [E 0 and, for
e 2 E , (Sel E e E 0) � (E 0 = E n feg). Details like what is the result of attempting to select an event
from an empty environment etc. are left unspeci�ed here since they are part of the semantics of the
environment and will be speci�ed when such a semantics is �xed.

Def. 11 (Operational semantics of Extended Hierarchical Automata) The operational seman-

tics of an extended hierarchical automaton H is a Kripke structure k = (S; s0;
STEP
�!) where (i)

S = ConfH � (� E) is the set of statuses of k, (ii) s0 = (C0; E0) 2 S is the initial status, and

(iii)
STEP
�! is the transition relation de�ned in the sequel.

12

A transition of k is a maximal set of non-con
icting transitions of the sequential automata of H

which respect priorities. As in [4], we shall de�ne the
STEP
�! relation by means of a deduction system,

and we shall do this both for the case in which the environment can be manipulated from outside the
system speci�ed by H (open systems semantics) and for the case in which this is not allowed (closed
systems semantics). The rules follow:

Def. 12 (Closed Systems)

(Sel E e E 00) (1)

H " ; :: (C; feg)
L
�! (C0; E 0) (2)

(C; E)
STEP
�! (C0; (join E 00 E 0))

Def. 13 (Open Systems)

(Sel E e E 00) (1)

H " ; :: (C; feg)
L
�! (C0; E 0)^ E 0 � E 000 (2)

(C; E)
STEP
�! (C0; (join E 00 E 000))

In the above rules we make use of an auxiliary relation, namely A " P :: (C; E)
L
�! (C0; E 0). The

relation
L
�! models labeled transitions of the extended hierarchical automaton A, and L is the set

containing the transitions of the sequential automata of A which are selected to �re. We shall call
L
�! step transitions in order to avoid confusion with transitions of sequential automata. P is a
set of transitions. It represents a constraint on each of the transitions �red in the step, namely
that it must not be the case that there is a transition in P with a higher priority. So, informally,

A " P :: (C; E)
L
�! (C0; E 0) should be read as "A, on status (C; E) can perform L moving to status

(C0; E 0), when required to perform transitions with priorities not smaller than any in P". Obviously,
no restriction is made on the priorities for H, but, as we shall see later, set P will be used to record
the transitions a certain automaton can do when considering its sub-automata. More speci�cally, for
sequential automatonA, P will cumulate (the priority information of) all transitions which are enabled
in the ancestors of A. In the sequel we shall formalize all the above concepts by means of de�ning a

deduction system for relation
L
�!. We �rst need a few auxiliary de�nitions.

Def. 14 (Enabled Transitions) For A 2 F , set of states C and environment E,
(i) the set of all the enabled local transitions of A in (C; E), LEA C E is de�ned as follows4:

LEA C E = ft 2 �A j f(SRC t)g [(SR t) � C ^ (EV t) 2 E ^ (C; E) j= (G t)g

(ii) the set of all enabled transitions of A in (C; E) considered as an extended hierarchical automaton,
i.e. including those of descendents of A, EA C E is de�ned as follows:

EA C E =
[

A02(A A)

LEA0 C E

Moreover, A " P :: (C; E)
L
�! will stand for: there exists C0 and E 0 such that A " P :: (C; E)

L
�! (C0; E 0).

Finally, for state s and set S � S (� s), such that s � s00 for all s00 2 S, the closure of S, (c s S), is
de�ned as the set fs0 j 9s00 2 S: s � s0 � s00g.

4(C; E) j= g means that guard g is true of status (C;E). Its formalization is immaterial for the purposes
of the present paper. In the deduction rules, we will relax the requirement C 2 ConfA and we will assume
C 2 ConfH . This allows the use of guards which make reference to non local states.

13

Def. 15 (Progress rule) If there is a transition of A enabled and the priority of such a transition
is "high enough" then the transition �res and a new status is reached accordingly:

t 2 LEA C E (1)
6 9t0 2 P [EA C E : �t < �t0 (2)

A " P :: (C; E)
ftg
�! (c (TGT t) (TD t); new(ACt))

The rule essentially says that a (local) transition t of sequential automaton A can �re if it is
enabled in the current con�guration (1) and there is no higher priority transition in P (so t is "high
enough" for P , or "respects" P), or in the set of all the currently enabled transitions of A or of any
descendent of A.

Once transition t is taken, a new con�guration is entered and proper actions are performed. For
instance, in our example, when fs3g is the current con�guration and a2 is o�ered by the environment,
the above rule can be used for �ring transition t5, which will result in generating event e1 and entering
con�guration fs1; s6; s9g

Def. 16 (Composition Rule) This rule establishes how automaton A delegates the execution of
transitions to its sub-automata and these transitions are propagated upwards.

fsg = C \ �A (1)
�A s = fA1; : : : ; Ang 6= ; (2)Vn

j=1 Aj " P [LEA C E :: (C; E)
Lj
�! (Cj ; Ej) (3)�Sn

j=1 Lj = ;
�
) (8t 2 LEA C E : 9t0 2 P: �t < �t0) (4)

A " P :: (C; E)

S
n

j=1
Lj

�! (fsg [
Sn

j=1 Cj ; join
n
j=1Ej)

First of all notice that the sub-automata are required to perform their step-transitions under the
new set P [LEA C E which includes all the enabled local transitions of A (3) so that, in order to be
selected, the transitions of such sub-automatamust have a priority which is not lower than any of those
of the enabled local transitions of A (and A's ancestors, recursively upwards ...). Notice also that if no
transition of the sub-automata can be �red then the rule is applied only if also no local transition of A
can �re (4), thus propagating the empty set of transitions upwards (see below). The new con�guration
will still include the current state of A but the possible new states of the sub-automata and related
actions are recorded in the new status.

Def. 17 (Stuttering Rule) If there is no transition of A enabled and with priority "high enough"
and moreover no sub-automata exist to which the execution of transitions can be delegated, then A has
to "stutter":

fsg = C \ �A (1)
�A s = ; (2)
8t 2 LEA C E : 9t0 2 P: �t < �t0 (3)

A " P :: (C; E)
;
�! (fsg; nil)

In our example, from status (fs1; s6; s8g; new e1) automaton A2 can only stutter. Moreover, in
the above status, automaton A1 can �re transition t6 and, via the progress rule it can generate a
ft6g
�! step-transition. Notice also that although transition t3 of A0 is enabled the progress rule cannot
be applied just because of the above step-transition of A1 (�t3 < �t6). On the other hand, the
composition rule can be applied to A0 which will propagate the step of A1 and the stuttering of A2
at the level of a step transition of A0.

Notice that in general the progress rule and the composition rule have not mutually exclusive
conditions, so that when both rules are applicable non-determinism arises and results in separate
step-transitions from the same status. Another source of non-determinism is of course the presence
of di�erent enabled local transitions in the same sequential automaton which are selected by di�erent
applications of the progress rule. Finally notice that condition (4) of the composition rule prevents
the propagation of stuttering above A when there are transitions of A which can �re.

14

2.3.2 Properties of the Operational Semantics

In the sequel we present a few results which show that the operational semantics we propose meet the
informal requirements stated in the de�nition of UML [1].

We let A 2 F; C 2 ConfH ; E 2 (�E); P 2 2(T H) be respectively a generic automaton, a con�gura-
tion, an environment and a set of transitions.
The following proposition guarantees that after �ring a transition again a status is reached.

Proposition 4 For all L 2 2(T H); C0; E 0 the following holds:

A " P :: (C; E)
L
�! (C0; E 0)) ((C0 2 ConfA) ^ (E 0 2 (�E))).

The next lemma expresses a safety property w.r.t. P : it essentially states that only transitions with
a "high enough" priority are �red.

Lemma 9 For all L 2 2(T H); t 2 L the following holds:

A " P :: (C; E)
L
�!)6 9t0 2 P: �t < �t0

The following result shows that our operational semantics satis�es the requirements informally de�ned
in [1].

Theorem 1 For all L � (T A), A " P :: (C; E)
L
�! if and only if L is a maximal set, under set

inclusion, which satis�es all the following properties: (i) L is con
ict-free, i.e. 8t; t0 2 L: :t#t0); (ii)
all transitions in L are enabled in the current status, i.e. L � EA C E ; (iii) there is no transition
outside L which is enabled in the current status and which has higher priority than a transition in L, i.e.
8t 2 L: 6 9t0 2 EA C E : �t < �t0; and (iv) all transitions in L respect P , i.e. 8t 2 L: 6 9t0 2 P: �t < �t0

References

[1] Rational Software * Microsoft * Hewlett-Packard * Oracle * Sterling Software * MCI Systemhouse
* Unisys * ICON Computing * IntelliCorp * i Logix * IBM * ObjecTime * Platinum Technology
* Ptech * Taskon * Reich Technologies * Softeam. UML Semantics, version 1.1, 1997.

[2] D. Latella, I. Majzik, M. Massink. Towards a Formal Operational Semantics of UML State-
chart Diagrams. Proceedings of the IFIP TC6/WG6.1 Third International Conference on Formal
Methods for Open Object-Oriented Distributed Systems, Florence, Italy, Feb. 15-18, 1999. Kluwer
Publications, (accepted for publication)

[3] D. Latella, M. Massink, and I. Majzik. A Simpli�ed Formal Semantics for a Subset of UML
Statechart Diagrams. Technical Report HIDE/T1.2/PDCC/5/v1, ESPRIT Project n. 27439 -
High-Level Integrated Design Environemnt for Dependability HIDE, 1998. Available in the HIDE
Project Public Repository (https://asterix.mit.bme.hu:998/).

[4] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for statecharts. In R. Shya-
masundar and K. Euda, editors, Third Asian Computing Science Conference. Advances in Com-
puting Sience - ASIAN'97, volume 1345 of Lecture Notes in Computer Science, pages 181{196.
Springer-Verlag, 1997.

15

1

From Structural UML diagrams to timed Petri nets

Andrea Bondavalli CNUCE/CNR and PDCC

Majzik Istvan TUB

Ivan Mura University of Pisa and PDCC

1 Introduction

In this chapter we describe the transformation from structural UML specifications to Petri net

models for the quantitative evaluation of dependability attributes. We first discuss the

motivations that led to the idea of introducing such a transformation in HIDE and its rationale.

Then, we detail the limitations to be imposed on the UML designer to allow translating the

specification into a dependability model. This restrictions are mainly related to the introduction

of redundancy into the system under design, for which particular structures are to be utilised to

permit the identification of the crucial points of the dependability analysis. Since the informa-

tion on dependability aspects are typically not included into a system design, we prescribe a set

of extensions of the UML standard language in order to create towards the designer a controlled

interface for the input of parameters, the selection of the desired measures, and the choice of the

fault-tolerance structures to be included in the system.

We proceed with the definition of the syntax of 2 intermediate representations of the system,

used to divide the entire transformation in sequential phases. Last the two main steps of the

transformation are described. The first step takes the UML model and produces an Intermediate

model in which the dependability related features are filtered from the entire specification. The

second, starting from the “dependability” oriented description provided by the Intermediate

model produces a timed Petri net, which is described using still an abstract representation. A fi-

nal step can then be easily performed to translate the model according to the syntax adopted by

specific PN tools selected for performing the analysis. This approach of performing the trans-

formation in several stages looks attractive for several reasons which will be discussed at the

end of the Section 2.

This document gives a precise and detailed description of the transformation procedure, starting

from the UML structural diagrams, and proceeding towards Petri net models. It is important to

point out that not only the UML diagrams that form the input of our transformation do not have

a formal semantics, but also the specification this set provides might be incomplete or ambigu-

ous. Therefore, the aim of this report is not to provide a “formalization” of the transformation

in the sense of formal correctness, but only to precisely describe the steps and the models in-

volved in the transformation itself.

2

2 Purpose and Rationale

2.1 Purpose

Dependability modelling and analysis can be useful for system understanding and assessment

in all phases of the system life cycle as summarised in [16].

During design phases, those of interest in the HIDE context, models allow to compare different

architectural and design solutions and to select the most suitable one. The sensitivity analysis

that can be carried out after modelling allows to identify dependability bottlenecks, thus high-

lighting problems in the design and to identify the critical parameters (out of the many that are

usually employed at this stage), those to which the system is highly sensitive.

The following attributes of dependability, as defined in [12], might be of interest for a UML

designer: availability is the measure of the delivery of correct service with respect to the alterna-

tion of correct and incorrect service, reliability is a measure of the continuous delivery of the

correct service, safety is the non-occurrence of catastrophic consequences, security is the non-

occurrence of unauthorised access. Often additional dependability-related attributes are also de-

fined (e.g. in [14]). Performability attributes originate from a combination of performance and

dependability models by taking into account performance in degraded system states. Integrity is

defined as the avoidance of improper alterations of system service (information provided by the

system). Confidentiality means the non-occurrence of unauthorised disclosure of system ser-

vice. Maintainability is the ability to undergo repairs and evolution. Testability is the ability to

test for certain attributes within the system.

Complex systems consisting of a large number of components including interactions of redun-

dant hardware and software components as well, introduce some problems in modelling and

analysis. These problems arise independently of the design methodology applied, thus are pre-

sent also in systems designed using UML, and must be addressed from any approach to model

such systems. Among these problems the most important to solve is complexity (sate explo-

sion). To master complexity a modelling methodology is needed so that only the relevant as-

pects are detailed, still enabling numerical results to be computable. Simplifying hypotheses are

often necessary to keep the model manageable. Since the assumptions may lead to (inaccurate)

approximations of the system behaviour, the resulting errors should always be estimated either

through sensitivity analysis or by comparing the results obtained by the model containing the

assumption and by a model where it has been released. A feasible approach is to start with

simple models and make them more and more complex and detailed by releasing those assump-

tions having unacceptable impact on the results. An other problem is that models need many pa-

rameters whose meaning is not always intuitive for the designers. Moreover, it may be very

difficult to assign values to the parameters (usually by way of experimental tests).

The models for small systems can be obtained by applying a transformation at the fine granu-

larity (e.g. of the statechart level) of a UML description, which allows to maintain in the model

3

itself other system characteristics like timing aspects and a detailed behavioural description.

However, as the systems described grow in size and complexity, this approach is no more vi-

able: the capacity of available tools is by far exceeded by the state space explosion associated to

system-wide models of such detailed view. Moreover, the complete set of statecharts for the

system might not be available till the design has reached an advanced development stage,

whereas some still partial and not yet very precise analysis may provide useful hints much be-

fore.

These are the main motivations for approaching the modelling from a structural perspective.

The automated transformation from UML structural diagrams to timed Petri nets serves in the

HIDE framework:

• to provide a means to analyse dependability attributes of the a system while it is still being

designed. This way, a designer can easily verify whether the system that is being built satis-

fies predefined requirements on dependability attributes, without dealing with the back-

ground mathematical aspects of Petri net modelling and solution. The results of the depend-

ability model evaluation are automatically back-annotated into the UML diagrams. This

choice allows the transformation to provide preliminary evaluations of the system depend-

ability during the early phases of the design.

• to allow a less detailed but system-wide representation of the dependability characteristics of

the analysed systems. This models offer a significant advantage in terms of controlling the

size of the models.

• to deal with various level of details, ranging from very preliminary abstract UML descrip-

tions, up to the refined specifications of the last design phases. On one side the UML higher

level models, that is the structural diagrams, are available before the detailed, low levels

ones and the analysis on models derived from the structural view provides indications about

the critical parts of the system which require a more detailed representation. On the other

side, by using well defined interfaces, such models can be augmented by inserting more de-

tailed information coming from refined UML models of the identified critical parts of the

system and provided by other HIDE transformations dealing with UML behavioural and

communication diagrams (e.g. the statechart to Petri net transformation).

2.2 Rationale

During this first phase of the project, we defined the transformation for a reduced set of the de-

pendability attributes defined above. In particular, we restricted our attention to Reliability and

Availability. With this approach other attributes (and the above ones at a more refined preci-

sion) can be analysed depending on the amount of relevant information provided by the de-

signer.

