High Level Test Pattern Generation
for VHDL Circuits

Balédzs Sallay, Andréas Petri, Karoly Tilly, Andras Pataricza
Department of Measurement and Instrument Engineering
Technical University of Budapest
H-1521 Budapest, Miiegyetem rkp. 9, Hungary
Phone +36-1-463 2057
E-mail: sallay@mmt.bme.hu

Abstract

This paper presents a new approach that uses func-
tional level circuit descriptions as a basis for auto-
matic test pattern generation (ATPG). The VHDL
model of the circuit is transformed into a constraint
network, and the ATPG problem is solved as a
constraint satisfaction problem. Techniques and
heuristic methods for the acceleration of the search
are also examined.

Keywords: ATPG, high level, VHDL, constraint,
CSP, heuristics.

1 Introduction

The main goal of an automatic test pattern genera-
tion (ATPG) algorithm is to find such input values
for circuits that detect given physical faults.

The growing complexity of digital circuits have
imposed greater and greater demand on test pattern
generation algorithms for the past twenty years.
Though promising solutions have been elaborated
to speed up the test generation process, no algo-
rithm can cope with its excessive computational
complexity, as Fujiwara has shown that the ATPG
problem is NP-complete [1]. One possible answer,
put forward by the design and test communities, to
this problem was the invention and application of
design for testability (DFT) principles. Full testa-
bility is, however, rarely affordable, and the devel-
opment of ATPG algorithms is still an important
issue.

Gate level algorithms, based on a systematic
search [2], are very sensitive to the number of gates
in the circuit. Although the speed of the test gen-
eration environment grows rapidly as well, this in-
crease is less than the exponential increase in the
demand of time, which is caused by the growing

number of gates, would make it necessary.

The basic principle of the presented approach is
to raise the abstraction level of the input of the
ATPG procedure, in order to reduce the structural
complexity of the circuit model. Instead of a collec-
tion of independent gates and signals, functional ob-
jects and signals of abstract data types are consid-
ered, thus the number of network elements are de-
creased. Obviously, an object described at a higher
level will take more time to justify, yet a significant
gain in the overall time requirement is expectable.
This increase of performance is effected by the fact
that high level elements can exploit the regularity
of the components, which information is otherwise
lost during top-down transformations of structured
CAD methodologies. Another important advantage
of high level test generation is that functional circuit
models are sooner available and portable between
technologies.

These advantages imply a somewhat reduced
fault coverage: the more abstract the circuit model
is, the coarser the fault model. However, since the
vast majority of gate level stuck-at faults can be
modelled at higher levels as well, this solution is
a good trade-off between the gain in computation
time and the loss in accuracy.

The following sections discuss the abstraction
level suitable for ATPG as well as the corresponding
fault model and fault coverage issues. Subsequently,
a powerful constraint-based circuit representation
method is introduced. Section 6 deals with the so-
lution of the resulting constraint satisfaction prob-
lem, with special attention to heuristic measures
that aid decisions. Finally, the efficiency of the al-
gorithm and the accelerating methods is evaluated.

2 The role of high level ATPG in
technology

High-level ATPG provides the following main ad-
vantages:

e It is possible to aim at the independence of
test patterns of the employed technology. This
also involves that the ATPG process may be
launched sooner, prior to the gate level synthe-
sis.

e Typically, the use of compact models results in
a significant gain in computational time.

We consider the second objective as our primary
research goal. The problems of early phase test
development and technology-independence are not
addressed in this paper for reasons discussed in Sec-
tion 4. According to this, we view the abstraction
level immediately following the high level synthe-
sis step as the most suitable level for launching the
ATPG process (Figure 1).

specification

VHDL behavioural
description

HL synthesis
HW/SW separation
scheduling
esource allocation

VHDL data flow
functional description

low level synthesis ATPG
gate level description, test patt
netlist, layout, etc. patterns

Figure 1: A typical CAD system design flow

We wish to integrate our ATPG tool under de-
velopment into an existing design environment in
order to evaluate its performance on circuits taken
from real designs. The AMICAL system [4] has
been chosen as the first CAD tool to be supported.

