Constraint-based Diagnosis Algorithms For Multiprocessors

A. Petri} P. Urban? J. Altmann] M. Dal Cin! E. Selényi? K. Tilly?}
A. Pataricza*

May 23, 1995

* Department of Measurement and T Department of Computer Science IIT

Instrumentation Engineering University of Erlangen-Niirnberg
Technical University of Budapest Martensstr. 3

Miegyetem rkp. 9. 91058 Erlangen, Germany
H-1521 Budapest, Hungary email:
email: pataric@mmt.bme.hu jnaltman@informatik.uni-erlangen.de
Abstract

In the latest years, new ideas appeared in system level diagnosis of multiprocessor systems. In
contrary to the traditional diagnosis models (like PMC, BGM etc.) which use strictly graph-oriented
methods to determine the faulty components in a system, these new theories prefer Al-based al-
gorithms, especially CSP methods. Syndrome decoding, the basic problem of self-diagnosis, can be
easily transformed into constraints between the state of the tester and the tested components. There-
fore, the diagnosis algorithm can be derived from a special constraint solving algorithm. The ”benign”
nature of the constraints (all their variables, representing the fault states of the components, have a
very limited domain; the constraints are simple and similar to each other) reduces the algorithm’s
complexity so it can be converted to a powerful distributed diagnosis method with a minimal over-
head. Experimental algorithms (using both centralized and distributed approach) were implemented
for a Parsytec GC massively parallel multiprocessor system.

1 Introduction

1.1 Traditional methodology of self-diagnosis

The construction of dependable systems is hardly possible without the application of some form of self-
checking. Therefore different models and algorithms were developed for system level (self-)diagnosis.The
majority of them are based on graph theory derived from the first so-called “system level models” pub-
lished in the mid-sixties.

These introductory models (PMC for symmetric and BGM for asymmetric test invalidation) are the
most well-known and widely used ones. Their mathematical apparatus is simple and well-elaborated;
both theoretical investigations and practical implementations proved their usefulness. However, these
models have some implicit limitations preventing their use in many important fields of application. The
test invalidation model is oversimplified in order to assure a proper mathematical treatment decreasing
the level of reality of the models and reducing their usability.

The rapid development of electronic technology and computer architectures radically modified the
basic assumptions used originally in the diagnostic model:

e the fault rates are much lower and the dominating part of faults is transient;
e the complexity of system components is comparable with the complexity of CPUs;

e the complexity of systems and the number of the computing elements have been drastically in-
creased.



Most insufficiencies result from the hardest simplification of the PMC and BGM models: the as-
sumption of a homogenous system (built of identical components with identical test invalidation). This
assumption effectively reduces the range of applicability due to the growing practical importance of
inhomogenous multiprocessor systems.

1.2 Required features of a new self-diagnosis method

The new requirements, resulting from the latest results in multiprocessor system design, characterize the
expected features of a proper, general purpose self-diagnosis method:

e it should be applicable in homogenous systems as well as in inhomogenous ones (different compo-
nents with different test invalidation models are to be considered);

e the diagnostic resolution should only loosely depend on the actual system topology and/or test
invalidation model (the currently used methods have serious restrictions on the system topology
due to the use of rigid, inadaptive algorithms);

e the algorithm should extract all the useful information from the elementary diagnostic results (e.g.
for estimating the level of diagnosis at run-time);

¢ it should cope with the latest massively parallel processor systems with several hundreds or even
thousands of system components, thus the algorithm should have an excellent efficiency even for a
very high number of units under test.

These requirements need a new approach. A generalized test invalidation model for syndrome decoding
and diagnosis in inhomogenous systems is published in [7]. This model contains all sufficient and necessary
conditions of one-step and sequential diagnosis for the different test invalidation models. However, its
mathematical apparatus is inoptimal (it uses complex matrix operations, e.g. computation of transitive
closure); therefore the efficiency of the algorithm becomes a crucial factor in large-scale system diagnosis.

The most important step of self-diagnosis is basically the process of finding the possible fault states
of system components based on the syndrome information. A systematic search method is required for
effective syndrome decoding. Many applications even demand on-the-fly diagnosis for maximal perfor-
mance; it requires a diagnosis method that is able to identify the fault states of some units from partial
syndrome information. This is hardly achievable with traditional algorithms.