To analyse the dependability figures of systems of large size one could ideally build a model of

the system accounting for all the details, the fine grained behaviour of each system component

4

that can be obtained by the behavioural UML models. Due to the limitations of existing tools,

this approach is not viable (state explosion). Therefore the model to build must be of a reduced

size where only the features relevant to dependability are captured and all other information is

left aside. On the other hand, it is very difficult to define a priori which are the relevant depend-

ability related characteristics to be captured and represented in the model. Our approach aims at

building first a quite abstract model, maybe too coarse for representing with due precision the

real dependability to be expected. This model concentrates on the structure of the system and

takes information from the structural UML diagrams. However, the modular construction of

the model does not prevent, rather favours its extension by offering the possibility to substitute

in the model the coarse representation of some elements with a more detailed and precise one,

obtained, maybe later in the design process, by some other transformation or analysis tech-

nique. Moreover, for some parts, such as the redundancy management of redundant resources,

we take into account from the right beginning the behavioural description by analysing state-

charts of selected components and use them to derive dependability-related static relations

among objects associated with them, later transformed to subnets of our model. Thus, the idea

is to start with a broad system-wide model and to refine it by plugging detailed description of

those parts which result to be the critical ones (this selection might be guided by the analyses

performed on the coarse model itself).

The dependability model of a system (composed of elements) consists of the following general

parts: the fault activation processes which model the fault occurrence in system elements and

results in basic events, the propagation processes which model the consequences of basic

events and results in derived failure events and the repair processes which model how basic or

derived events are removed from the system.

events
Basic

events
Derived

Repair process

Propagation
process

Fault activation
process

Figure 2.1: General parts of a dependability model

This overall structure of the dependability model is shown in Figure 2.1. The failure of a sys-

tem is one of the derived events in this model. Note that repair means here a general service

restoration (automatic service restoration if underlying faults disappear; explicit diagnosis, re-

pairing or replacing of hardware; restoring the state and re-integration of software etc.).

The fault activation processes are determined by environmental conditions, and physical or

computational properties of the elements of the system. The propagation processes are influ-

enced by the structure of the system (e.g. interactions, redundancy, fault tolerance schemes).

5

The repair processes are determined by the (physical or) computational policy implemented in

the system.

We tried to keep at the minimum the set of assumptions made for this broad model (notice that

specific assumptions can be made with reference to a specific system when more information is

made available). The following general assumptions (which do not form a complete set) have

been made:

• Solid software failures are not taken into account (assuming that they were removed before

execution by a thorough debugging and fault removal).

• There are no failures which compensate the effects of other ones.

• “Repair” is implicit if the fault disappears after activation (transient hardware faults and all

software faults). Repair of a derived failure is implicit if the failure disappears as soon as the

underlying faults and failures have been repaired. Stateless SW elements and HW elements

are repaired in this way.

• Explicit repair refers to the actions that are planned and scheduled by the designer. Explicit

repair may remove (permanent) faults from the system or restore the service of SW or HW

elements.

This transformation is defined in more steps, where the first is the fundamental task of extract-

ing the relevant dependability information from the mass of information available in the UML

description. In this step, an intermediate model is built, in which we can fix (i) the set of basic

events, (ii) the propagation processes, (iii) the set of derived events, (iv) the target points of the

fault activation processes and finally (v) the target points of the repair processes. In a sense, the

dependability model is built in this step.

The next step allows to define a timed Petri net general enough to postpone the choice of the

automatic tool to use for the analysis to a later stage. Once the tool is selected the construction

of the model that can be directly processed by the tool involves a simple syntactic manipulation.

The dependability model will be built in a modular and incremental way. Several studies are

known in the literature which propose modular modelling approaches based on Petri net mod-

els. For instance, the work in [10] addresses the dependability analysis of the new architecture

of the French air traffic control system by exploiting the composability of Petri net submodels

connected over a set of well-specified interface points. Another method based on a modular and

hierarchical modelling approach which combines different layers of Stochastic Activity

Network model [18] has been presented in [16], for the study of the Italian ANSALDO railway

interlocking systems.

One fundamental choice has been made in defining the transformation regarding the way re-

dundancy has to be expressed in the UML design. We opted for the so called “class based” re-

dundancy which prescribes that elements of a redundancy structure must be defined as in-

stances of specific classes (based on templates and stereotypes).

6

It is also important to notice that this choice favours the construction of a fault-tolerance library,

another component of the HIDE environment. Building a fault-tolerance library means that

many important critical elements or schemes are available from the library. The construction of

such library can be integrated with the dependability modelling in the sense that it will be possi-

ble to associate to the elements of the library their dependability sub-models, which will be de-

rived only once, thus building at the same time a library of dependability sub-models. For sys-

tems adopting only redundant structures taken from the library, no behavioural information is

then required, dependability models are obtained considering the structure level view only.

3 UML: model elements used, additions and constraints

Here we first list the set of UML constructs that are considered in the derivation of our trans-

formation. Then we describe the restrictions to be imposed on the UML designer. These re-

strictions are mainly related to the introduction of redundancy into the system under design, for

which particular structures are to be utilised to permit the identification of redundancy (fault tol-

erance), i.e. the crucial points of the dependability analysis.

Last we prescribe a set of extensions of the UML standard language for dependability parame-

ters to be provided.

3.1 UML model elements used

As already stated, this transformation is deriving a timed Petri net from UML using mainly

structural diagrams. Nevertheless, as anticipated, it may (or must, as the case might be) use

also behavioural diagrams for some specific component or for a more detailed modelling of

critical situations. We now summarise the role UML diagrams and elements considered in our

model derivation (for a more detailed analysis, refer to Section 5.1).

• Use case diagrams: The role of use case diagrams is to identify system level relations at

the top level of the hierarchy. Actor(s) identify the use cases which represent the top level

service of the system, this way also defining the system level failure. The design should

contain a use case diagram with (at least one) use case and actor.

• Class diagrams: Class diagrams are used to identify relations, which are traced to objects

(instanciated from the given classes, represented in other diagrams). By default, each class

is instanciated by a single object. Multiple objects of the same class should be identified on

collaboration, sequence or deployment diagrams.

• Object diagrams: Object diagrams are used to identify objects (as basic software ele-

ments) and the relations among them.

• Collaboration diagrams: Collaboration diagrams can be used to identify objects and their

relations. (Note that in some of the UML-based tools, objects can be included only on col-

laboration, sequence or deployment diagrams.)

7

• Sequence diagrams: Sequence diagrams can be used to identify objects and their rela-

tions. Messages may identify the direction of relation.

• Component diagrams: Component diagrams are used to identify the relations among

components, and in this way among objects realised by the components. Note that the com-

ponents (and their objects) are instanciated on the deployment diagrams.

• Deployment diagrams: Deployment diagrams are used to identify nodes (as basic hard-

ware elements) and relations among software and hardware elements. Relations among

nodes (e.g. communication) are also described here.

• Statechart diagrams: Statechart diagrams are used basically only in the case of redun-

dancy structures, to derive the non-trivial relations among participants of the structure.

3.2 Representation of redundancy (fault tolerance) structures

We adopt the class-based approach of redundancy (fault tolerance) structures.

In general, an element (here SW or HW) is redundant if its service can be delivered by an other

element in a coordinated and automatic way, without the interaction of the client(s).

Accordingly, operation of redundant elements presumes the existence of a coordinator (called

here redundancy manager) and some type of adjudicator. A given service is provided by a set

of redundant elements (objects) called here variants, which are coordinated by the redundancy

manager: the service is available through the redundancy manager and the redundant elements

can not be used separately. An element is participant in a single redundancy structure only.

Other, non-redundant elements can not be included.

Accordingly, redundancy structures must be composed of objects instanciated from the follow-

ing types of classes:

• redundancy manager;

• variant;

• adjudicator, which can be further refined by various subtypes e.g. tester, voter or compara-

tor.

This constraint on the way redundancy is expressed allows first to identify redundancy in the

design and also gives the opportunity to identify the specific relations among the components

(which can be quite complex). These relations can be conveniently represented by a fault-tree

[4], which can be generated automatically provided that some conventions are applied (Section

3.3.3), as it will be shown in Section 5.4.

3.3 Review of the extensions of UML

Since an UML specification does not cover all non-functional aspects required for dependability

modelling (like failure characteristics of model elements), we have to ask the designer to

“extend” the specification in order to be able to construct the dependability model, i.e. define

the basic and derived events, propagation, failure and repair processes. UML provides the fa-

8

cilities to introduce such extensions into the model. The following extensions can be applied di-

rectly to any model element:

Tagged values. Tagged values are pseudo-attributes assigned in the form of a tag (name of a

property) and a value.

Constraints. Constraints are Boolean expressions given mainly in the Object Constraint

Language OCL [17]. Note that constraints can be applied also to the system structure, since

the constraint language provides mechanisms to describe the structure of model elements.

Stereotypes. Stereotypes introduce a new class of modelling elements introduced at

modelling time. A high-level classification (meaning/usage) of elements can be described.

Usually, a stereotype qualifies the base class with additional constraints (that must be sat-

isfied) and tagged values (that must be present). Stereotypes are generalisable, i.e. subtypes

and hierarchy can be defined.

Comments. Comments are arbitrary, unstructured annotations.

Extensions are necessary for the following purposes:

• Identifying redundancy (fault tolerance) structures.

• Assignment of dependability related parameters to elements of the UML to be projected into

elements of the IM.

• Identifying states and events in statecharts of redundancy managers.

The role and form of these extensions will be reviewed in the following sections.

3.3.1 Identifying redundancy structures

As described earlier, the class-based approach is adopted in order to include redundancy struc-

tures in the design. The three basic components of a redundancy structure are the redundancy

manager, the variants and the adjudicator. The classes (or directly the objects) of the structure

are stereotyped as follows:

• Stereotype <<redundancy manager>> -- indicates classes (or objects) being used for re-

dundancy management.

• Stereotype <<variant>> -- indicates classes (or objects) of variants.

• Stereotype <<adjudicator>> -- indicates adjudicators (comparators, voters,

testers etc.).

3.3.2 Assignment of parameters

The model parameters can be included in UML models as standard extensions in the form of

tagged values. The use of tagged values can be prescribed by stereotypes assigned to model el-

ements (e.g. classes of critical objects). Since tagged values can not be applied to a group of

model elements, the common parameters like common mode failure rates have to be distin-

guished by using other mechanisms.

9

Consider the case that, at a given stage of the design process (more or less advanced), an ele-

ment is a basic one in the sense that no further elements in hierarchy levels under this are repre-

sented (not yet or there are no elements at all). If at this point the designer wants to perform an

analysis of the design he/she should set the parameters of that element (as required for the de-

pendability model). Whenever an element is further decomposed then its parameters can be de-

rived during the analysis, using the parameters assigned to the underlying basic elements.

Software elements and hardware elements have different sets of parameters.

Hardware elements

Stateless and stateful hardware elements are distinguished by stereotypes. These stereotypes are

constrained to have a set of tagged values storing the actual set of parameters. The designer can

assign a tagged value with one, two, or no values. In the first case, the value is intended to be

used to instanciate the parameter, in the second the two values specify a range for a sensitivity

analysis, and in the third, when no value is assigned by the designer, then the parameter should

be derived.

• Stereotype <<stateless>> indicates a stateless element. The necessary tagged values are the

following:

• tagged value “FO = x.y“ -- fault occurrence

• tagged value “PP = x.y“ -- percentage of permanent faults

• tagged value “RD = x.y“ -- repair delay

• Stereotype <<stateful>> indicates a stateful element. The necessary tagged values are the

following:

• tagged value “FO = x.y” -- fault occurrence

• tagged value “EL = x.y” -- error latency

• tagged value “PP = x” -- percentage of permanent faults

• tagged value “RD = x.y” -- repair delay

These stereotypes can be applied to nodes (in deployment diagrams) of UML.

Software elements

Similarly, stateless and stateful software elements are distinguished by stereotypes. These

stereotypes are constrained to have a set of tagged values storing the actual set of parameters. If

a tagged value does not have a value assigned by the designer then it means that this parameter

should be derived.

• Stereotype <<stateless>> indicates a stateless element. The necessary tagged value is the

following:

− tagged value “FO = x.y” -- fault occurrence

• Stereotype <<stateful>> indicates a stateful element. The necessary tagged values are the

following:

− tagged value “FO = x.y” -- fault occurrence

10

− tagged value “EL = x.y” -- error latency

− tagged value “RD = x.y” -- repair delay

These stereotypes can be applied to the following model elements of UML:

• Use cases. If a use case is assigned numerical dependability parameters then it means that its

refinement is not relevant for the dependability model.

• Classes. In this case, all objects instanciated from the class should be assigned the same set

of parameters.

• Packages. If a package is assigned numerical dependability parameters then it means that its

refinement is not relevant for the dependability model.

• Objects.

• Components. If a component is assigned numerical dependability parameters then it has to

be considered in the dependability model as a software element.

Relations

Relations indicating error propagation paths are assigned propagation-related parameters. A

stereotype is used for this purpose:

• Stereotype <<propagation>> indicates an error propagation path, with the following pa-

rameter:

− τagged value “PP = x.y” -- propagation probability

This stereotype can be applied to the following model elements of UML (for a detailed analysis,

refer to Section 5.1):

• Generalisation relationship <<extends>> and <<uses>> between use cases.

• Association between classes. In general, an association denotes a bidirectional error propa-

gation path, this way both association ends may have stereotypes. In case of aggregation or

composition, only one association end (with the special adornment) can have stereotype.

• Dependency <<uses>> between classes.

• Dependency <<uses>> between packages.

• Links between objects.

• Set of messages in sequence diagrams. Since the parameters characterise not the messages

but the communication path, it is enough to assign the parameters to one of the messages

along a given path.

• Actions of statecharts (in the same way as messages).

• Dependency <<calls>> between components.

• Deployment relations (graphical nesting or composition associations) between nodes and

components/objects.

• Association between nodes.

11

A well-formed model requires that a type form (class, association etc.) and its instance form

(object, link etc.) should not have different dependability parameters. Such contradictions can

be resolved by considering the parameters assigned to instances (more refined elements) valid,

according to the object-oriented approach.

3.3.3 Conventions in statecharts

In order to derive the non-trivial relations in redundancy structures (i.e. the fault tree assigned

to the redundancy structure), the statechart of the redundancy manager has to be analysed. This

analysis is supported by stereotyping the states and events in the statechart as follows:

• Stereotype <<failure>> of a state indicates that it is an explicit failure state.

• Stereotype <<failure>> of an event indicates that it is an explicit failure notification towards

the client(s).

• Stereotype <<response>> of an event indicates that it is a normal response of the object to-

wards the client(s).

Moreover, a more detailed distinction of adjudicators (indicated by the stereotype

<<adjudicator>> introduced above) has to be defined:

• Stereotype <<tester>> indicates a tester object called by the redundancy manager to perform

(acceptance) tests on the results of the variant(s).

• Stereotype <<comparator>> indicates a comparator object which is called by the redundancy

manager to compare the results of variants.

In redundancy structures, the behaviour in the presence of faults is determined not only by the

individual failure/repair parameters of the elements but also by their common mode failure char-

acteristics. Similarly, detection coverage of adjudicators is an important parameter of the struc-

ture. Accordingly, the following tagged values are used:

− tagged value “CF = x.y” -- common mode failure occurrence

− tagged value “DC = x.y” -- detection coverage

Since tagged values can be assigned to single elements only, the above tagged values has to be

assigned to a comment associated with the elements for which they are defined. Note that this

information is used only in redundancy structures, when the fault tree corresponding to the

failure of the structure is generated.

4 The intermediate representations

4.1 Intermediate model

The intermediate model is a general model of a system composed of multiple elements. The

structure of the intermediate model is inspired by the approach presented in [13]. For our pur-

poses, we slightly modify that model. We use a more reduced hierarchy and, for the sake of

12

convenience, we distinguish between stateless (purely functional) and stateful (having internal

state) elements.

Practically speaking, the intermediate model is an hypergraph G=(N,A), where each node in N

represents an entity described in the set of UML structural diagrams, and each hyperarc repre-

sents a relation between elements, that is a bit of the structure itself, as it has been projected

from the UML diagrams. Both the nodes and the hyperarcs are labelled, that is they have at-

tached a set of attributes completing their description. These attributes are obtained from the

UML diagrams. We now give the semantic of the intermediate model G, by describing the sets

N and A and what they represent.