3 Circuit model

The applicable constructs of VHDL are more and
more confined as the design process advances to-
ward the lower levels. The functional architectural
level, chosen as the entry point to ATPG, has a con-
forming description style as well. At this level two
basic parts, composing the circuit itself, are sepa-
rated:

e the control part, which is usually a finite state
machine, typically described only by its func-
tion, and

o the data part, which describes how data move
and are manipulated in terms of functional
components and their interconnections. In a
typical CAD system there is a set of prede-
fined components constituting the data paths
(such as multiplexers, registers, constant reg-
isters, etc.), and an open library of functional
units performing manipulative operations.

The use of multiplexer based or bus based data part
architectures does not imply an essential theoretical
difference from the point of view of modelling:

o Multiplexers determine their output values us-
ing a distinguished selector signal.

e The resolution function of buses, associated to
the bus signal in its subtype declaration, is truly
value-driven and commutative.

By the applied constraint data structure, however,
both kinds of selection are easily represented, since
resolution functions can also be treated as func-
tional elements.

In a cooperation between the Tallinn and Bu-
dapest technical universities, in the framework of
the EC-sponsored FUTEG (Functional Test Gen-
eration) international project, our data-flow domi-
nated and their control-oriented approach are being
integrated. The approach based on the concept of
alternative graphs, proposed in [9], offers the ca-
pability of dealing with circuits of deeper control
sequences.

Our research focuses on generating tests for faults
in the data part. At present, our approach is appli-
cable to combinational models or to those of a very
moderate sequentiality by the use of well-known
extension methods, similar to the iterative array
model based ones.

4 Fault model

The validity of the fault model is one of the most
important issues considered at the selection of the

ATPG model. At present, several promising ap-
proaches exist which start ATPG from behavioural
descriptions [7] [8]. The fault model is a strong
point and also a weakness at the same time in these
approaches. Their fault set, defined in terms re-
lated to VHDL, is independent of the subsequent
steps (architectural, gate-level, and layout synthe-
sis) of the synthesis procedure. On the other hand,
as scheduling and resource allocation are not yet
performed, the extent of hardware reuse is unknown
at this phase. Since neither VHDL operations are
associated with functional units, nor VHDL assign-
ment statements are associated with data paths,
reliable assumptions lack the correlation between
physical faults and errors in VHDL statements.

We have therefore chosen the functional archi-
tectural level as the entry point to ATPG. VHDL
signals here have direct hardware correspondents;
hence, physical faults affecting interconnections are
manifested as storage problems of these signals.
The traditional stuck-at and short fault model is ap-
plicable here, too; moreover, our model makes the
handling of multiple bit-faults on a single high-level
signal possible.

To functional units (FU) functional faults are as-
sociated, e.g. the execution of a wrong operation.
However, in an ATPG tool integrated into a design
system based on FU libraries, a more accurate fault
representation is possible: with the use of either

o faulty unit libraries, where library elements are
obtained by the back-annotation of lower level
faults, or

e test situations, where test patterns for FUs are
given together with the FUs themselves.

This fault model defines a superset of the possible
physical faults. The set of faults that may indeed
appear in the circuit can only be determined when
decisions and technological details of the subsequent
low level synthesis step are known. Integer encod-
ing, for example, affects the set of possible stuck-at
faults, as well as shorts can be selected only after the
wire placement is known. This means that ATPG is
still not a stand-alone procedure; however, generic
algorithms that need less time for a given fault can
be developed.

5 Constraint based representation

Although only input patterns are of primary inter-
est during the execution of a test pattern generation
procedure, test vectors can be found only after the
justification of the internal signals.