1.3 The use of Al-based methods and algorithms

The main intention of “artificial intelligence” (AI) methods is to find efficient solutions for difficultly
solvable (to be more precise, generally NP-complete) or hard to represent problems. This gives a way to
handle many practical but earlier unmanageable problems.

Many well-elaborated, efficient and widely tested Al-based algorithms have been developed over the
years. A group of them, the CS (Constraint Satisfaction) methods seem especially useful for a special
self-diagnosis model [5].

Constraint satisfaction problems can be described as a set of variables and a set of relations between
them. The solution of a CS problem is a particular set (or all the possible sets) of values given to the
variables which satisfy all the relations.

Application of CS methods has already proven very attractive on fields closely related to system level
diagnosis. For example, CS-based automated test pattern generation is presented in [8].
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Figure 1: The structural layout of the Parsytec GCel (1 cluster)

1.4 Formulating a self-diagnosis problem as a CSP

There are many similarities between methods of self-diagnosis and constraint satisfaction. Actually the
final goal is very similar: we want to know the fault state of the system components that conforms to
our diagnostic model, the test invalidation rules and the actual test results (syndrome pieces). These
restrictions can be represented by binary relations between the state of processors in a test pair. The
exact relation is determined by the test result, thus a set of relations can be built from the syndrome
information and can be applied to find the possible fault states of the system.

The use of relations instead of logical functions is advantageous, because the diagnostic uncertainy
appearing in some test invalidation (e.g. in the PMC model a faulty unit may be tested as good by
another faulty unit) can be handled as well. The relations can be handled by a uniform mechanism,
independently from the invalidation rules, system topology, the considered number of faults and special
properties of syndromes. So this representation is very flexible and is applicable on a wide range of
systems.

Therefore a self-diagnosis problem can be very easily reformulated to a constraint satisfaction problem.
The variables of the CSP represent the fault state of the system components. The constraints represent
the restrictions from the model by the test invalidation relations and by the actual syndrome part. If one-
pass diagnosis is allowable, a static binary CSP is produced. In the case of diagnosis on the fly (performing
a preliminary diagnostic process during the collection of syndrome parts), only a few syndrome pieces
are present so the complete set of relations cannot be built at the beginning. Every incoming test
result, however, reduces the solution space of possible fault states. The previously constructed relations
(constraints) remain valid, just new constraints have to be added. Therefore a kind of dynamic CSP can
represent this case.

This reformulation gives a way to handle self-diagnosis problems very comfortably, with the well-
elaborated toolset of CSP solution methods. With a sufficient diagnostic model, a very flexible method
can be constructed.

2 Implementation environment

The experimental implementation of the CSP-based diagnosis algorithm was created on a Parsytec GCel
massively parallel reliable multiprocessor machine (Fig. 1). The computing elements are Inmos T805
transputers. They are grouped by 16 to clusters; these clusters are the basic building blocks of a machine
that is scalable up to 16384 transputers.

Each transputer has 4 physical data links. These are connected to C004 routing chips that provide
a very fast, reliable and deadlock-free message routing and connection management. Fach cluster has 4
routing chips; every C004 chip has 32 connection ports (17 for the internal interconnection of the cluster,



| Unit | Fault state and its notation | Behavior

Processor | fault-free 0p correct operation
faulty (incorrect computation fault) | 1, incorrect test result evaluation
dead (crash fault) Cp no communication
Data link | alive L, r | correct message transfer
broken L, | o message transfer
Router fault-free — correct operation
single port fault Lgp | no message transfer via the faulty port
dead mpg | all ports are faulty

Table 1: The possible fault states in the fault model

8 for the connection between clusters and 7 for I/O control and other purposes).

Despite of the 4 physical data connections, each transputer can communicate with an arbitrary number
of other transputers via so-called virtual links. These are managed by a special unit of the T805 by
multiplexing data packets on the physical connections. The configurable crossbar switches make allocation
of virtual links very easy; complete virtual topologies are supplied with development libraries. The
physical topology of each cluster is a 4x4 two-dimensional mesh.

Peripherial I/O management is done by a separate host machine (e.g. a Sun workstation) connected
to the Parsytec GCel machine.

The machine has a Control Network (C-Net): every crossbar switch has a direct link to a special
group of transputers directly connected to the host machine. This separate group is used for dynamic
configuration management and job control.