The generic elements of set N are described by the following list:

NODE <name> <type of node> <list of attributes>

There are six distinct types of nodes, each with a particular set of attached attributes:

Stateless hardware elements (type SLE-HW). They represent purely functional hardware

elements. The attributes for the SLE-HW type of nodes are the following ones:

<fault_occurrence>
<permanent/transient>
<repair_delay>

The fault_occurrence field identifies a random variable, which represents the time

needed for a fault to hit the hardware component the element represents. The field perma-

nent/transient specifies the relative percentages of the two type of faults. The re-

pair_delay attribute specifies a random variable representing the time needed to perform

the repair of the hardware element in the case it has been hit by a permanent fault. This time

to repair includes the time for fault treatment. Whenever any of these parameter is not speci-

fied, the a more detailed submodel is to be included in final dependability model. Notice that

for the time being we have considered a single failure process for both the transient or per-

manent faults affecting a hardware element. This will be probably refined in the next phase

of the project. Anyway, it is worthwhile observing that if an accurate knowledge of the fault

occurrence processes is available, then the fault-occurrence field and the permanent/transient

field as well may be left unspecified, and a detailed fault submodel can be included in the

final dependability model, as already specified.

Stateful hardware elements (type SFE-HW). They represent hardware components of the

system, which do have internal state. The attributes for the SFE-HW type of nodes are the

following ones:

<fault_occurrence>
<error_latency>
<permanent/transient>
<repair_delay>

13

The field fault_occurrence is defined as for the SLE-HW elements. Because of the

presence of an internal state, the occurrence of faults does not immediately lead to the failure

of the component, but it first generates some erroneous internal state, which eventually

brings the component to failure after a latency time. The fields error_latency then plays

the same role as fault_occurrence, but it refers to the process with which errors bring

to failure. The repair_delay attribute specifies a random variable representing the time

needed to perform the repair of the hardware element in the case it has been hit by a perma-

nent fault. This time to repair includes for SFE-HW elements the time for fault-treatment

plus the time necessary to perform the error recovery. Indeed, the internal state of the ele-

ment may have been corrupted by the effects of the fault activation, and needs to be recov-

ered.

Stateless software elements (type SLE-SW). They represent purely functional software

elements. The attributes for the SLE-HW type of nodes are the following ones:

<fault_occurrence>

The fault_occurrence field represents the time needed for a fault to hit the software el-

ement. Let us remind that faults affecting a software component are only of transient nature,

therefore there is no need to perform fault-treatment actions. Moreover, since the component

is stateless, there is no need to perform error recovery, neither. The repair of a SLE-SW el-

ements is thus implicit.

Stateful software elements (type SFE-SW). They represent software components of the

system, which do have internal state (variables). The attributes for the SFE-SW type of

nodes are the following ones:

<fault_occurrence>
<error_latency>
<repair_delay>

The fields listed above are defined as for the SFE-HW elements. However, the meaning of

the repair_delay attribute is slightly different. Indeed, faults may lead to a corruption of

the internal state of the stateful software component, thus making necessary a state restora-

tion. However, since faults affecting the software are transient, for a SFE-SW type of ele-

ment it accounts for the time needed to perform the error recovery solely, without any fault-

treatment.

Fault-tolerance structures (type FTS). FTSs are composite elements consisting of SLEs or

SFEs. FTSs are not physical entities, they only represent the logical grouping of SLEs or

SFEs that implement a redundancy structure. An FTS has the following attached attribute:

<fault-tree>

14

which describes the way the failures of the elements composing the structure propagate,

possibly resulting in the failure of the whole structure if the fault-tolerance provisions are not

able to tolerate them. The description of the fault-tree is obtained:

1. From the fault-tolerance library, if the UML designer has selected the fault-tolerance

scheme from the list of those predefined made available in the library. In this case the

fault-tree has been defined and associated with the name of the fault-tolerance scheme.

2. With the analysis procedure specified in Section 5.4, if the designer has defined a new

fault-tolerance scheme not already present in the library.

System (type SYS). SYS nodes are introduced in the intermediate model to represent the

components of the system whose dependability attributes are the object of the evaluation and

to represent compound elements as well. In particular, a SYS node may represent the system

itself, that is the entity that provides the whole set of functionalities (use cases) to the final

users (the actors). Also, it may represent any UML entity about which the designer is inter-

ested in estimating the dependability figures for a particular design. In this case the attribute

list for the SYS element is:

<measure_of_interest>

 which specifies the particular dependability attribute of interest for the analysis, that is one

among pointwise reliability, steady-state reliability (MTBF), pointwise availability, steady-

state availability.

A SYS node does not necessarily corresponds to a particular entity appearing in some UML

diagrams. For instance, SYS nodes may also be used to represent sets of system elements,

usually below a high-level compound one (like a use case), which have interactions with

other system elements as a whole. In this case, the attribute list of the SYS node is empty.

The nodes of the intermediate model G are linked by the hyperarcs in the set A. The generic el-

ement of set A is described by the following list:

HYPERARC <type of hyperarc>
<from_node> <to_node_1, to_node_2,...,to_node_n>
<list of attributes>

where the field from_node gives the name of the originating node, and the list to_node_1,

...,to_node_n gives the names of the destination nodes of the hyperarc. There are the fol-

lowing two distinct type of hyperarcs, describing two different types of relations among nodes

of the intermediate model:

Uses the service of (type U). The type U hyperarc is a simple arc connecting element

node_1 and node_2 of the intermediate model. It represents a client-server relation be-

tween node_1 and node_2, a relation that is unidirectional (not reflexive). In the interme-

diate model, SW elements (either SFE or SLE) use the services of other SWs, HWs or

FTSs. HWs use the services of another HWs or FTSs made up of HWs. Actors (i.e. human

15

users or external systems which interact directly with the system under investigation) use the

system, that is (the collection of) use cases. Elements involved in such relation are coupled

in terms of failure propagation: whenever the server node_2 fails, there is a possibility

(non-zero probability) that the client node_1 fails (or reaches an erroneous state) as a re-

sult. A failure of the client node_1 might as well result in a error/failure of the server

node_2, for instance if an illegal request is generated by node_1, and node_2 is not able

to trap it, but we did not consider such level of detail during this first phase.

Also, the U relation prescribes a constraint for the repair of a node. Indeed, the repair ac-

tions needed to recover a node from a failure can be logically split into two parts. The first

part is related to the fault treatment/error recovery that can be performed locally at the node,

and the second is related to the nodes the node is using, that is external environment of the

node, which must be correctly behaving as well before completing the recovery. Therefore,

the repair of a node can not be completed until all the used nodes are fully operational them-

selves.

The list of attributes field for the U type of hyperarc is as follows:

<prop_prob>

The field prop_prob gives a measure of the probability that a failure of the server

node_2 will result in an error/failure on the client side, that is in node_1.

Is composed of (type C). The type C hyperarc links an FTS node to the set SWEs or HWEs

it is composed of. The C relation is used to denote the non-trivial dependencies between the

FTS and its composing elements, dependencies that are described in the fault_tree field

of the FTS node. This relation is also used to link the nodes marked SYS with the set of in-

termediate model nodes they consist of. No attributes are foreseen for the type C hyperarcs.

In the following, in order to avoid confusion with UML nodes (representing hardware entities),

nodes of the intermediate model will often be referred to as “elements” of the IM.

4.2 Timed Petri Nets

The class of timed Petri nets we consider hereafter is not given a particular name in the litera-

ture. We shall keep referring to them as timed Petri nets, to emphasise that they allow

modelling activities whose duration is a random time. However, we are not interested in a rig-

orous specification of the class of distribution from which these random times can be drawn,

because in this first phase of the project we do not want to restrict the set of automated tools

that could be utilised for the solution of the models.

We give in the following a short description of timed Petri nets. A timed Petri net model is for-

mally a five-tuple (P, T, I, O, S), where:

• P={P1,P2,...,Pn} is the set places, each graphically represented as a small circle. Each place

is described as follows:

16

PLACE <name> <tokens> <bound>

The field name identifies the place in the net. The place may contain a possibly bounded (the

threshold is given by field bound) non-negative integer number of tokens, which represent

some entities of the system. The number of tokens in a place Pi is called the marking of the

place, and is given by the field tokens. The n-sized vector that collects the marking of all

the places of the net is called the marking of the net.

• T={t 1,t2,...,tm} is the set of transitions, each of them graphically represented as a small bar.

A transition models the delay necessary to complete a certain activity of the system, and is

described as follows:

TRANSITION <name> <random_variable> <memory_policy> <guard> <priority>

Each transition has a name, an associated random variable, and a memory policy. The ran-

dom variable is a set of fields specifying the distribution of the delay necessary to perform

the associate activities, and the memory policy specifies a rule for the sampling of the suc-

cessive random delays from the distribution. Both the random variable distribution and the

memory policy may be dependent from the marking of the net. Also, any transition may op-

tionally have associated a guard, that is a Boolean function of the net marking. Immediate

transitions may optionally have a priority, which is used to solve the competition among

immediate transitions. The competition among immediate transitions can be also probabilisti-

cally solved by associating a probability to the transition through the field ran-

dom_variable.

• I is the set of input arcs, contained in PxT, each described as follows:

INPUT_ARC <from_place> <to_transition> <weight>

The two fields from_place and to_transition specify the name of the originating

place and of the transition destination, respectively. An integer non-zero weight is associated

to the arc. An input arc having a negative weight is called an inhibitor arc, otherwise it is

called an ordinary input arc. The places linked by an ordinary input arc to transition ti are

called input places for that transition, and the places linked to transition ti by an inhibitor arc

are called inhibitor places for ti. The weight on an input arc may be dependent from the

marking of the net.

• O is the set of output arcs contained in TxP. An output arc is as follows:

OUTPUT_ARC <from_transition> <to_place> <weight>

All the places linked by an output arc to transition ti are called output places for that transi-

tion. The weight on an output arc may be dependent from the marking of the net.

17

• S is a list of subnets. A subnet can be described with the same five-tuple (P, T, I, O, S), we

used above to define the whole timed Petri net model, that is a subnet may contain places,

transitions, arcs and other nested subnets, as follows:

SUBNET <name>
<list of local places>
<list of local transitions>
<list of inner subnets>
<list of input arcs>
<list of output arcs>

END SUBNET

A subnet has a name and may contain other nested subnets. The following convention is

used for the naming of the objects of the model. Objects’ names are always local to the sub-

net where the objects are defined. However, an arc may link two objects defined in different

subnets. In this case, the arc itself is at a higher level than both the two subnets. The name

of the two objects is identified by prefixing them with the names of the nested subnets, until

the subnet they are defined in.

S1 S2S3P1t1

upper level

Figure 4.1: Convention for the naming of objects

For instance, consider the case in Figure 4.1, where the output arc is linking transition t1

defined in subnet S1, to place P1 defined inside subnet S3, which is nested in subnet S2. At

the topmost level, the output arc will be described as follows:

OUTPUT_ARC <from_transition=S1.t1> <to_node=S2.S3.P1> <weight=?>

Subnets are a convenient modelling notation to make the models clearer. They encapsulate

portion of the whole net, thus allowing for a modular and hierarchical definition of the

model. Very useful and convenient in the context of HIDE, the possibility of having nested

subnets allows the combination of models at the different level of detail. Starting from a

coarse model of a system, some parts of it that are of particular interest can be subsequently

substituted with a whole more refined subnet, and this procedure can be iteratively repeated

until the desired level of detail is achieved. Such a substitution procedure is relatively easy,

provided that the interface points between a subnet and the rest of the model have been

clearly specified.

It is worthwhile observing that the possibility of defining subnets in the timed Petri net

models once again does not imposes any constraints on the automated tools. Passing from

the hierarchical view of the model to a flat one is indeed a straightforward procedure,

18

whereas going to the opposite direction may be a formidable problem. On the other hand,

there are tools, like UltraSAN [18], that allow the hierarchy to be exploited, during both the

model definition phase and the model solution phase. For those tools, the translation from

the timed Petri net paradigm to the specific language definition of the models can keep the

information on the hierarchy to best exploit the features of the tool.

The preceding elements define the static structure of a time Petri net. Besides, there is a dy-

namic behaviour of the model, which evolves from the initial marking M0 to reach new mark-

ings. The basic rules for the evolution of the model are as follows. A transition ti is said to be

enabled at time t, if and only if at that time the following conditions are all satisfied:

1. Each of its input places holds at least as many tokens as the weight of the input arc con-

necting it to ti.

2. Each of the inhibitor places holds less tokens than the absolute value of the weight of the

inhibitor arc connecting it to ti.

3. The guard for ti evaluates true for the current marking of the net.

As soon as ti gets enabled, a random delay is chosen according to the distribution and the mem-

ory policy associated to ti, and a timer starts counting from that delay down to zero. If ti stays

enabled until the timer reaches zero, the transition ti is said to fire. In this case, the marking of

the net is changed as follows:

• Each of the input places is subtracted a number of tokens equal to the weight of the corre-

sponding input arc.

• Each of the output places is added a number of tokens equal to the weight of the correspond-

ing output arc.

On the contrary, if any of the conditions 1), 2), 3) stops to be fulfilled anymore before the de-

lay elapses, then the transition is disabled. The residual value of the timer is held or deleted,

depending on the memory policy selected for the transition. Priorities are used to decide which

immediate transition is to fire first whenever two immediate transitions get enabled simultane-

ously: the one with higher priority fires the first.

Notice that the class of timed Petri nets so defined is quite general. It encompasses the class of

Generalised Stochastic Petri Nets (GSPN) [1], Deterministic and Stochastic Petri Nets (DSPN)

[2] and Markov Regenerative Stochastic Petri Nets (MRSPN) [6]. If the timed Petri net model

only contains instantaneous and exponential transitions, then it is a GSPN that can be easily

translated into the specific formalism for any of the automated tools able to solve it, like

PANDA [3], GreatSPN [5], SPNP [7], UltraSAN [18], TimeNET [9], Surf2 [11]. If

deterministic transitions are included as well, then the model is a DSPN which can be

analytically solved with specific tools like UltraSAN, TimeNET. If other kinds of distributions

of the transition firing times are included, then the simulation can be used to solve the timed

Petri net model. Alternatively, a transformation technique as the one involving fictitious stages

[19] can be applied to translate a general distribution into a sequence of exponential stages

19

(Coxian or phase-type distribution). After that, the model can still be solved by using tools for

GSPN models.

5 From UML to the Intermediate model

The main task of this part of the transformation is to project the elements and relations of the

UML design to the elements and relations of the intermediate model (IM). From this point of

view, first the analysis of the role of the different views and model elements of UML is per-

formed (Section 5.1). The redundancy (fault tolerance) structures are analysed in Section 5.2.

After this analysis, the projection is formalised in terms of the UML metamodel in Section 5.3.

5 . 1 Analysis of UML

The UML model views (diagrams) are analysed in order to identify the system elements and

relations to be represented first in the Intermediate model and the in the dependability.

• Software or hardware elements are distinguished as listed in the definition of the IM.

According to the high-level approach, not only the “natural” software elements as objects,

tasks, processes etc. are identified but also higher-level, compound elements as use cases or

packages.

As the UML design is hierarchical, intermediate levels of the hierarchy can be represented by

system elements. The representation of a compound UML element (like a package or a use

case) depends on the level of detail described or selected by the designer. If a compound

UML element is not refined, or its refinement is not relevant for the dependability analysis

(as selected by the designer) then it is represented by a simple software or hardware element

in the IM. If it is refined and its refinement is relevant then its subcomponents are repre-

sented as simple elements and the compound as a whole is represented by a SYS element in

the Intermediate model.

• Relations are identified which may result in error propagation among the model elements

identified above. According to the high-level structural approach, all potential propagation

paths are taken into account, thus the structure of the model represents worst-case error

propagation. The fine tuning is left to the actual parameter assignment.

Now we will discuss diagram by diagram the role of the diagrams (from the point of view of

the dependability model) and the projection of its elements. We start from the highest level dia-

gram and then look at more and more refined ones. Implementation diagrams will follow at the

end.

5 . 1 . 1 Use case diagrams

The role of use case diagrams is to identify system level relations. Model elements of use case

diagrams include actors, use cases, communication associations among actors and use cases,

and generalisations among use cases:

20

• A use case represents a coherent functionality of the system. Usually, each use case is re-

fined by interactions of objects. However, it may happen that in the early phases of the de-

sign only some (important or critical) use cases are refined, the others are not.