The requirements imposed on a justified signal
setting can be expressed by the concept of con-
straints. Signals are treated as variables of discrete
domains in our approach, while a constraint is a
relation between them, which describes what con-
sistent value combinations they may take. Since
the prerequisites of a successful justification are de-
termined by the architectural elements, constraints
are used to represent the components of the circuit.
This way a constraint network similar to the circuit
topology is obtained, and additional constraints are
added which guarantee that the assumed fault be
sensitised and observed.

A vector in the variable space, satisfying the con-
straints, is the solution of the constraint satisfaction
problem (CSP); test patterns are then the values of
variables corresponding to the input ports of the
circuit. Thus ATPG problems and CSPs are equi-
valent.

The constraint notation and representation is in-
troduced on account of the symmetric nature of con-
straints. In contrast to circuit components, which
have dedicated in and out ports and their output
values are deduced of their inputs, a constraint
does not have a predefined direction of data flow.
This conforms very well to the justification prob-
lem where an algorithm assigns values to nodes in
any order and attempts to propagate the effect of
an assignment in the network both in forward and
backward direction.

Representation of constraint variables

The role of variables in the ATPG is simply the stor-
age of values assigned to them by the constraints.
They maintain a stack of previous values in order
to support backtrack mechanisms, and they have a
special data structure supporting two features not
common in CSP contexts: partial access of con-
straints to variables and interval logic. Partial ac-
cess is required because VHDL allows the indexing
and the slicing of signals. Interval logic is a data
representation technique that supports the assign-
ment of allowed ranges or of masked array values
(i.e. an array value which has don’t care elements)
to variables, instead of specific values or domains.
This logic often proves useful when values can be
classified into groups of different behaviours and the
separation of data-domain partitions can be post-
poned.

Representation of constraints

A constraint is generated whenever the VHDL com-
piler encounters a component instantiation state-
ment. This constraint ensures the consistency of
the values on the ports of the component.

Some of the conventional gate level ATPG al-
gorithms [2] can also be considered as constraint
based algorithms. Though a gate, e.g. OR gate,
implements a function, its behaviour can also be
described by means of a cube set ({0, 0, 0}, {X, 1,
1}, {1, X, 1}), which is in fact undirected and can
be regarded as a constraint specified by the enumer-
ation of the satisfying tuples (also called truth-table
representation). They feature two considerable ad-
vantages: the access to a tuple requires only simple
indexing instead of extensive computations, and the
number of remaining tuples is always known.

Unfortunately, this representation cannot be ex-
tended to the high abstraction level, because the
size of such a truth table would be extreme. Hence
a symbolic or algorithmic representation method-
ology is required, which enables the constraint to
perform the following tasks:

o decision: generation and assignment of a new
tuple.

o implication: propagation of the effect of a
change (a domain restriction) on a variable
to the other variables. Implication is obvi-
ous when all the input signals become fully
defined, as the output is a function of input
signals. However, backward implication neces-
sitates the use of more sophisticated methods.

o support for other decisions: calculation of dif-
ferent heuristic measures, such as the number
of unassigned tuples, transparency, etc.

A high level ATPG tool can be implemented by
either of the following two concepts:

e use of a constraint library. This concept is ap-
plicable whenever only a fixed set of compo-
nents is instantiated in the input VHDL de-
scription, which is usually the case at the out-
put of a high level synthesis tool. Tuple gener-
ation and implication methods can be provided
in advance by the ATPG implementor.

e compiled constraints. This concept requires
that the VHDL compiler be capable of process-
ing the architecture bodies of the functional
units as well as of generating their correspond-
ing constraints.

The compilation methodology for functional units
of a true data-flow nature has been solved in our ap-
proach by the creation of an elementary constraint
network that consists of primitive nodes. However,
the transformation of functional units of complex
procedural nature cannot be handled in a satisfac-
tory way with the current arsenal of data-flow based
constraints. Consequently, in the first version of our

software package the constraint library implemen-
tation is used for the modelling of functional units.

Fault representation
To make the constraint satisfaction problem fully
equivalent to the ATPG problem for the given cir-
cuit, two further constraints are added to the net-
work. The first one is responsible for the fault repre-
sentation, while the second one ensures the observ-
ability of the fault effect. As faults are represented
the same way as other information on the circuit,
the fault model can be extended arbitrarily if the
new fault can be described by custom constraints.
The modelling of stuck-at and short faults on
signals is quite straightforward, because they have
a direct correspondent in the generated constraint
network. Thus signal faults are transformed into
simple fault monitoring constraints. Functional
faults are also easily represented by the addition
of a multiplexer and a component that implements
the wrong functionality.

6 Solution of the CSP

A solution of a CSP signifies a value setting of the
variables which satisfies all the constraints. To ob-
tain this, a search algorithm that traverses the vari-
able space is activated. This algorithm must be sys-
tematic, i.e. it must find a solution if the problem
is solvable.

The most primitive ("brute force”) method to
find a solution would be an exhaustive search by
the enumeration of value tuples, then the selection
of those tuples that comply with every constraint.
Somewhat more sophisticated is the algorithm that
lists only tuples of variables corresponding to circuit
inputs and calculates the rest. These algorithms
without a special search control consume a huge
amount of time, because a lot more tuples are ex-
amined than would be necessary. A much better
version of the second algorithm is when only a sub-
set of input variables is assigned first and this set
is gradually extended if no inconsistency is experi-
enced. By that we actually get the high level equiv-
alent of the gate level PODEM algorithm. The cost
of improvement is the emerging need of a decision
control mechanism.

Algorithm candidates too have to possess the
ability of partial and extendible variable assign-
ment, inconsistency detection, and decision nulli-
fication. The execution of such search procedures
can be illustrated by the well-known decision tree
(DT) notation. The nodes of a DT, ranging from
the root to the leaves of the tree, represent more and

more determined states of the overall system. Edges
denote decisions that transfer the system down one
level, into a more specific state, by restricting or
assigning values to variables. Leaves of the DT
may either be inconsistent states where backtrack-
ing step is to follow, or the goal (entirely determined
and consistent) node.

These algorithms consist of two basic steps in the
traversal of the DT: a forward and a backward step.
During a forward step a decision is made and some
variables become determined. If the state of the
system remains still consistent (more precisely, no
inherent inconsistency is discovered), a forward step
follows again. If an inconsistency is detected, a pre-
vious state, assumed to be consistent, is restored,
and a next decision alternative is tried. This is
called a backward step.

The simplest algorithm implementing these steps
is chronological backtracking, widely used e.g. in
traditional gate level ATPG algorithms. In case of
a contradiction some decisions are retracted in re-
verse chronological order until the contradiction is
resolved. Figure 2 describes the algorithm in de-
tails, during which consistent values are assigned
consecutively to variables in an order {X;, Xa, ...,
Xn} determined by the applied selection method.
After a consistent state ¢ is reached, a further as-
signment to X, is tried. If no consistent value can
be assigned to X1, then it is a dead-end state, and
a backtracking step must be performed. During this
step, a variable X is selected where j < i and X
has still multiple candidate assignments. Its value
is altered to the next consistent choice.

Forward(xr X ...xi)
if there are no more variablesto assign then SUCCESS
Let D, ., bethe set of values of X.
i+1 ! X i+l
which are consistent with {xI Xy oo ,xi}
while Di+ isnot empty do
Let xi+1lbe the first element of Di+1
Remove Xii1 from DI+1
Forward(xr X e X, ’Xi+])
Backtrack(i)
end Forward

Backtrack(i)
if i=1then FAILURE
Unset X;

end Backtrack

Figure 2: Chronological backtracking

This fairly simple algorithm surely finds a solu-
tion if it exists. The search trace on the correspond-
ing decision tree can be mapped onto an easy-to-
implement stack. The efficiency of the chronologi-
cal backtracking can be in several cases extremely

low due to the discrepancy between the chronolog-
ical order of backtracks and the problem structure.
Suppose that a decision in the middle of the DT is
the cause of a contradiction that is discovered only
at the leaves of the tree (Figure 4a). In this case
chronological backtracking performs an exhaustive
check of all underlying leaves before rejecting this
decision alternative. This is entirely unnecessary,
since subsequent decisions can have no impact on
the outcome of that subsearch, which is surely fail-
ure and which would cause the withdrawal of the
wrong decision.