Accordingly, if a use case is not refined or the refinement is not relevant then it is projected

into a single software element. If a use case is refined and the refinement is relevant, then it

is projected into a system element of the IM, which relates the elements resulting from the

projection of the UML submodel of the use case.

• Actors represent (roles of) users or external entities which interact directly with the system.

Being an external user, an actor is not projected into the IM.

• Communication associations among actors and use cases identify the top level service of the

system. If a use case is connected directly to external actor(s) then it is projected into a top

level system element of the IM. A communication association is an error propagation path

from the system to the actor, however, it is not projected into the IM (since actors are not

projected into the IM).

Usually, a real system is composed of several use cases, many of them being connected di-

rectly to actors. From the point of view of dependability, the designer (and user) of a system

is usually interested in the dependability of a given service, i.e. of a use case, of the system.

Accordingly, dependability measures of such use cases can be computed separately, by a set

of dependability models assigned to each use case. This way, each IM includes only a single

top level system element. However, all services of the system can also be composed in a

single dependability model, computing then measures corresponding to multiple top level

system elements.

• Relationships among use cases are represented in UML by generalisation relations with

stereotype <<extends>> and <<uses>>.

- An extends relationship means that a use case includes the behaviour implemented by an

other one. It indicates and error propagation path in the direction of the relationship, thus

it is projected into the IM.

- A uses relationships means a similar inclusion of the behaviour, thus it will be projected

similarly into an error propagation path in the IM.

An example of a use case and the corresponding IM is shown in Figure 5.1.

5 . 1 . 2 Class diagrams

Class diagrams represent the types (descriptors) of the objects of the system. Several declara-

tive extensions and relations are also included. Class diagrams may also contain objects (we

will describe objects separately, in object diagrams).

• Since classes are declarative (not implementation) elements, they are not projected directly to

elements of the IM. They only identify the relations (described below) among the objects

instanciated from the given class. Similarly, inheritance hierarchy of classes is utilised only

21

to identify the relationships: if an object is instanciated from a given class then the relation-

ships of this class and also of its ancestors have to be taken into account.

Order
product

Supply
consumer

data

Supply
product

data

Arrange
payment

Fill in
forms

"extends" "extends"

"uses" "uses""uses"

Supply
consumer

data

Supply
product

data

Arrange
payment

Fill in
forms

Order
product

u u u

u u

SFE-SW

SFE-SW

SFE-SW SFE-SW SFE-SW

SFE-SW

Figure 5.1: A use case diagram and its projection into the IM

Features of classes (attributes, operations, methods) are not projected to any element of the

IM. (In a more refined model, attributes can be thought as composite elements of a class.) If

a class has attributes, then it can be assumed that it has state, i.e. its objects will be projected

to stateful software elements of the IM.

• An interface is a specifier of the externally visible operations of a class (does not have im-

plementation). It is not projected to any element of the IM.

• Associations are binary or n-ary relations among classes. In general, associations mean that

the objects instanciated from the corresponding classes know (can name) each other.

Usually (especially in collaboration diagrams) communication among objects is possible

along the associations.

Accordingly, an association indicates a potential bidirectional error propagation path among

these objects, thus it is projected into the IM. The following additional features might be

taken into account:

- Or-associations (indicating a situation when only one of several possible associations

may be valid) are all projected into the IM (a worst case model is generated).

22

- Multiplicity of association ends are taken into account only in the “default” instantiation

of classes (see below).

- Navigability of an association end denotes whether the instance is directly reachable via

the association. However, it does not give precise information about the direction of the

potential error propagation, since through return values also an unidirectional navigation

may result in bidirectional error propagation. Accordingly, each association is projected

by default to bidirectional error propagation; further refinement is possible on the basis of

behavioural diagrams (collaboration or sequence diagrams).

- Aggregation (as a special association) is projected into an unidirectional error propagation

path: the aggregate uses the service of the aggregated elements.

- Composition (as a special association meaning strong ownership and coincident life-

times) is projected similarly into an unidirectional error propagation path: the composite

uses the service of the sub-elements.

- Unary associations (both ends attached to the same class) denote associations among ob-

jects of the same class. According to the structural (worst case) approach, they are pro-

jected into the IM denoting error propagation paths from each object to each other.

Reflexive associations (one object to itself) are not considered.

- Association classes are handled as separate classes having associations with the classes at

the endpoints of the association.

- N-ary associations are projected into the IM as a set of binary associations, where each

possible pair of classes included in the n-ary form is taken into account. (In general, the

designer is asked to include only binary associations, since in this way the assignment of

the dependability-related parameters of associations is more easy.)

- Qualifiers are attributes that are used to partition a set of objects associated with an other

object across an association. They are not projected into relations of the IM, since they

are not relevant from the point of view of error propagation.

• Generalisation is the relationship between a more general element (class) and a more specific

one. Generalisation does not indicate an error propagation path, thus it is not projected into

the IM (but the inheritance of relations defined by generalisations is taken into account).

• Dependency means a semantic relationship between classes. From the point of view of de-

pendability modelling, those dependencies are relevant which relate also the instances (not

only the classes themselves, like <<refine>> or <<trace>> relationships). This way in the

set of the predefined types of dependencies, only the <<uses>> dependency (meaning that

an element requires the presence of an other element for its correct functioning) indicates an

error propagation path in the direction of the dependency, thus it is projected into the IM.

• Derived elements are shown in UML only for the sake of clarity, they are not projected into

any element of the IM.

23

Packages are included mainly on class diagrams, this way their projection is described here.

Relations among packages have to be taken into account.

• A package is a grouping of model elements. Packages may be nested within other packages.

The entire system description can be considered as a single high-level package. Any model

element of UML can be included in a package.

If the content of a package is not described or it is not relevant then the package is projected

into a single software element. If the content of the package is described and relevant then it

is not projected into any element of the IM, since its content is projected separately.

• Similarly to classes, the <<uses>> dependency of packages may indicate and error propaga-

tion path, in the direction of the dependency. If a package is refined, then this dependency is

inherited to all elements contained by the package. These dependencies are projected into the

IM.

As mentioned earlier, classes (and packages of classes) are declarative elements, they are not

projected to elements of the IM. However, in the early phases of the design the instantiation of

the model (in the form of object, collaboration, sequence or deployment diagrams) is not avail-

able. It might be useful for the designer to have a “default” instantiation of these diagrams, in

order to compute rough, preliminary dependability measures. We can establish the following

simple rules for the default instantiation:

If a class has multiplicity specification (corresponding to an association) then the value or the

lower bound of its range (if it is not equal to zero) can be taken into account.

• If a class has no multiplicity specification or the lower bound of its range is zero, then by de-

fault a single instance is taken into account.

• Metaclasses, type classes and parameterised classes (i.e. templates) are not instanciated.

An example of a class diagram and the IM corresponding to its default instantiation is shown in

Figure 5.2.

24

Account Customer

Transfer Corporate PersonTransfer

balance

raise()
pay()

* 1

name
address

rating()

age
sex

Customer

Corporate

amount

Transfer

Person

1

Account

manager

2..*

u u

u

uu

u

u

u
u

SFE-SW SFE-SW SFE-SW

SFE-SWSFE-SW

SFE-SW

u

Figure 5.2: A class diagram and its projection into the IM

•5 .1 .3 Object diagrams

Object diagrams include instances, i.e. objects and data values. Some tools do not support ob-

ject diagrams, objects should be represented in class diagrams (a class diagram with objects

only is an object diagram) or in other diagrams (sequence, collaboration, deployment).

• An object is a particular instance of a class. It has identity, its own attribute values (state).

An object is projected into a software element of the IM.

• A composite object represents a high-level object made of tightly bound parts. As a compos-

ite object is an instance of classes related by composition, its projection is the same as de-

scribed above, in the case of composition: the composite object and each sub-object are pro-

jected into software elements of the IM, with unidirectional error propagation paths from the

sub-objects to the composite one.

• Links between objects are instances of associations between classes. They are projected into

relations of the IM (between elements representing the objects) in the same way as the asso-

ciations in the class diagram. By default, a bidirectional error propagation path is included

in the IM.

5 . 1 . 4 Collaboration diagrams

Collaboration diagrams with messages show the interaction among objects and their links to

each other, collaboration diagrams without messages show only the context. Accordingly, col-

laboration diagrams can be used to identify objects as well as relations among them. Moreover,

25

the direction and other message properties may indicate the direction of the potential error prop-

agation. Note that use cases are often refined to collaborations, and thus also actors may appear

in collaboration diagrams. It helps to identify (or refine) the top level service of the system.

• Objects (object roles) are projected into software elements of the IM. Named objects are

projected separately, while unnamed objects (object roles, general class references) are

bound to all instances of the given class. Active and passive objects are not distinguished.

• Multiobjects represent sets of objects. If the (minimal) cardinality of the set is known then a

multiobject is projected into a set of software elements of the IM. Otherwise, it is projected

into a single software element only. Individual objects from the set, that are represented sep-

arately (using composition association) are projected separately.

• Links are projected into error propagation paths. If a link is shown on the collaboration dia-

gram without messages then (in the worst case approach) it indicates a bidirectional error

propagation path. Messages shown among the links may determine the direction of the error

propagation as follows:

- Signals indicate an unidirectional error propagation from the sender to the receiver.

- Operations, i.e. procedure calls indicate in general a bidirectional error propagation be-

tween the receiver and the sender (the sender uses a service of the receiver but also may

cause errors in the receiver by changing its state). Exception is the case when he receiver

is stateless, then the error propagation is unidirectional, from the receiver to the sender

(only the service of the receiver is used).

- Guards do not modify the projection (a worst case approach is adopted).

• Pattern structures, parameterised collaborations are not used in the subset of the UML to be

analysed. Similarly, object destruction, termination and creation are not allowed.

An example of a collaboration and the corresponding IM is shown in Figure 5.3.

Joe:Clerk

name="Joe Clark"
age=44

Jim Joe

Check

customer agent

age=32

Jim:Person

name="Jim Carey"

SFE-SW SFE-SWU

U

U

3: refused

1: request()

2: check(Jim)

request()

check()

Check:CreditChk

SLE-SW

Figure 5.3: A collaboration diagram and its projection into the IM

26

5 . 1 . 5 Sequence diagrams

The role of sequence diagrams is similar to the role of collaboration diagrams, however, in se-

quence diagrams the links among objects are not shown, instead, the diagram concentrates on

the temporal sequence of messages. A generic form describes all possible sequences while an

instance form describes only one actual interaction pattern.

From the point of view of high-level, structural dependability modelling, the time sequence of

messages is irrelevant, thus the diagram is used to identify objects and indicate the error propa-

gation paths. The projection is the same as in the case of collaboration diagrams:

• Objects (object roles) are projected into software elements of the IM.

• Messages are projected into error propagation paths in the same way as in the case of collab-

oration diagrams.

• Lifelines, activations and transition times are irrelevant from the point of view of error prop-

agation. However, activations help to identify call actions (procedure calls).

• Object destruction, termination and creation are not enabled in the subset of UML to be

analysed.

5 . 1 . 6 Statechart diagrams

Statecharts diagrams show the internal behaviour of an object, i.e. the set of states that an

object goes through in response to events, together with its actions.

The role of statechart diagrams in high-level dependability modelling is to identify error propa-

gation paths (not shown in other diagrams). This can be done by the analysis of the actions

shown in the statechart. The sequence of states and the actual behaviour is not relevant.

• Actions expressed in the form of send clauses indicate an error propagation path. A send

clause contains the destination expression (which evaluates to an object or a set of objects), a

message name and its parameters. Accordingly, there is (are) error propagation path(s) be-

tween the given object and the destination one(s).

• Actions without send clauses can be mapped only indirectly to error propagation paths.

These actions result in events (signal events or call events), which may trigger changes in

other objects, as described in the statecharts of these objects. Accordingly, there is a poten-

tial error propagation path among the given object and all others which include these events

as triggers.

A message (resulting from an action) may be a signal or an operation (procedure call).

Accordingly, the direction of the error propagation path is refined like in the case of messages

in collaboration diagrams.

The special analysis of statecharts in the case of redundancy managers (to derive the static rela-

tions of objects involved in a redundancy structure) is described in Section 5.4.

Activity charts are considered as a special case of statecharts.

27

5 . 1 . 7 Component diagrams

Component diagrams show the dependencies among software components. They have only a

type form without instances. From the point of view of dependability modelling, they can be

used to identify the relations among objects realised by the components.

• A component type represents a piece of implementation of the system. Only executable com-

ponents are relevant.

• Dependencies are relevant only among run-time components. The <<calls>> dependency

indicates a potential error propagation path among the objects realised by the components,

the direction is from the called to the caller (the same as the direction of the dependency).

If a component is not instanciated on deployment diagrams then a default instantiation (a single

component) may be useful.

5 . 1 . 8 Deployment diagrams

Deployment diagrams show hardware components and the configuration of run-time compo-

nents on them. Deployment diagrams have instance form, this way component instances are on

node instances, and objects may reside in component instances.

• Nodes are run-time physical objects, usually hardware resources. They are projected into

hardware elements in the IM.

• Objects realised by components are projected into software elements of the IM.

•

Mac

Form Transfer

GUI

DBserver

UnixPC

Transfer

Mac

DBServer

UnixPC

Form

U U U

U

U

SFE-SW SFE-SWSFE-SW SFE-SW

SFE-HW SFE-HW

Figure 5.4: A deployment diagram and its projection into the IM

Components represent pieces of run-time software. If a component is refined, i.e. the set of

objects realised by the component is given, then the component is not projected into a sepa-

rate software element of the IM (note that the set of objects is projected into software ele-

ments). If a component is not refined then it is projected into a single software element of the

28

IM. Deployment relations among nodes and components and relations among components

and objects (both shown by graphical nesting or composition associations) indicate potential

error propagation paths with direction from the nodes to the objects. They are projected into

the IM.

An example of a deployment diagram and its projection into the IM are shown in Figure 5.4.

5 . 2 Analysis of structures

Redundancy structures require a non-trivial projection into the IM, which is different from the

one described in the previous subsections.

Redundancy structures are identified by stereotyped classes (or objects): the redundancy man-

ager, the adjudicators and the variants are stereotyped as <<redundancy manager>>,

<<adjudicator>> and <<variant>>, respectively.

A redundancy structure is projected into the IM in the following way.

• The redundancy manager, the adjudicators and the variants are projected into software or

hardware elements of the IM.

• The structure as a whole (identified by the redundancy manager) is projected into an element

called “fault tolerant structure” (FTS) element. This element is connected to the elements rep-

resenting the redundancy manager, the adjudicators and the variants using special relations

“is composed of”, collectively represented in the Intermediate model by means of a type C

hyperarc.

AccTest

Solve1 Solve2

int var1 int var2

RBcontrol

int state[]

RBcontrol Solve1 Solve2 AccTest

RS1

<<redundancy_manager>>

<<adjudicator>>

<<variant>><<variant>>

FTS

SFE_SW SFE_SWSFE_SW SLE_SW

C C C C

Figure 5.5: Projection of a simple redundancy structure (recovery blocks)

29

Due to the redundancy scheme implemented by the manager, the “is composed of” relations

indicate nontrivial error propagation paths from the elements of the structure towards the clients

(which use the service of the structure as a whole). In most of the cases, this error propagation

can be described by a fault tree. If the redundancy structure is obtained from the fault-tolerance

library, then the fault tree is available from the library as well (generated by dependability ex-

perts). In the case of user-defined structures, the fault tree should be derived automatically, as

part of the projection into the IM. This subtask will be described later, in Section 5.4.

An example of a simple redundancy structure and its projection are depicted in Figure 5.5.

5 . 3 Definition of the projection

A (more formal) definition of the projection can be given in terms of metamodel elements of

UML. (Note that the UML design database usually implements the metamodel itself, this way

the implementation of the projection should also be based on metamodel definition.)

In comparison with Section 5.1, here we follow an inverse direction and list the UML meta-

model elements which are projected into software elements (Table 5.1), hardware elements

(Table 5.2) and “uses service of” relations (Table 5.3). Note that an unidirectional “uses the

service of” relation (from the client to the server) indicates an error propagation path in the re-

verse direction (i.e. from the server to the client).