Our proposed algorithm applies two significant
improvements compared to this one. It incorporates
an advanced implication step after each decision in
the forward phase, and skips considerable parts of
the tree without the risk of losing solutions in the
backward phase by intelligent backjumping.
Implication
Once a decision is made in the course of forward ex-
tension steps, it is worth estimating the effects im-
plied by that decision in order to reduce the search
space by the exclusion of inconsistent states.

Implication()
Let I, the queue of elements about to imply, be empty
Place the variables of the constraint
that have just made the decision on |
while | is not emptydo
Remove e, the first element of |, from |

elmply()
end Implication

constraint::Imply()
Find which variables have been restrained
Propagate confinement to other variables
Put newly restrained variablesto |

end constraint::Imply

variable::Imply()
Put neighbouring constraintsto |
end variable::Imply

Figure 3: Implication

If this implication step were absolutely perfect,
the exploration of all the impacts of a decision
would entirely eliminate the need of backward steps,
since a complete implication would not leave latent
contradictions in the system state. Perfect impli-
cation is, unfortunately, only a theoretical option,
since this itself would be as time-consuming as the
ATPG process is. Nevertheless, the effect of a de-
cision must be discovered to as great an extent as
reasonable.

Thus an implicative step is incorporated in the
forward step of the search. As a reasonable trade-
off between implication perfectness and efficient im-
plementation, one-step implication is used (Figure

3). The shown method is a breadth-first propaga-
tion of value restrictions, which could just as well be
implemented in a depth-first manner. The crucial
point of the algorithm is the propagative step in the
middle of the constraint implication method, which
is implemented in an efficient way in our constraint
library based adaptation.

Backjumping

Whenever a contradiction is discovered, it must be
eliminated by restoring a previous, contradiction-
free state. In chronological backtracking the state
preceding the last decision is restored first, where
either a new decision alternative is selected or the
decision history is traced further back until the con-
sistent state is found. As this state may be as well
located in the middle of the DT, jumping immedi-
ately back there would be a great acceleration with-
out losing solutions (Figure 4b).

The target of a jump-back, on the other hand,
is not easy to find. Still, this can be done in a
CSP originating of an ATPG problem, since the
nature of ATPG is such that structural data de-
pendencies help find candidates for the wrong de-
cision, of which the last one can be immediately
cancelled. Consider, for example, the case when a
constraint realises that no value tuples satisfy its
condition (inconsistency detection). Hence, a back-
ward step needs to follow. Now there is no use in
taking back the last decision, made somewhere else
in the network, because the only way to eliminate
the contradiction is to widen the range of the neigh-
bouring variables. The wrong decision candidates
are, therefore, those that may have had an impact
on these variables.

@ visited node

inconsisten

K @ qeiection g4 g

/ S cause of K
inconsistency

O destination

a.) backtracking b.) backjumping

Figure 4: Comparison of backtracking and back-
jumping

Backjumping needs no more computation in the
state administration than backtracking. By main-
taining simple DT level stamps with decisions data

dependencies can be easily explored.