Metamodel element Remark

UseCase If its refinement is not relevant (it is stereotyped)

Class By a default instantiation

Package If its refinement is not relevant (it is stereotyped)

Object Usually only objects are projected

Component By a default instantiation

Table 5.1 UML metamodel elements projected into software elements of the IM

Metamodel element Remark

Node

Table 5.2 UML metamodel elements projected into hardware elements of the
IM

Note that redundancy structures are projected, as defined in Section 5.2, by introducing an

additional element (FTS) into the IM, connected to the objects involved in the structure by “is

composed of” relations.

30

Metamodel element Remark

General isat ion with stereotype

<<extends>> or <<uses>>

Direction from supertype to subtype

Dependency with stereotype <<uses>> or

<<calls>>

Direction from client to supplier

Association (general) Bidirectional

Association having AssociationEnd with

attribute “aggregate”

Direction from the aggregate end to the normal

one

Association having AssociationEnd with

attribute “composite”

Direction from the composite end to the nor-

mal one

Link (general) Bidirectional

Link having LinkEnd as instance of an

AssociationEnd with attribute “aggregate”

Direction from the aggregate end to the normal

one

Link having LinkEnd as instance of an

AssociationEnd with attribute “composite”

Direction from the composite end to the nor-

mal one

Message Bidirectional, except when the receiver is

stateless, in which case its direction is from

the sender to the receiver

SendAction Direction from the target or to all elements

having context with the dispatched Signal to

the context having the Action

CallAction Bidirectional between the context having the

Action and the target or all elements having

context with the dispatched Operation, except

when the target is stateless, in which case its

direction is from context of the Action to the

target

Table 5.3 UML metamodel elements projected into “uses service of” relations
of the IM

The algorithmic description of the projection is as follows.

1. Projection of hardware elements (Table 5.2)

Note that hardware elements with stereotype <<redundancy manager>>, <<variant>> or

<<adjudicator>> are projected separately.

• For each Node with stereotype <<stateless>>, add to the IM an element “SLE-HW”, with

parameters copied from the tagged values.

31

• For each Node with stereotype <<stateful>>, add to the IM an element “SFE-HW”, with

parameters copied from the tagged values.

2. Projection of software elements (Table 5.1)

The values of the parameters are copied from the tagged values of the stereotype. Note that

software elements with stereotype <<redundancy manager>>, <<variant>> or

<<adjudicator>> are projected separately.

• For each UseCase, do the following:

− if its stereotype is <<stateless>> then add to the IM an element “SLE-SW”.

− if its stereotype is <<stateful>> then add to the IM an element “SFE-SW”.

− ιf there is no stereotype, then add to the IM a subsystem element “SYS”.

• For each Package, do the following:

− if its stereotype is <<stateless>> then add to the IM an element “SLE-SW”.

− if its stereotype is <<stateful>> then add to the IM an element “SFE-SW”.

• For each Object, do the following:

− if its stereotype is <<stateless>> then add to the IM an element “SLE-SW”.

− if its stereotype is <<stateful>> then add to the IM an element “SFE-SW”.

− if there is no stereotype then look at the ancestor classes; the lowest level class with

stereotype determines the projection:

• if the stereotype is <<stateless>> then add to the IM an element “SLE-SW”.

• if the stereotype is <<stateful>> then add to the IM an element “SFE-SW”.

• For each Class without instantiation (no Object of the Class is available on the diagrams), do

the following:

− if the stereotype is <<stateless>> then add to the IM exactly N elements “SLE-SW”,

where N is the maximum of the lower bounds of the Multiplicity values corresponding to

the Class.

− if the stereotype is <<stateful>> then add to the IM exactly N elements “SFE-SW”,

where N is the maximum of the lower bounds of the Multiplicity values corresponding to

the Class.

• For each Component without refinement, do the following:

− if the stereotype is <<stateless>> then add to the IM an element “SLE-SW”.

− if the stereotype is <<stateful>> then add to the IM an element “SFE-SW”.

32

3. Projection of relations (Table 5.3)

Here we start listing the (already projected) elements which are in the IM and look for the

“uses service of” (U) relations, which indicate error propagation paths (in reverse direction). In

order to avoid the duplicate projection of UML relations, they have to be marked after the first

projection. The parameters of the relations are copied from the tagged values assigned to the

relations in UML. If a relation is not stereotyped as <<propagation>> or the tagged values indi-

cate a zero probability, then the projection is skipped. Note that relations among elements with

stereotype <<redundancy manager>>, <<variant>> or <<adjudicator>> are projected sepa-

rately.

• For each software element (SFE-SW or SLE-SW) projected from a UseCase:

− For each Generalisation from the UseCase with stereotype <<uses>> or <<extends>>,

add to the IM an U relation from the element corresponding to the UseCase supertype to

the element corresponding to the UseCase subtype.

− For each UML element which is in the context of a UseCase without stereotype

<<stateful>> or <<stateless>>, add to the IM an “is composed of” (C) relation from the

SYS element corresponding to the UseCase to the IM element corresponding to the UML

element.

• For each software element (SFE-SW or SLE-SW) projected from a Package:

- For each Dependency from the Package with stereotype <<uses>>, add to the IM an U

relation from the element corresponding to the client to the element corresponding to the

supplier. If such element does not exist in the IM, then do it for each IM element corre-

sponding to the UML elements of its refinement or instantiation.

• For each software element (SFE-SW or SLE-SW) projected from an Object:

− For each Dependency from the Object or from one of its ancestors, with stereotype

<<uses>>, add to the IM an U relation from the element corresponding to the client to the

element corresponding to the supplier. If such an element does not exist in the IM, then

do it for each IM element corresponding to the UML elements of its refinement or instan-

tiation.

− For each ancestor Class of the Object, for each Association with attribute “composite” or

“aggregate” on the AssociationEnd at the Class, add to the IM an U relation from the el-

ement corresponding to the Object to the instance of the target class.

− For each ancestor Class of the Object, for each Association without attribute “composite”

or “aggregate” on the AssociationEnd at the Class, add to the IM an U relation from the

element corresponding to the Object to the instance of the target Class of the Association,

and also an other one in the reverse direction.

33

− For each Link of the Object with attribute “composite” or “aggregate” on the

AssociationEnd at the ancestor Class, add to the IM an U relation from the element corre-

sponding to the Object to the element corresponding to the target object.

− For each Link of the Object without attribute “composite” or “aggregate” on the

AssociationEnd at the ancestor Class, add to the IM an U relation from the element corre-

sponding to the target element of the association (at the other AssociationEnd) to the ele-

ment corresponding to the Object, and also an other one in reverse direction.

− For each Message sent by the Object, add to the IM an U relation from all elements corre-

sponding to Objects receiving the message to the element corresponding to the Object,

and also an other one in reverse direction. Exception is the case when a receiver is repre-

sented in the IM by a stateless element, which means that the direction of the U relation is

only from the IM element corresponding to the Object to the receiver.

− For each ancestor Class of the Object, for each SendAction in the context of the Class,

add to the IM an U relation from all elements corresponding to instances having context

including the dispatched Signal to the element corresponding to the Object.

− For each ancestor Class of the Object, for each CallAction in the context of the Class, add

to the IM an U relation from all elements corresponding to instances having context in-

cluding the dispatched Operation (targets) to the element corresponding to the Object, and

also an other one in reverse direction. Exception is the case when a target is represented

in the IM by a stateless element, which means that the direction of the U relation is only

from the IM element corresponding to the Object to the target.

• For each software element (SFE-SW or SLE-SW) projected from a Class by default instan-

tiation: do the same as in the case of elements corresponding to Objects.

• For each software element (SFE-SW or SLE-SW) projected from a Component (by default

instantiation):

- For each Dependency from the Component, with stereotype <<calls>>, add to the IM an

U relation from the element corresponding to the client to the element corresponding to

the supplier. If such an element does not exist in the IM, then do it for each IM element

corresponding to the UML elements of its refinement.

• For each hardware element (SFE-HW or SLE-HW) projected from a Node:

− For each UML element deployed on the node, add to the IM an U relation from the IM

element representing the UML element to the element representing the node.

− For each Association, add to the IM an U relation from the element representing the target

element of the Association (at the other AssociationEnd) to the element representing the

Node, and also an other one in reverse direction.

34

4. Projection of redundancy structures

Note that during the projection, parameters of the IM elements are copied from the tagged val-

ues assigned to the elements in UML.

• For each Class or Object with stereotype <<redundancy manager>>, add to the IM a fault-

tolerance element (FTS).

• For each Class or Object with stereotype <<redundancy manager>> and <<stateless>> add

to the IM an element “SLE-SW”. In the case of a Node, add an element “SLE-HW”.

• For each Class or Object with stereotype <<redundancy manager>> and <<stateful>> add to

the IM an element “SFE-SW”. In the case of a Node, add an element “SFE-HW”.

• For each Class or Object with stereotype <<variant>> and <<stateless>> add to the IM an

element “SLE-SW”. In the case of a Node, add an element “SLE-HW”.

• For each Class or Object with stereotype <<variant>> and <<stateful>> add to the IM an el-

ement “SFE-SW”. In the case of a Node, add an element “SFE-HW”.

• For each Class or Object with stereotype <<adjudicator>> and <<stateless>> add to the IM

an element “SLE-SW”. In the case of a Node, add an element “SLE-HW”.

• For each Class or Object with stereotype <<adjudicator>> and <<stateful>> add to the IM

an element “SFE-SW”. In the case of a Node, add an element “SFE-HW”.

• For each FTS element in the IM, add to the IM an “is composed of” (C) relation from the

FTS element to the elements corresponding to the UML elements with stereotype

<<redundancy manager>>, <<variant>> or <<adjudicator>>.

5 . 4 Automatic derivation of fault trees of redundancy structures

The generation of a fault tree corresponding to a redundancy structure (not included in the li-

brary of schemes) requires a non-trivial analysis of the behaviour, i.e. the statechart diagram,

of the redundancy manager. This kind of analysis is supported by the designer, as he/she

identifies (by stereotyping) the special states and events in the statechart, as described in

Section 3.3. Recalling shortly, the following stereotypes and extensions are used:

• Failure states (with stereotype <<failure>>).

• Failure events (with stereotype <<failure>>),

• Response events (with stereotype <<response>>),

• Adjudicators distinguished as tester (with stereotype <<tester>>) or comparator (with

stereotype <<comparator>>).

• Additional tagged values characterising common mode failures and error detection coverage

of adjudicators.

35

The fault tree is generated by the composition of the subtrees of (i) response events, (ii) failure

events and (iii) failure states. The following steps are performed (in [8] a similar algorithm is

proposed for reliability modelling):

• Backward reachability analysis from response events generates the set of trajectories leading

from initial state to the response event. The OR relation of the subtrees of the trajectories

forms the fault tree corresponding to the error of the response.

On a trajectory, the incoming events identify the objects contributing to the response, while

guards identify the test and compare actions of the redundancy manager(s) or adjudicator(s).

The fault tree corresponding to a trajectory is the OR relation of the events which may lead to

the error of the response on the given trajectory. The following events are combined:

- Separate failure of a variant without testing.

- Common mode failure of variants without testing.

- Common mode failure of a variant and its tester.

- Failure of a variant escaping the test.

- Common mode failure of variants which are compared.

- Common mode failure of variants and the comparator.

- Separate failure of the redundancy manager (providing the response).

• Backward reachability analysis from explicit failure events generates the set of trajectories

leading from initial state to the failure event. The OR relation of the subtrees of the trajecto-

ries forms the fault tree corresponding to the failure event.

On a trajectory, the events and conditions identify the objects, failures of which lead to the

failure event. The fault tree corresponding to a trajectory is the AND relation of these fail-

ures. The following events are combined:

- Separate failure of a variant detected by a tester.

- Common mode failure of variants detected by a tester.

- Separate or common mode failures of variants detected by a comparator.

• Failure states usually provide explicit failure events, this way they are covered by the previ-

ous point. If a failure state is without failure events (fail stop) then it can be handled in the

same way as failure events: Backward reachability analysis from the failure state generates

the set of trajectories leading from initial state to the failure state. The OR relation of the

subtrees of the trajectories forms the fault tree corresponding to the failure state. On a trajec-

tory, the events and guards identify the objects whose failures lead to the failure state. The

fault tree corresponding to a trajectory is the AND relation of these failures.

The approach is illustrated by an example. Objects CW, W1 and W2 form a fault tolerance

structure, where W1 and W2 are variants and CW is their redundancy manager, which imple-

ments a recovery block scheme. CW checks the results of the variant W1 (it is assumed that the

coverage of the check is 100%), and if it is error-free then this result is accepted. Otherwise

W2 will be executed, its result will be checked again and accepted if it is error-free. If both

36

variants fail then the scheme will fail as well, reporting this towards the client. The statechart of

the redundancy manager CW is presented in Figure 5.6.

Response events are resp1 and resp2 , while failure events are failure1 and failure2 .

The following trajectories and failures can be recognised as shown in Figure 5.7:

Trajectory to response event resp1 : Event respw1 is the result of object W1, its test-

ing is made by CW. The response also requires CW, the redundancy manager. Failures

along this path are the common mode failure of W1 and CW, and the separate failure of

CW. (The failure of CW covers the case when both W1 and CW fail simultaneously.) Tr1

accounts for these events.

[\test(respW1)]
 /callW2

req/callW1wait
req

respW1

respW2

c1

wait
respW1

wait
respW2

timeout/callW2

[test(respW1)] /resp1 <<response>>

timeout/failure1

[test(respW2)] /resp2 <<response>>

[\test(respW2)] /failure2

<<failure>>

<<failure>>

Figure 5.6: Statechart of the redundancy manager

Trajectory to response event resp2 : The guard condition shows that W1 fails. Event

respw2 is the result of object W2, its testing is made by CW. The response also requires

CW, the redundancy manager. The fault tree Tr2 accounts for the failures along this path:

the separate failure of CW as well as the common mode failure of W2 and CW (in the case

of the failure of W1).

Trajectory to failure event failure1 : The guard condition shows that W1 fails (tested

by CW), the event timeout2 shows that also W2 fails. The fault tree Tr3 accounts for the

separate failures of W1 and W2 the failures along this path.

Trajectory to failure event failure2 : The guard conditions show that both W1 and

W2 fail (tested by CW). Tr4 describes the separate failures of W1 and W2.

CW CW+W1
common

W1
CW+W2
common

W1 W2

Tr3

W1 W2

Tr4Tr1 Tr2

CW

Figure 5.7: Fault trees corresponding to the trajectories of the redundancy
manager

37

6 From the Intermediate model to timed Petri nets

The timed Petri Net dependability model is generated and istanciated only by using the infor-

mation contained in the intermediate model, without any further need of the UML system spec-

ification. The final model is built in two steps:

1 A set of subnets (basic subnets hereafter) are generated for the elements of the intermediate

model. Also, a set of input/output arcs are generated at this step which link places and tran-

sitions that are inside the basic subnets. These arcs are at the highest hierarchy level of the

timed Petri net model.

2 A set of failure/repair propagation subnets plus another set of input/output arcs are generated

for the hyperarcs of the intermediate model. These arcs link among them basic and propaga-

tion subnets, and are at the highest hierarchy level of the timed Petri net model

We take advantage from the modularity of the timed Petri net models defined above, to build

the whole model as a collection of subnets, linked by input and output arcs over well-specified

interface places. These input/output arcs linking subnets are all defined at the highest level of

the model. Notice that in the following some of the fields of the timed Petri net specification

that are not needed to understand the transformation are left unspecified.

6 . 1 Basic subnets

A set of simple basic subnets are generated for the elements of the intermediate model. These

basic subnets represent:

1 The failure and repair processes for the SLE-HW, SFE-HW, SLE-SW, SFE-SW element

types of the intermediate model.

2 A set of interface places for FTS and SYS element types of the intermediate model.

Let us now describe the basic subnets that are generated for each of the type of elements of the

intermediate model. The basic subnets for SLE-HW type of element includes a failure subnet

and a repair subnet. The failure subnet for a SLE-HW element is the one shown in Figure 6.1,

which consists of:

H F

fault

Subnet <node_name>_fail

Figure 6.1 Basic failure subnet for a SLE-HW element

• Two interface places, namely H, and F. These places are interfaces towards the other sub-

nets of the model. A token in place H represents the healthy state of the element, where no

faults have appeared yet. A token in place F means that a fault has lead to a failure of the el-

ement. Obviously the absence of an internal state prevents the element from having errors.

38

• One single transitions, called fault. The transition fault represents the failure of the element

as soon as it is hit by a fault. The firing time of the transition fault is obtained from the field

<fault_occurrence> of the intermediate model element description.

• A single token, which occupies place H at the beginning.

Whenever this can be helpful for a better understanding, we also give timed Petri net descrip-

tion of the subnets we are defining. The timed Petri net description of the subnet SLE-HW is as

follows:

SUBNET <name=<element_name>_fail>
PLACE <name=H> <tokens=1> <bound=1>
PLACE <name=F> <tokens=0> <bound=1>
TRANSITION <name=fault> <random_variable=?> <memory_policy=?>

<guard=TRUE>
INPUT_ARC <from_place=H> <to_transition=fault> <weight=1>
OUTPUT_ARC <from_transition=fault> <to_place=F> <weight=1>

END SUBNET

The basic repair subnet for a SLE-HW element is the one called <element_name>_rep shown in

Figure 6.2, which consists of:

P1

P2

P3
t0t1

perm

transimplicit

explicit

Subnet <node_name>_rep

Figure 6.2 Basic repair subnet for a SLE-HW element

• Three places, namely P1, P2, and P3. The two places P2 and P3 are interface places to-

wards other repair subnets, as it will be explained in the following. A token in P1 means that

a failure of the element has occurred and therefore the repair actions need to be performed. A

token in place P2 and P3 means that an implicit and explicit repair action is being performed,

respectively. Note that for a hardware stateless component, the repair is implicit if a transient

fault occurred, and explicit (fault-treatment) if the fault is permanent.

• Six transitions. Transitions trans and perm discriminate between transient and permanent

faults, according to the relative occurrence probabilities given in field <permanent/transient>

of the intermediate model element description. The other four transitions are all interface

transitions towards other subnets. Transition implicit and explicit model the immediate exe-

cution of an implicit and explicit repair, respectively. Additional input arcs coming form the

basic failure subnets of other elements will be added further to the transition implicit and

explicit, to represent the awaiting for the repair of the other elements. Transition t0 and t1 are

used to trigger the repair activities, by inserting a token in place P1, if there is not yet.

• No tokens are in the subnet <element_name>_rep at the beginning.

39

The detailed timed Petri net description of the repair subnet is the following one:

SUBNET <name=<element_name>_rep>
PLACE <name=P1> <tokens=0> <bound=1>
PLACE <name=P2> <tokens=0> <bound=1>
PLACE <name=P3> <tokens=0> <bound=1>
TRANSITION <name=t0> <random_variable=instantaneous>

<memory_policy=?> <guard=(m(P1)=0)> <priority=1>
TRANSITION <name=t1> <random_variable=instantaneous>

<memory_policy=?> <guard=(m(P1)=1)> <priority=1>
TRANSITION <name=trans>

<random_variable=instantaneous probability=transient>
<memory_policy=?> <guard=TRUE> <priority=0>

TRANSITION <name=perm>
<random_variable=instantaneous probability=permanent>
<memory_policy=?> <guard=TRUE> <priority=0>

TRANSITION <name=implicit> <random_variable=instantaneous>
<memory_policy=?> <guard=TRUE> <priority=0>

TRANSITION <name=explicit> <random_variable=?> <memory_policy=?>
<guard=TRUE>

INPUT_ARC <from_place=P1> <to_transition=trans> <weight=1>
INPUT_ARC <from_place=P1> <to_transition=perm> <weight=1>
INPUT_ARC <from_place=P2> <to_transition=implicit> <weight=1>
INPUT_ARC <from_place=P3> <to_transition=explicit> <weight=1>
OUTPUT_ARC <from_transition=t0> <to_place=P1> <weight=1>
OUTPUT_ARC <from_transition=trans> <to_place=P2> <weight=1>
OUTPUT_ARC <from_transition=perm> <to_place=P3> <weight=1>

END SUBNET

Note that transition t0 and t1 have a priority lower than the default value for immediate transi-

tions, that is one. The reason for such a choice will become clear when the failure propagation

subnets will have been described.

A set of arcs is then added, which link the failure and the repair subnet of the SLE-HW ele-

ment. These arcs are defined as follows:

INPUT_ARC <from_place=<element_name>_fail.F>
<to_transition=<element_name>_rep.t0> <weight=1>

INPUT_ARC <from_place=<element_name>_fail.F>
<to_transition=<element_name>_rep.t1> <weight=1>

OUTPUT_ARC <from_transition=<element_name>_rep.implicit>
<to_place=<element_name>_fail.H> <weight=1>

OUTPUT_ARC <from_transition=<element_name>_rep.explicit>
<to_place=<element_name>_fail.H> <weight=1>

These arcs link the two basic subnets of the element as graphically shown in Figure 6.3, where

only the interface elements involved in the linking are depicted. Notice that transitions t0 and t1

always get simultaneously enabled: their guards select which one between them has to fire de-

pending on the marking of place P1.

40

H F

Subnet <node_name>_fail

t0t1

implicit

explicit

Subnet <node_name>_rep

Figure 6.3: Arcs linking the two basic subnets for a SLE-HW element

Consider now a SFE-HW type of element. In this case, the basic failure subnet in the one

shown in Figure 6.4.

H E

fault

Subnet <node_name>_fail

F
latency

Figure 6.4: Basic failure subnet for a SFE-HW type of element

This subnet contains:

• Three interface places, namely H, E, and F. A token in place H represents the healthy state

of the element, where no faults have appeared yet. A token in place E represents the pres-

ence of an erroneous internal state, and a token in place F means that an erroneous internal

state has lead to a failure of the element.

• Two transitions, namely fault and latency. The transition fault represents the corruption of

the internal state of the element due to the activation of a fault. The transition latency models

the time needed for errors to generate a failure of the element.

• A single token at the beginning, which occupies place H (the element is in a healthy state at

the beginning of operations).

The timed Petri net description of the subnet shown in Figure 6.4 is as follows:

SUBNET <name=<element_name>_fail>
PLACE <name=H> <tokens=1> <bound=1>
PLACE <name=E> <tokens=0> <bound=1>
PLACE <name=F> <tokens=0> <bound=1>
TRANSITION <name=fault> <random_variable=?> <memory_policy=?>

<guard=TRUE>
TRANSITION <name=latency> <random_variable=?> <memory_policy=?>

<guard=(m(E)=1)>
INPUT_ARC <from_place=H> <to_transition=fault> <weight=1>
OUTPUT_ARC <from_transition=fault> <to_place=E> <weight=1>
OUTPUT_ARC <from_transition=latency> <to_place=F> <weight=1>

END SUBNET

Notice that transition latency has a guard which enables it as soon as a token reaches place E.

Once an error has occurred, transition latency remains enabled until the token is removed from

41

place E (the error recovery is performed). During its enabling period, many tokens can reach

the place F.

The basic repair subnet for a SFE-HW element is exactly the same as the one for the SLE-HW

type of elements. However, the arcs that link the two subnets are now as follows:

INPUT_ARC <from_place=<element_name>_fail.F>
<to_transition=<element_name>_rep.t0> <weight=1>

INPUT_ARC <from_place=<element_name>_fail.F>
<to_transition=<element_name>_rep.t1> <weight=1>

INPUT_ARC <from_place=<element_name>_fail.E>
<to_transition=<element_name>_rep.implicit> <weight=1>

INPUT_ARC <from_place=<element_name>_fail.E>
<to_transition=<element_name>_rep.explicit> <weight=1>

OUTPUT_ARC <from_transition=<element_name>_rep.implicit>
<to_place=<element_name>_fail.H> <weight=1>

OUTPUT_ARC <from_transition=<element_name>_rep.explicit>
<to_place=<element_name>_fail.H> <weight=1>

The two subnets are therefore linked as shown in Figure 6.5. The two transitions implicit and

explicit remove the token from the place E, modelling the error recovery of the element.

H F

Subnet <node_name>_fail

t0t1

implicit

explicit

Subnet <node_name>_rep

E

Figure 6.5: Arcs linking the two basic subnets for a SFE-HW element

For a SLE-SW and SFE-SW elements, the basic failure subnets are the same as for the SLE-

HW and SFE-HW elements, respectively. The place P1 is for both the two cases an interface

place for other repair subnets. The basic repair subnets in the two cases are as follows:

SLE-SW

P1

t0t1

implicit

Subnet <node_name>_rep

P1

t0t1

explicit

Subnet <node_name>_rep

SFE-SW

Figure 6.6: Basic repair subnets for the SLE-SW and SFE-SW elements

The repair for a stateless software is only implicit, therefore a single immediate transition is

sufficient for the repair subnet model. For the stateful software, the repair is only explicit, be-

42

cause the error recovery must be necessarily performed. The repair subnets are linked to the

corresponding basic failure subnets as shown in Figure 6.7.

H F

Subnet <node_name>_fail

P1

t0t1

implicit

Subnet <node_name>_rep

SFE-SW

H F

Subnet <node_name>_fail

P1

t0t1

explicit

Subnet <node_name>_rep

E

SLE-SW

Figure 6.7: Arcs linking the basic subnets for software elements

Now, consider the case of a element of type FTS or SYS. In this case, we only generate a basic

subnet with two interface places, as shown in Figure 6.8. Also, for a SYS element whose attr-

bute list indicates a dependability measure to be evaluated, a directive is generated for the eval-

uation purposes, specifying the measure to be evaluated by analysing the final dependability

timed Petri net model. The measure of interest is always evaluated through the stochastic pro-

cess describing the probability for a token to be in place F of the SYS basic subnet. A token is

put in place H at the beginning.

H F

Subnet <node_name>

Figure 6.8: Basic subnet for a FTS or SYS type element

All the subnets listed above are generated one after the other by inspecting the list of elements

of the intermediate model. Notice that all the parameters needed to define the subnets are found

in the intermediate model in the obvious fields. The only case in which the parameters are not

found in the elements of the intermediate model is when a more refined submodel is to be in-

cluded in the final timed Petri net. The directives for such an inclusion are implicitely given in

the intermediate model, by leaving parameters unspecified. Consider for instance a stateful ele-

ment (either hardware or software) for which the process of fault occurrence must be modelled

through the inclusion of a subnet, while the error latency does not.

H E

Subnet <node_name>_fail

F
latency

Subnet
FAILURE

Figure 6.9: Inclusion of a refined submodel into a basic subnet

43

The basic subnet will be accordingly built to include a nested subnet representing the refined

submodel, as shown in Figure 6.9. This nested subnet is linked with input and output arcs to

the other local objects of the basic subnet. Obviously, the structure of the nested subnet must be

such that the inclusion can be performed automatically, that is the interface points are to be pre-

cisely specified and declared to the external.

Accordingly, the timed Petri net description of the subnet shown in Figure 6.9 would be as

follows:

SUBNET <name=<element_name>_fail>
PLACE <name=H> <tokens=1> <bound=1>
PLACE <name=E> <tokens=0> <bound=1>
PLACE <name=F> <tokens=0> <bound=1>
TRANSITION <name=latency> <random_variable=?> <memory_policy=?>

<guard=(m(E)=1)>
SUBNET <name=FAILURE>

<description of the subnet>
END SUBNET
INPUT_ARC <from_place=H>

<to_transition=FAILURE.{a transition of subnet FAILURE}>
<weight=1>

OUTPUT_ARC <from_transition=FAILURE.{a transition of subnet
FAILURE}> <to_place=E> <weight=1>

OUTPUT_ARC <from_transition=latency> <to_place=F> <weight=1>
END SUBNET

Notice the prefixed names of the elements inside the included subnet. This inclusion procedure

is exactly the same for a refined model specifying other activities of the basic subnets, as the

latency or repair processes.

6 . 2 Failure/Repair propagation subnets

During the previous step of the model generation, a set of basic subnets were built. The basic

subnets of a element are up to now completely disjoint from the subnets of other elements. By

examining the hyperarcs of the intermediate model, we will now describe the generation of a set

of propagation subnets, which link the basic sub-nets of elements among them.

For each pair of elements A and B for which an hyperarc exists in the intermediate model, a

failure propagation subnet and a set of arcs is added to the timed Petri net model. Depending on

the type of hyperarc, a repair propagation can also be added to the model.

F

H

E
Subnet
A_fail

Propagation
sub-net

Subnet
B_fail

F

E

H

Figure 6.10: Subnet for a failure propagation from B to A

44

Let us start with the case of a hyperarc of type U. The following Figure (6.10) shows the role

of a propagation subnet in the case the stateful element A uses the stateful element B (hardware

or software is not relevant). Only the interface places are shown outside the basic subnets of the

two elements. The propagation subnet (probabilistically) moves a token from place A.H to

A.E, depending on the state of the used element, namely the marking of B.F. In Figure 6.10,

the bi-directional arc is a shorthand graphical notation for a pair of input/output arcs linking a

place and a transition.

More precisely, for each hyperarc of type U from element A to element B in the intermediate

model, the propagation subnet called B->A shown in Figure 6.11 is added to the list of subnets

of the timed Petri net model:

p

1-p

Subnet B->A

prop

no_prop New

Used

restart

Choice

t1

Figure 6.11: Propagation subnet for U type of hyperarc

Parameter p of the subnet is obtained from the parameter prop_prob of the intermediate model

hyperarc. The timed Petri net description of this subnet is as follows:

SUBNET <name=B->A>
PLACE <name=New> <tokens=1> <bound=1>
PLACE <name=Used> <tokens=0> <bound=1>
PLACE <name=Choice> <tokens=0> <bound=1>
TRANSITION <name=restart> <random_variable=instantaneous>

 <memory_policy=?> <guard=(m(B.H)=1)> <priority=0>
TRANSITION <name=t1 <random_variable=instantaneous>

<memory_policy=?> <guard=TRUE> <priority=0>
TRANSITION <name=prop>

<random_variable=instantaneous, probability p>
<memory_policy=?> <guard=TRUE> <priority=0>

TRANSITION <name=no_prop>
<random_variable=instantaneous, probability 1-p>
<memory_policy=?> <guard=TRUE> <priority=0>

INPUT_ARC <from_place=New> <to_transition=t1> <weight=1>
INPUT_ARC <from_place=Used> <to_transition=restart> <weight=1>
INPUT_ARC <from_place=Choice> <to_transition=prop> <weight=1>
INPUT_ARC <from_place=Choice> <to_transition=no_prop> <weight=1>
OUTPUT_ARC from_transition=restart> <to_place=New> <weight=1>
OUTPUT_ARC <from_transition=t1> <to_place=Used> <weight=1>
OUTPUT_ARC from_transition=t1> <to_place=Choice> <weight=1>

END SUBNET

Besides this propagation subnet, a set of arcs linking that propagation subnet to the basic sub-

nets of element A and element B are added to the model. These arcs are as follows:

45

INPUT_ARC <from_place=B.F> <to_transition=B->A.t1> <weight=1>
INPUT_ARC <from_place A.H> <to_transition=B->A.prop> <weight=1>
OUTPUT_ARC <from_transition=B->A.t1> <to_place=B.F> <weight=1>
OUTPUT_ARC <from_transition=B->A.prop> <to_place=A.E> <weight=1>

After this linking the whole model including the basic subnets and the propagation subnet looks

like the one shown in Figure 6.12. The propagation subnet basically tries to move the token

which might be in place A.H to place A.E, modelling the introduction of an error in element A.

The two immediate transitions prop and no_prop of the propagation subnet become enabled

only immediately after element B has failed. At that time, a token is put into place B.F, and the

failure propagation subnet is activated. Notice that the failure propagation subnet does not re-

move the token from F. However, the propagation subnet is activated only for each failure of

B, because the token in place Used needs to be moved back to place New in order to enable

again transition B->A.t1. This re-enabling is performed by transition B->A.restart, whose

guard is satisfied only when the element B is repaired (a token is put in place B.H).