Labelling of network nodes

An additional idea beside the ones above is to keep
the solution space as narrow as possible by the ap-
plication of circuit topology based reductions on the
domain of the variables. Variables can be classified
in the following way in the initial phase of ATPG
for a given fault (Figure 5):

e those that must be affected by the fault (active
nodes), i.e. those that carry different values in
the good and the faulty circuit;

e those that may be affected by the fault (poten-
tially active nodes);

e those that cannot be affected by the fault (in-
active nodes), i.e. those that carry identical
values in the good and the faulty circuit;

e those of irrelevant value (don’t care nodes).

. fault location

L RS
me
b [

i—=] i L —
— a
i 9__\9_J - A
] . —=
| —= I—Ie o /
- chosen output
a active
p: poter?tlally active nodes
i: inactive
x: don't care

Figure 5: Labelling of nodes

Since constraints with don’t care variables do not
make decisions at all, the depth of the DT is de-
creased with several levels, thus the time consump-
tion is radically reduced (see Section 8). Inactive
and active variables also involve important data-
domain confinements.

These search acceleration concepts drastically re-
duce the number of traversed nodes in the DT,
that is, the time required by the algorithm; yet the
depth-first nature of the search method remains un-
altered. A sensitivity to early decisions is very char-
acteristic of the recursive search algorithms. The
order of the decisions and the extent of value re-
strictions should therefore be carefully determined.

7 Heuristic decision support mea-
sures

As exact information on the effect of decisions is
unavailable and would be extremely expensive to
obtain at the time they are made, heuristics are
used in order to predict the effect of the decision
alternatives, thus helping the selection of the po-
tentially best one. Unlike in the case of the acceler-
ating methods enlisted in the previous section, the
appropriateness of the individual kinds of heuristics
cannot be exactly proved, only validated by means
of benchmarking.

Many kinds of heuristics have been examined by
the authors. Some of them depend only on the
topology of the network (static heuristics), while
others are recalculated after certain changes in the
network state (dynamic heuristics). A sophisticated
algorithm uses a properly weighed combination of
several measures. At the current phase of our re-
search we focus on each heuristic method separately,
but we intend to inspect their combined effect af-
ter an experimental validation. At the gate level,
however, it was shown in [10] that by the extreme
weighing of different measures it is possible to im-
plement each of the well-known gate level ATPG al-
gorithms such as PODEM, composite justification
[5], etc. as special cases of a meta-algorithm. In the
following, certain cost function components will be
discussed.

Structural decisions

One classification of decisions is based on the na-
ture of their impact. When the result of a decision
is simply the confinement of the domain of certain
variables, this decision is called a data-domain de-
cision. Decisions may, however, involve that subse-
quent operations, mostly implication, become easier
to perform, because the part of the circuit with the
given values can be replaced with a simpler struc-
tural equivalent. We call these decisions structural
decisions.

Ezrample:
Consider a multiplexer constraint operating on In-
teger variables and on a selector variable (Figure 6).
If the selector is set to a specific value, then subse-
quent implications performed by the constraint are
simple assignments from the selected input to the
output, or vice versa. This is a structural decision.
When, however, the selected input (together with
the output) receives a specific value, a simple data-
domain decision is made.

It is desirable to make structural decisions first,
and then perform data-domain justification only in

—~ MUX —~ MUX
— —
— —
'Nkimk
— —= OUTH—
SELZE opL —~ SEL

structural decision data-domain decision

Figure 6: Structural and data-domain decisions

a significantly simplified circuit, because the ex-
ponential explosion of time consumption is due
mostly to the data-domain complexity of the model.
Therefore, a number which measures the implica-
tive improvement in the overall circuit is associated
to each decision candidate.

A practical data-independent cost function can
be derived from the classical observability and con-
trollability measures proposed in [3]. In order to
make the effect of a fault observable, a fault propa-
gation path must be established between the fault
site and the chosen output. The classical idea, first
mentioned in the late sixties, is to select the shortest
fault propagation paths (i.e. that have the highest
observability), as the establishment of these paths
involves the least interference with other compo-
nents.