Subnet
B_fail

F

E

H

F

H

E

p

1-p

Subnet B->A

prop

no_prop
New

Used

restart

Choice

t1

Subnet
A_fail

Figure 6.12: Error of A as a result of the failure of B

The propagation subnet shown in Figure 6.11 is to be replicated for each of the type U hyper-

arc that appears in the intermediate model. Each replicated propagation subnet must be linked to

the basic subnets as shown above, except in the case when the element A that is using B is a

stateless element. In that case, the propagation subnet must be linked to the basic subnet of A in

a way that the token removed from place A.H is moved to place A.F. Indeed, for a stateless

component, a failure propagates immediately without generating internal errors. Notice that

transition t1 has the highest priority (default value 0). This transition has therefore a priority

higher than the two transitions t0 and t1 inside the basic repair subnet of B. As a result of this

priority assignment, the token in F is first “sensed” by the failure propagation subnet to trigger

the propagation, and then it is removed from F to trigger the repair.

Last, for each of the “uses the service of” relation specified by a U hyperarc, input and output

arcs are added to the timed Petri net model, which link the basic repair subnet of the using ele-

ment to the basic repair subnets of the used element. For instance, suppose a hardware element

(either stateful or stateless) is linked by U type hyperarc to the hardware (either stateful or

stateless) element B. Then, two pairs of inhibitor arcs with weight -1 are added between the

basic repair subnet A_rep and the basic repair subnet B_rep. Figure 6.13 shows those arcs, to-

gether with the interface components of the two subnets that are involved in the links. Let us

46

remind that, as shown in Figure 6.2, a token stays either in place B.P2 or B.P3 until the repair

of B is not completed. These arcs impose a synchronisation constraint on the repair activities of

element A, blocking them until the used component B does not complete its own repair. Since

this synchronisation constraint is imposed for each of the U hyperarcs that link element A to an

other element, in the final model timed Petri net model the repair of A is constrained to the re-

pair of all the used elements.

implicit

explicit

Subnet A_rep
P2

P3

Subnet B_rep

Figure 6.13: Repair of element A conditioned to the repair of a used element B

In the case the used element B is a FTS type element, then the inhibitor arcs link place B_fail.H

(contained in the basic failure subnet of B) to the two transitions A_rep.implicit and

A_rep.explicit. The case when the using element is a FTS node will be considered later on.

Notice that if a cycle formed by U hyperacs exists in the intermediate model, this constraint on

the repair process may potentially lead to a deadlock of the repair subnets. In this case, none of

the elements in the cycle is able to perform its repair because everyone is waiting for the com-

pletion of the someone else’s repair. However, it is worthwhile observing that a situation like

that is typically representative of a context in which other repair strategies, more refined than

the simple ones we have been considering, needs to be defined. For instance, in a distributed

environment, the communication protocols follows specific strategies for deadlock avoidance.

If these strategies are modelled into the UML design, then they can be transformed into more

refined timed Petri net models, and the deadlock of the timed Petri net model will not occur.

Let us know consider the case of an hyperarc of type C, which links an FTS type of element of

the intermediate model to the set of elements that realise a fault-tolerance scheme. The failure

propagation inside a fault-tolerance structure can not be modelled with the simple net shown

above for the type U hyperarcs, because in this case special provisions have been taken to de-

tect and confinate errors. Rather, the propagation follows a path which is conveniently repre-

sented by a fault-tree whose leaves are the failures of the elements involved in the fault-toler-

ance scheme, and the root is the failure of the whole scheme.

Whenever a type C hyperarc is found in the intermediate model, a fault-tree representing the

failure propagation inside the scheme must be found to derive the associate failure propagation

subnet. This fault-tree can be provided together with the library of pre-defined classes for fault-

tolerance schemes, or can be built with the procedure described in Section 5.4 for a user-de-

fined fault-tolerance scheme. Once the fault-tree is available, translating it into a failure propa-

gation subnet can be performed with an automatic procedure. For instance, consider the simple

fault-tree shown in Figure 6.14, which describes how the failure of the three composing ele-

ments A, B, and C propagate towards the composed FTS element P. The meaning of the fault-

47

tree is the following. Each leaf represents an event (in our context a failure event). The events

are connected to the gates, which represent the Boolean operators AND and OR. The events

propagate according to the Boolean logic: the propagation through an AND gate requires the oc-

currence of all the incoming events. For instance, the AND gate in Figure 6.14 generates an

event of type G if and only if both the events A and B occur. Similarly, the propagation

through the OR gate follows the Boolean logic of the OR operator, generating an outcoming

event if at least one of the incoming events occurs.

A

B

C

G

P

Fault-TreeAND

OR

G_failed
P_failed

t_1

Subnet fault_P

t_2

t_3

t_0

Figure 6.14: Failure propagation subnet corresponding to a fault-tree

The subnet representing the failure propagation process as described by the fault tree is con-

structed by an algorithm which is similar to the one presented in [15] (but not the same, since

the resulting nets are different).

First of all the algorithm generates the following timed Petri net definitions:

SUBNET <name=fault_P>
TRANSITION <name=t_0> <random_variable=instantaneous>

<memory_policy=?> <guard=TRUE?> <priority=0>

Then the algorithm calls the procedure failure_subnet, with arguments the fault-tree and the

transition t_0. The procedure looks at the top event of the tree, and if a leaf event is found, the

procedure returns. Otherwise, the procedure adds a place which represents a stage of the failure

propagation, like P_failed and G_failed in Figure 6.14, and an input arc connecting that place

with the transition t_0 previously generated. Then the gate connected to that event is examined.

If the gate is an OR gate, as it is in the example, the algorithm generates as many immediate

transitions as the number of subtrees connected to the gate. These immediate transitions are

connected by output arcs to the place generated for the top event. If the gate is an AND gate,

then only one immediate transition is generated, connected to the place for the top event. Then

the algorithm is recursively called on each of the subtrees connected to the gate.

A more formal definition of the subnet generation procedure is the following one, where the

variable i used to generate the names of transitions is assumed to be a global variable which is

incremented by one each time a new transition is added to the failure propagation subnet by the

procedure add_to_subnet.

PROCEDURE failure_subnet(ft: fault-tree, destination: transition);
BEGIN

event:=top_event(ft);

48

IF {the event is a leaf of ft}
THEN return
ELSE

BEGIN
add_to_subnet(PLACE <name=event_failed> <tokens=0>

<bound=1>);
add_to_subnet(INPUT_ARC <from_place=event_failed>

<to_transition=destination> <weight=1>);
gate:={the gate whose output is event}
IF (gate=AND)
THEN

BEGIN
add_to_subnet(TRANSITION <name=t_i>

<random_variable=instantaneous>
<memory_policy=?> <guard=TRUE> <priority=0>);

add_to_subnet(OUTPUT_ARC <from_transition=t_i>
to_place=event_failed> <weight=1>);

FOR EACH {subtree sft of ft} DO
failure_subnet(sft,t_i};

END
ELSE

FOR EACH {subtree sft of ft} DO
BEGIN

add_to_subnet(TRANSITION <name=t_i>
<random_variable=instantaneous>
<memory_policy=?> <guard=TRUE> <priority=0>);

add_to_subnet(OUTPUT_ARC <from_transition=t_i>
<to_place=event_failed> <weight=1>);

failure_subnet(sft,t_i};
END;

END;
END;

When the procedure completes, the failure propagation subnet is almost completely defined in

the timed Petri net language. The algorithm only needs to add the END SUBNET line.

The so-defined propagation subnet must be linked to the basic subnets of the element compos-

ing the fault-tolerance scheme, A, B, and C in the example, and to the basic subnet generated

for the element FTS, P in the example, as shown by Figure 6.15:

G_failed
P_failed

t_1

Subnet fault_P

t_2

t_3

t_0

FH

E Subnet
A_fail

F

H

E

Subnet
B_fail

F

H

E

Subnet
C_fail

F

H
Subnet
P_fail

Figure 6.15: Failure propagation subnet connected to the basic subnets of the
elements composing a fault-tolerant scheme

49

The final effect of the propagation is therefore the movement of a token from place P.H to place

P.F. The input and output arcs necessary to link the failure propagation subnet to the basic

subnets of the composing elements can be conveniently generated by the procedure fail-

ure_subnet described above, whenever a leaf event of the fault-tree is found.

The evolution of the failure propagation subnet so defined is not completely defined yet, be-

cause its behaviour has to be controlled by its dual counterpart, the repair subnet, which we

shall define in the following.

A

B

C

G

P

Repair-tree

AND

OR

G_repair

P_repair

Subnet repair_P

t_0

t_2

t_1
t_3

Figure 6.16: Repair propagation subnet corresponding to repair-tree

Starting from the fault-tree of the failure propagation, we have also to generate a subnet for the

repair of the fault-tolerant scheme. Indeed, an implicit repair of the scheme takes place as the

composing elements get repaired. In this sense, we must model a propagation of the repair

from the composing elements to the composed element. To explain the procedure to generate

the repair subnet, we again take as an example the fault-tree in Figure 6.14. First of all, the dual

fault-tree is defined, by exchanging each AND gate with an OR gate and vice versa, thus ob-

taining the repair-tree shown in Figure 6.16. Then the algorithm sketched above is applied to

this repair-tree, to generate the repair subnet shown in the left side of Figure 6.16. Each of the

places of the subnet is assigned a token at the beginning. This subnet is linked to the basic sub-

nets of A, B, C, and P, as shown in Figure 6.17. The repair subnet moves a token from place

P.F to P.H, bringing the fault-tolerant scheme in an healthy state. Note that, according to the

logic expressed by the repair-tree, not all the elements composing the fault-tolerant scheme need

to be repaired for the repair to be propagated to the composed element.

F H

E Subnet
A_fail

F H

E Subnet
B_fail

F

HE

Subnet
C_fail

F

H
Subnet
P_fail

G_repair

P_repair

Subnet repair_P

t_0

t_2

t_1
t_3

Figure 6.17: Repair propagation subnet connected to the basic subnets of the
elements composing a fault-tolerant scheme

50

Finally, we need to add to the timed Petri net model a set of input arcs which link the failure

propagation subnet failure_P to the repair propagation subnet repair_P, and vice versa, in order

to completely define their evolution. These input arcs are included in the model according to the

following two complementary rules, which we give in an algorithmic form:

FOR EACH {place X_failed in failure_P} DO
FOR EACH{transition t_1,t_2,...,t_n connected to X_failed by an

output arc} DO
add_to_model(INPUT_ARC <from_place=repair_P.X_repair>

<to_transition=t_i> <weight=1>);

FOR EACH {place Y_repair in repair_P} DO
 FOR EACH{transition t_1,t_2,...,t_n connected to Y_repair by an

output arc} DO
add_to_model(INPUT_ARC <from_place=fail_P.Y_failed>

<to_transition=t_i> <weight=1>);

Among the hyperarcs of type C of the intermediate model, that one linking the element of type

SYS with the elements the SYS is composed of, is very particular. Indeed, note that the SYS

element does not have an associated fault-tree, therefore the procedure explained above needs

an additional input. We associate to the SYS element, as a default value, a very simple fault-tree

representing the OR of all the composing elements. Therefore, in the final timed Petri net

model, the failure of the “system” is determined by the failure of any of the composing element,

and the repair is conditioned to the repair of all the composing elements.

Last, let us consider the constraint to be imposed on the repair of a FTS element named P using

the services of element B. In case the used element B is either a HW or SW element (no matter

if stateful or stateless), then inhibitor arcs are to be added to the timed Petri net model, which

link the repair propagation subnet of the FTS element with the basic repair subnet of B. For in-

stance, suppose B is a hardware element. Then, we add the inhibitor arcs are shown in Figure

6.18, to impose a synchronisation between the FTS element and the used element B. In case

the used element B is a FTS element itself, then the arcs are added which link the repair propa-

gation subnet of P to the basic subnet of B, as already explained.

F

H

Subnet
P_fail

Subnet repair_P

t_0

P2

P3

Subnet B_rep

Figure 6.18: Repair of a FTS element conditioned to that of a used element

51

Conclusions

In this report we have described in an algorithmic form the transformation from structural UML

specification to Petri net models for the quantitative evaluation of dependability attributes.

Although this description is precise and detailed it has not been formally proven. The reason is

the lack of dependability-related semantics of the UML structural diagrams that form the input

of our transformation.

To analyse the dependability figures of systems of large size one could ideally build a model of

the system accounting for all the details, i.e. the fine grained behaviour of each system compo-

nent that can be obtained by the behavioural UML diagrams. However, this approach is not vi-

able due to the state explosion and the limitations of existing tools. Therefore the model to build

must be of a reduced size where only the features relevant to dependability are captured and all

other information is skipped.

Our approach, resorting mainly to the structural views of UML specifications, allows to build

at first quite abstract models, maybe too coarse for representing with due precision the real de-

pendability to be expected. However, the modular construction of the model does not prevent,

rather favours its extension by offering the possibility to substitute in the model the coarse

representation of some elements with a more detailed and precise ones, obtained, maybe later in

the design process, by some other transformation or analysis technique. The long term

objective is to start with a broad system-wide model and to refine it by plugging in a detailed

description of those parts which result to be the critical ones (this selection might be guided by

the analysis performed on the coarse model itself).

With this approach, dependability attributes can be analysed depending on the amount of rele-

vant information provided by the designer. In any case the standard sub-models used to build

the model of the system, which are those to be used when no specific information is available,

can always be substituted by more detailed models derived when information is available.

We defined the syntax of 2 intermediate representations used to divide the entire transformation

in sequential steps. The first step takes the UML model and produces an Intermediate model in

which the dependability related features are filtered from the entire specification. The second,

starting from the “dependability” oriented description provided by the Intermediate model pro-

duces a timed Petri net, which is described using still an abstract representation. A final step

can then be easily performed to translate the model according to the syntax adopted by specific

PN tools selected for performing the analysis.

This approach needs some further work to be refined and to optimise the solution and analysis

of the resulting Petri nets.

52

References

[1] Ajmone Marsan M., Balbo G. and Conte G., “A Class of Generalized Stochastic Petri
Nets for the Performance Analysis of Multiprocessor Systems” ACM TOCS, 1984. Vol.
2 (2): pp. 93-122.

[2] Ajmone Marsan M. and Chiola G., “On Petri nets with deterministic and exponentially
distributed firing times” Lecture Notes in Computer Science, 1987. Vol. 226 132-145.

[3] Allmaier S. and Dalibor S., “PANDA - Petri net analysis and design assistant”, in
Performance TOOLS’97, 1997, Saint Malo, France.

[4] Barlow R. E., Fussel J. B. and Singpurwalla N. D., Reliability and Fault-Tree Analysis.
1975, Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.

[5] Chiola G., “GreatSPN 1.5 software architecture”, in Fifth International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation, 1991, Torino,
Italy.

[6] Choi H., Kulkarni V. G. and Trived K. S., “Markov regenerative stochastic Petri nets”
Performance Evaluation, 1994. Vol. 20 337-357.

[7] Ciardo G., Muppala J. and Trivedi K. S., “SPNP: stochastic Petri net package”, in
International Conference on Petri Nets and Performance Models, 1989, Kyoto, Japan.

[8] Davis J., Scott J., Sztipanovits J. and Karsai G., Integrated analysis environment for
high impact systems. 1997, Measurement and Computing Systems Laboratory,
Vanderbilt University.

[9] German R., Kelling C., Zimmermann A. and Hommel G., “TimeNET: a toolkit for
evaluating non-Markovian stochastic Petri nets” Performance Evaluation, 1995. Vol. 24.

[10] Kanoun K., Borrel M., Morteveille T. and Peytavin A., “Modeling the dependability of
CAUTRA, a subset of the french air traffic control system”, in IEEE 26-th International
Symposium on Fault-Tolerant Computing (FTCS26), 1996, Sendai, Japan: IEEE
Computer Society Press.

[11] LAAS-CNRS, SURF-2 User guide. 1994, LAAS-CNRS, Toulouse France.

[12] Laprie J. C., “Dependability-Its Attribues, Impairments and Means”, in Predictably
Dependable Computing Systems, Randell B., Laprie J.C., Kopetz H.andLittlewood B.,
Editor. 1995, Springer-Verlag: pp. 3-24.

[13] Laprie J. C. and Kanoun K., “Software reliability and system reliability”, in Handbook
of Software Reliability Engineering, Lyu M.R., Editor. 1996, McGraw-Hill: New York.
pp. 27-69.

[14] Lyu M. R., ed. Handbook of Software Reliability Engineering. 1996, McGraw-Hill:
New York.

[15] Malhotra M. and Trived K. S., “Dependability modeling using Petri nets” IEEE
Transactions on Reliability, 1995. Vol. 44 (3): pp. 428-440.