The length of fault propagation paths can be
measured by a simple topological distance between
the output and the fault site. However, it is more
profitable to use — in a way similar to the recursive
cost functions shown in [3] — a measure of difficult-
ness where the characteristics of the components
involved in the fault path are also considered. The
establishment of a fault path requires value assign-
ments and value range confinements which make the
involved components transparent, and the number
of these extra assignments determines the amount
of interference produced.

A very important factor is the width of the fault
path, i.e. the number of ”parallel” abstract data
lines with different faulty and fault-free values. This
must be kept as low as possible close to 1 in or-
der to prevent the state space from growing. This
cross-cut number can be maintained by the intro-
duction of a supervising constraint, similar to the
”D-frontier” concept of gate level algorithms. By
cost punishments the search algorithm can be forced
to try values that block unnecessary fault paths, e.g.

by assigning 0 to the other input of a multiplier
component.

Our future plan is a hierarchical structural/ data-
domain separation of decisions by the elaboration
of a two-phase mechanism. Since high level ATPG
is integrated into an overall design process, exter-
nal information incoming from the synthesis steps
can be utilised by the ATPG tool. The most useful
is the information which defines the highest level
data paths of the circuit. The extraction of this in-
formation is quite straightforward if the CAD sys-
tem applies a modelling mechanism similar to the
hardware-software co-design approach, proposed in
[6]. In these systems the highest level of abstraction
is an untyped data flow model where only the direc-
tion and the timing of the data flow is considered
without detailing data manipulation. In the first
phase global fault-free and faulty data paths can
be defined, and a test superset can be determined.
This superset is tightened later by data-domain de-
pendencies, so the second phase of test generation
is performed, i.e. when the ATPG deals with ex-
act data types and performs complete data-domain
justification.

Constraint selection

It has been shown that the risk of causing in-
terferences among decisions should be minimized.
Besides implication, another idea is to let the data
be propagated in a wavefront-like manner in order
to avoid creating multiple independent decision cen-
tres in the network. Thus only those constraints are
allowed to make decision which have variables of an
already confined range. Out of those constraints
that are still considered after this restriction, the se-
lection of the decision-maker is aided by the lowest
tuple number heuristics. According to this, those
constraints make better decisions that can choose
from less tuples, because they partition the prob-
lem space better and are less likely to lead to con-
tradiction. This requires the capability of counting
or estimating the number of the untried tuples.

Data-domain decisions

At one point, the CSP solver algorithm gets into
the justification phase when all the values must be
determined. The best choice is not necessarily the
assignment of fully determined values. For exam-
ple, consider the case when an assignment of value
1 proves to be a wrong decision. After its cancella-
tion, there is little hope in trying value 2, because
it is very likely that the result will be the same con-
tradiction. The problem here is running into details
too early. It is perhaps better to merely restrain the
value range of the given variable, and to postpone
further decisions concerning that variable. A cost

function, observing the history of successful values,
can be set up to control this method.

8 Measurement results

In order to evaluate the presented algorithms and
heuristics, a high level TPG tool is being developed.
It consists of several modules and is implemented in
an object oriented manner in C++ (Figure 7). This
tool is the second version of our TPG software pack-
age. Preliminary measurements have been made
in a HLTPG environment, implemented, oddly, in
VHDL, too. The highest programming level subset
of VHDL was used for that. An algorithm writ-
ten in a HDL was not, of course, very powerful,
but spared us a lot of compiler development and
other programming work, and served very well for
the evaluation of the applied heuristic methods. We
summarize now only the effect of those accelerating
methods and heuristics which were elaborated at
the time this preliminary version was used.

VHDL input

constraint heuristics

library manager

VHDL parser

constraint CSP solver

network

fault injector
test patterns

Figure 7: Module hierarchy of the HLTPG tool

The algorithm was executed on many benchmark
circuits of two abstraction levels, mainly of complex
reconvergent structure, with measured constructs
switched on and off. High level circuits were put
together of abstract type signals and components
performing arithmetic operations; low level descrip-
tions contained bit-level signals and gates. Par-
ticularly interesting is the ATPG for undetectable
faults: when a fault is not detectable, exhaustive
search must be performed with the traversal of the
entire decision tree.