53

[16] Nelli M., Bondavalli A. and Simoncini L., “Dependability modelling and analysis of
complex control systems: an application to railway interlocking”, in EDCC2, 1996,
Taormina, Italy: Springer-Verlag.

[17] Rational Software * Microsoft * Hewlett-Packard * Oracle * Sterling Software * MCI
Systemhouse * Unisys * ICON Computing * IntelliCorp * i-Logix * IBM * ObjecTime *
Platinum Technology * Ptech * Taskon * Reich Technologies * Softeam, Object
Constraint Language Specification. 1997, version 1.1.

[18] Sanders W. H., Obal II W. D., Qureshi M. A. and Widjanarko F. K., “The UltraSAN
modeling environment” Performance Evaluation, 1995. Vol. 21 (Special Issue
“Performance Evaluation Tools”).

[19] Singh H., Billington R. A. and Lee S. Y., “The method of stages for non-Markov
models” IEEE Transactions on Reliability, 1977. Vol. 26 (6): pp. 135-137.

1

From Dynamic UML-Diagrams to Generalized Stochastic Petri
Nets

M. Dal Cin, - FAU-IMMD3
G. Huszerl, - FAU-IMMD3 and TUB
K. Kosmidis - FAU-IMMD3

1 Introduction

In this document we first present an informal description of the translation from the
diagrams of the Dynamic Model to Generalized Stochastic Petri Nets (GSPNs). The
dynamic part of a UML-model comprises sequence diagrams, activity diagrams and
statecharts. Collaboration diagrams are equivalent to sequence diagrams and, hence, are
not considered here further. We start with the informal description of the translation of
sequence and activity diagrams, since their translation is straightforward. We then discuss
informally the translation of statecharts. Due to the specific semantics of UML-statecharts
we have not yet completely defined the transformation. We rather selected a subset of
UML statecharts (Guarded Statecharts) for which the translation is available and which is
particularly suited for modeling embedded systems with their environment. This subset
comprised also a well defined fault model [Dal Cin 1998]. Thus, it provides the possibil ity
to model and evaluate, for example, the behavior of systems prone to faults in their
environment. This is, of course, necessary for any dependability evaluation of critical
systems.

We then discuss the transformations more formally. The intuitions behind the
transformations will be illustrated by means of very small examples. The demonstrator
(Deliverable 5: Software and Report on the Demonstrator) provides a much more elaborate
example of the transformations, the modeling technique by means of Guarded Statecharts
and of the fault model.

The purpose of the transformation of the Dynamic Model to Stochastic Petri Nets is to be
able to provide within HIDE automatically an analytical model which is consistent with the
Dynamic Model and which is amenable to a quantitative evaluation. To this end, the
Dynamic Model has to be annotated with stochastic parameters. Generalized Stochastic
Petri-Nets (GSPN) provide a concise possibil ity to specify Markov chains. That is, they are
equivalent to Markov processes and can be transformed automatically to Markov chains.
[Ajmone Marsan et al.]. Moreover, it is possible to extend GSPNs such that non-markovian
behavior can be modeled and evaluated as well. An important aspect is that the
transformations are open in the sense that they do not presume a specific evaluation tool as
long as the modeling capacity of the class of Petri Nets supported by the tool is high

2

enough. Hence, the most appropriate tool among the many tools available can be selected
for our evaluation.

The information gained by the evaluation of the Dynamic Model complements the
quantitative evaluation of the structural UML specification. Moreover, input parameters
required by the evaluation of the structural UML specification can also be provided by the
evaluation of the Dynamic Model.

2 Informal Description of the Transformations

In this section we discuss the transformation on an informal basis and explain our choices.

2.1 Transformation of Sequence Diagrams to Generalized Stochastic
Petri-Nets

Sequence diagrams describe the exchange of messages within an interaction of objects
arranged in a time sequence. Sequence diagrams may exist in generic form or in instance
form. In generic form they describe a set of message exchange sequences among a set of
classes; in instance form they describe one actual message exchange sequence consistent
with the generic form. The instance form does not include repetition sequences (loops) or
conditional sequences (branches). It is mainly this form that is the relevant for the
quantitative analysis of model behavior. For example, it may be of interest to compute and
compare the cumulative distribution functions of the time to process a blank (in our
production cell example) for different patterns of message exchange between the controller
tasks. The differences in the exchange of messages may arise from the implementation of
different task synchronization mechanisms, such as spin locks or barrier synchronization.
Then it may be important to investigate their effect on the throughput of the production
cell .

Graubmann et. al. indicate how to transform sequence diagrams into Petri Nets,
specifically into Labeled Occurrence Nets. They provide transformation rules for basic
sequence diagram constructs and cover also structural concepts like co-regions and sub-
diagrams.

Occurrence Nets are cycle free and conflict free Petri Nets which, therefore, suitably
describe the actual message exchange sequences within distributed systems. Their labeling
is used to relate the elements of the Occurrence Net to elements of the corresponding
sequence diagram. For example, labels serve to identify which places of the Occurrence
Net correspond to which messages in the sequence diagram. Thus, the labeling establishes
the actual semantic link between the UML-diagrams and the Petri Nets [Graubmann et al.].

2.2. Transformation of Activity Diagrams to Stochastic Petri-Nets

Activity charts best describe the concurrent behavior of objects and their interactions.
They can be viewed as a combination of statecharts and Petri Nets. Hence, the

3

transformation of activity diagrams to Generalized Stochastic Petri Nets is straightforward.
Actions are represented by places and transitions by timed Petri Net transitions. Some
minor details of the transformations are discussed in Section 2.
Recently, activity diagrams became very popular for modeling business processes and
workflows, and it is commonly felt, that the quantitative evaluation of the attributes of
theses processes is an important issue for further development of modeling environments
[Versteegen 1998]. The transformation from activity diagrams to Stochastic Petri Nets can
provide the basis for such an analysis.

2.3. Transformation of Statecharts to Generalized Stochastic Petri-Nets

Statecharts (state diagrams) represent finite state machines. They describe the behavior of
objects in response to external stimuli, such as sensor signals. In Deliverable 1:
'Specification of Modeling Techniques' we define a subset of statecharts comprising so-
called Guarded Statecharts. The main restrictions for Guarded Statecharts are: (a) they are
essentially flat, (b) no history states are allowed, (c) transitions may not have an event
expression, entry and exit events are allowed, (d) guards are Boolean expressions of state
predicates (That is, guards are essentially tests of concurrent states). Stubbed transitions
and complex transitions (e.g., forks and joints) are allowed but not considered here. Hence,
Guarded Statecharts form a strict subset of UML-statecharts. Nevertheless, Guarded
Statecharts are useful for modeling the behavior of a collection of systems of relatively low
complexity, for example, for modeling the behavior of several interacting objects of the
Dynamic Model. Complex system behaviors have to be modeled by hierarchical
statecharts. Moreover, as the systems described grow in complexity and size their analysis
should be approached from the structural perspective defined in the chapter 'From
Structural UML Diagrams to Timed Petri Nets' of this deliverable.

Guarded Statecharts

Guarded Statecharts (GSC) are suited to model embedded systems with their environment,
see Deliverable 1: 'Specification of Modeling Techniques'. That is, embedded systems can
often be modeled by the AND-composition of concurrent GSCs. Moreover, with Guarded
Statecharts also non-deterministic behavior can be modeled. Although the software of
embedded systems is completely deterministic, the system can not know if and when
external events or faults will happen. For instance, a task can be requested at any time and
peripherals may react to controls with unpredictable delays due to faults.

Such non-deterministic behavior is transformed to a stochastic behavior of the Petri Nets.
This requires the specification of state transition rates and branch probabilities. The Petri
Net class supported by PANDA allows to directly transform a Guarded Statechart to a
Generalized Stochastic Petri Net. State transitions with time delay are transformed to timed
Petri Net transitions, those without time delay to immediate Petri Net transitions. Guards
become guards of Petri Net transitions.

4

Hierarchical Statecharts

When dealing with large dynamic models it becomes mandatory to use hierarchy in
statechart models. We will handle these models by first transforming them to Extended
Hierarchical Automata (see Deliverable 1: Specification of Modeling Techniques). The
subautomata of an Extended Hierarchical Automaton are then interpreted as interrelated
Markov-processes. They are transformed to Stochastic Petri Nets in a straightforward
manner where events are substituted by transition rates.

The specification and implementation of the transformation from hierarchical statecharts to
Petri Nets will be considered in future research.

3 Algorithmic Description

In the following we present some details of the transformation of the Dynamic Model to
GSPNs. No proofs are given. They wil l become available in [Dal Cin et a. 1998].

The Generalized Stochastic Petri-Nets we use are 9-tuples (P, T, In, Out, G, O, p, w, M_0),
where P and T are disjunct, non-empty sets of places and transitions, respectively. There
are two disjunct subsets of T : T_i and T_t where T_i ∪ T_t = T; T_i is the set of immediate
transitions and T_t is the set of timed transitions. In ⊆ P x T is the set of input arcs and Out
⊆ T x P is the set of output arcs. G is the set of transition functions:
g_M: T → {True, False} , where M corresponds to the actual marking of the Petri Net,
O is the set of arc multiplicity functions m_M : In → { 0, 1} , where M again corresponds to
the actual marking of the Petri Net.

Furthermore, p is the transition probabil ity function p: T_i → R+; w is the transition rate
function w: T_t → R+ and M_0 is the function M_0: P → {0,1} of the initial marking.
The 'probabil ities' are not normalized, so they can be greater 1 and their sum is not
constrained. (For the sake of clarity we call these probabilities weights).

Places are drawn as circles, transitions as bars or boxes, input arcs as arrow-headed arcs
from places to transitions, output arcs as arrow-headed arcs from transitions to places. The
guard functions are written in square brackets at the given transition, the multiplicity
functions are written in round brackets at the given arc, weights and rates are annotations
of the given transitions. The actual marked places contain dots.

3.1. Transformation of Sequence Diagrams to Generalized Stochastic
Petri-Nets

According to Graubmann, a Labeled Occurrence Net (B,E,F,l) is an Occurrence Net
(B,E,F), which is a cycle free and conflict free Petri Nets. B is the set of places, E the set of
transitions and F the cycle free flow relation, with a labeling function

5

where LABEL is an arbitrary set of strings (labels). The labeling establishes the actual
semantic link between the sequence diagrams and the corresponding occurrence net.
During transformation these labeling strings are analyzed. For the quantitative analysis we
view the Occurrence Nets as subclass of Generalized Stochastic Petri Nets.

Here we only illustrate the transformation algorithm by a few examples. For formal
definitions employing a suitable Sequence Diagram Grammar see [Graubmann et al.].

The fragments of Occurrence Nets consist of a transition with one input and one output
place. Interaction between live lines is provided by an additional place linked with the
transition. The composition process constructs the live lines of the sequence diagram out of
such fragments. Here we show the transformations for message input and output and for
the creation of objects.

Message input and output:

The place label "message identifier, sender object name, object name" is identical to the
place label "message identifier, object name, receiver object name", if the message is
exchanged between the sender object and the receiver object.

LABLEEBl →∪:

6

Create live line:

The place label "name of created object" identifies the initial place of the created object.

Small example:

Enhancement: Each message is annotated with a mean send time

7

3.2. Transformation of Activity Diagrams to Stochastic Petri-Nets

As mentioned, activity diagrams can be viewed as a combination of statecharts and Petri
Nets.

Transformation:

(1) Preparation: (a) Implicit control arcs (due to object flow) are made
 explicit.
(b) Short hands for decisions are resolved.

(2) An action state models a step in the execution of an algorithm. Each action state is
represented as a place. The place of the initial action state gets a token.

(3) Immediate transitions from an action state to an other action state are replace by timed
Petri Net transitions and corresponding arcs. The guards of the transitions become the
guards of the timed Petri Net transitions.

(4) Each explicit fork and joint transition is represented as timed Petri Net transition. The
guard of the transition becomes the guard of the immediate Petri Net transition.

Activities, stop states, object flow and swim lanes are ignored, since they are irrelevant for
the quantitative analysis.

Enhancements:

(a) For each direct transition a firing rate is required. This rate is determined from the mean
duration time of the preceding action.

8

(b) For each fork and joint transition a firing rate is required. This rate is determined from
the maximum of the mean duration times of the preceding actions.

Small example:

9

3.3. Transformation of Guarded Statecharts to Generalized Stochastic
Petri-Nets

As mentioned already, Guarded Statecharts (GSC) form a sub-class of statecharts which is
suited for modeling embedded systems with their environment. That is, embedded systems
can often be modeled by the AND-composition of concurrent GSCs. On the other hand, the
Petri Nets supported by PANDA exhibit several properties that make the transformation of
Guarded Statecharts to these Stochastic Petri Nets easy. For instance, in PANDA it is
possible to annotate transitions with guards and to use state dependent capacities for arcs.

The main objects of an (enhanced) Guarded Statechart are states (container states, base
states, initial states) and transitions with guards and labels. The labels describe timing
information (arrival distribution of signals) or static information (probabil ities of possible
outcomes of a given choice).

Guarded Statecharts are not hierarchic - rather, all hierarchy levels (except the bottom
level) describe concurrency. The transformation neglects all these concurrent container
states, since they have no counterparts in the Petri Net structure. The base states are
represented as places. The PN-place holds the name of the GSC-base state. The initial
marking of the place is 1, if there is an initial transition in the GSC leading to this state,
and its initial marking is 0 else. Since our GSCs model mainly embedded systems, where
the communication between several components is of importance, we made it possible by
the transformation to model communication errors explicitly within the Petri Nets. Within
the statecharts communication errors are modeled by substituting guards by True (e.g., the
sensor signal is stuck-at-active) or False (e.g., the actuator signal is stuck-at-inactive or not
observed by the hardware). This way, lost or spurious signals can be modeled. State
perturbations are modeled by additional states and/or additional state transitions.

The main transformation steps are:

(1) 'Private' states, e.g., states which do not appear in guard expressions are transformed to
places.

(2) 'Public' states, e.g. sensor and actuator states, are transformed into a pair of places, see
figure.

Function Mark delivers the number of tokens in State_PUB. The arc annotation 1xMark(..)
determines a state dependent capacity of the arc. The duplication of public states serves

10

mainly to model communication faults, e.g. lost or spurious sensor or actuator signals.
Such a fault occurs when State and State_PUB have different markings.

(3) State transitions labeled with rates are transformed to timed Petri Net transitions with
the same rates, see figure.

Function stoped evaluates the predicate in(State_PUB) and returns TRUE, if this predicate
evaluates to TRUE and all transitions out of state State_PUB are disabled (in conformance
with the UML semantics).

(4) State transitions labeled with weights are transformed to immediate Petri Net
transitions with the same weight, see figure. The weights of conflicting immediate
transitions are normalized by PANDA such that they become branching probabil ities.

At present, weighted transitions can not have guards as well .

Enhancements:
(1) State transitions with time delay require transition rates.
(1) State transitions without time delay require weights.

Again we show a simple example. This example shows two interacting statecharts
exchanging sensor and actuator signals.

11

The statecharts:

The corresponding Generalized Stochastic Petri Net:

12

References

M. Ajmone Marsan, G. Balbo, G. Conte, Performance Models of Multiprocessor Systems,
The MIT Press 1986

S. Allmaier, S. Dalibor: PANDA -- Petri net ANalysis and Design Assistant, Tools
Descriptions, 9th Int. Conference on Modeling Techniques and Tools for Computer
Performance Evaluation, St. Malo, 1997

M. Dal Cin, Modeling Fault-Tolerant System Behavior, in Systems: Theory and Practice,
Advances in Computing Science Springer , pp. 213-234, 1998

M. Dal Cin, Checking Modification Tolerance, Proceedings of the Third IEEE
Interanational High-Assurance Systems Engineering Symposium, HASE 98pp. 4-12, 1998

M. Dal Cin, G. Huszerl, K. Kosmidis, University of Erlangen-Nürnberg
IMMD 3, Quantitative Analysis of Dynamic Models, Technical Report IMMD3 1998

P. Graubmann, E. Rudolph, J. Gabrowski., Towards a Petri Net based semantics definition
for message sequence charts, Siemens AG ZFE, Technical Report

G. Versteegen, Geschäftsabläufe objektorientiert optimiert: Fit mit UML, iX 12/1998 pp.
143-147