Let us first examine the impact of accelerating
ideas that bring improvement compared to simple
backtracking (Section 6). To obtain their pure im-
pact, heuristics were switched off for these measure-
ments (Table 1). Numbers in the table signify the
number of backward steps, which is proportional
to the overall time consumption; h6 denotes a high
level circuit with 6 functional units, while det. and
undet. mean detectable and undetectable faults, re-
spectively. It can be seen how impressive the result
of the labelling algorithm is; implication entailed
less improvement at the high level than expected,
however, we believe this is merely caused by the
moderate size of the circuits.

none node impli- | both
labelling | cation
h6, det. 16 14 16 14
h6, undet. | 132884 2087 132884 | 2087
g25, det. | 797029 20452 1029 283
h11, det. 32624 1373 32624 | 1373

Table 1: Impact of accelerating methods

One heuristic cost function has been examined:
the one helping the selection of the decision-maker
constraint by the consideration of the number of
available tuples. The result of its application is in-
deed radical, as Table 2 shows: the improvement
was especially enormous at undetectable faults.

9 Future work

There are some important directions in which our
high level ATPG concept can be improved with fur-
ther research. The constraint library based version
should always follow the CAD technology: those
components must be used which are supported by
current high level synthesis tools. However, the li-
brary extension via automatic functional unit com-
pilation will be a qualitative change.

| | with | without |

h6, det. 5 14
h6, undet. 295 2087

25, det. 18 283
g25, undet. 24 1221716
hil, det. | 112 | 1373
h11, undet. | 257 3281

Table 2: Impact of tuple counting heuristics

At present, the focus of our research is confined
to combinational circuits, or to those of a very mod-
erate sequentiality for which iterative extensions
can be applied. The integration with a control-
dominated approach [9] is planned in the near fu-
ture.

References

[1] H. Fujiwara: Logic Testing and Design for
Testability. MIT Press, Cambridge, Mass.,
1985

[2] M. Abramovici, M. Breuer, A. Friedman: Digi-
tal Systems Testing and Testable Design. Com-
puter Science Press 1990

[3] L. H. Goldstein: Controllability /Observability
Analysis of Digital Circuits. IEEE Trans. on
Circuits and Systems, Vol. CAS-26, No.9, pp.
685-693, September, 1979.

[4] A. A. Jerraya et al: AMICAL — Interactive Ar-
chitectural Synthesis Based on VHDL. INPG/
TIMA System Level Synthesis Group, Greno-
ble, 1994

[5] J. Sziray: Test Calculation for Logic Networks
by Composite Justification. Digital Processes,
Vol. 5, No. 1-2, pp. 3-15, 1979

[6] Gy. Csertan, A. Pataricza, E. Selényi: Depend-
ability Analysis in HW-SW Co-design. IEEE
IPDS’95 International Computer Performance
and Dependability Symposium, April 1995, Er-
langen

[7] D. S. Barclay, J. R. Armstrong: A Heuristic
Chip-Level Test Generation Algorithm, 23rd
Design Automation Conference, pp. 257-262,
June 1986

[8] E. Gramatova, T. Cibakova, J. Bezakova: Test
Pattern Generation Algorithms on Functional/
Behavioral Level, Technical Report FUTEG-
4/1995

[9] R. Ubar: Test Generation for Digital Sys-
tems Based on Alternative Graphs, Depend-
able Computing - Proc. of EDCC-1, pp. 151-
164, Springer-Verlag, 1994

A. Pataricza, K. Tilly, E. Selényi, M. Dal Cin:
A Constraint Based Approach to System Level
Diagnosis. Internal Report 4/94, IMMD III,
Friedrich-Alexander Universitéit, Erlangen.