2.1 The centralized approach
2.1.1 The fault model

In order to validate the concepts described above a simple fault model was developed for the Parsytec ma-
chine and a syndrome decoding algorithm was implemented using the standard test procedures available.
The fault model used includes the faults in interprocessor links and crossbar switches as well, additionally
to the processor faults.

Testing of these system components is done by mutual time-out protected periodical “I'm alive”
messages between neighboring processors. The asynchronous communication mode is used for message
exchange because it does not block the sender processor (time-out detection is possible).

The considered fault states for the components are enumerated in Table 1. The possible test results
are: good (the “I'm alive” message was correctly received within the time-out limit), faulty (the “I'm
alive” message was received within the time-out limit but was corrupted) or dead (no message was
received).

The diagnostic kernel of the algorithm is running on the host in a centralized form. The processors
have a separate node-host data connection to the host machine (via the C-Net) independent from the
routing chips, and thus can be considered fault-free.

The developed algorithm is for intra-cluster diagnosis (we assume only a single routing chip between
2 processors) but it can be easily extended hierarchically to diagnose the whole Parsytec machine.

2.1.2 The test invalidation scheme and implication rules

The PMC type (symmetric) test invalidation was used for the algorithm. It was mandatory due to
the testing with “I'm alive” messages; other, more sophisticated test methods make more optimistic
invalidation possible.



Tester processor

@

(2

2z (SP’R’p’ZC) <l60 ER

LrpU Lyr
mg U Lpr Router chip
) Sp.r,p’ denotes the result of
processor p testing pro—
o . cessor p’ through routing
Tested processor @. Sp,R,p’ =cl Ly r Umg chip R.

Figure 2: Constraints resulting from the system structure and from the test invalidation model

Syndrome decoding is driven by implication rules, represented by constraints. They originate from
the system structure (fault domination rules), the test invalidation model and the actual syndrome pieces
(Fig. 2).

All the constraints are binary to achieve greater simplicity: the test results (syndrome bits) are
eliminated from them as variables, only the fault state of the tester and the tested component are variables.
However, test results are already known before the syndrome decoding starts, thus the constraint network
can be updated incorporating the newly received syndrome part as a constant constraint.

The constraints from the implication rules are as follows:

e (1) Forward (implication from the state of the tester to the state of the tested)

— Sprpy =0A0, = 0y (if the tester processor is fault-free and the test result is “good” then
the tested processor is also fault-free);

= Sprp = 1A0p = 1p;
- Sp,R,pl =cA0p = Lp,RVmR VLpl,R V ey

e (2) Backward (from the state of the tested to the state of the tester)

— Sy rpy =0A1, =1, (if a faulty unit is tested as good then the tester is faulty);
— Sprpy =1A0y = 1y
— SpRy =C¢AEy = L, RVmrV Ly gV 0,.

2.1.3 Implementation of the algorithm

The self-diagnosis algorithm is implemented in two parts: the low-level tester mechanism (sending and
receiving the “I'm alive” messages) runs on the Parsytec machine, while the diagnosis kernel runs on the
host machine .

The test process is controlled by the host: it initiates the test sequence (starts the Parsytec proces-
sors to exchange “I'm alive” messages), collects the results from the processors, maintains the dynamic
CSP data structure, runs the CSP solver algorithm and displays the results. The two program parts
communicate through sockets.



The CSP solver The CSP solver engine of the diagnosis algorithm is based on a public domain
universal CSP solver library from the University of Atlanta [6]. Different backtracking and preprocessing
(consistency) algorithms are implemented and can be easily applied.

The solver is able to maintain certain dynamic CSPs: the constraints themselves can be altered
during the solution process but their number cannot. Initially only the “fixed”, syndrome-independent
constraints are generated, the others are “always-true” (the solver always works with complete constraint
graphs so the still undefined constraints have to be “always-true”).

There are 20 variables in the CSP model; they represent the fault states of the processors with their
data connections and the routing chips. The cardinality of the variable domains is 48. (A processor can
be fault-free, faulty or dead and each of its 4 data connections can be live or broken, resulting in 3x24=48
possible states. The routing chips have 20 possible states but the solver requires equal domain sizes.)

Many sophisticated enhancements assure a maximal efficiency of the CSP solution. Only those vari-
ables/processors are considered that we have information about, so we get results only from the necessary
units. Indistinguishable errors are merged into a single class by error collapsing. This modifications de-
crease both the number of variables processed and the number of value combinations checked and assure
that only the valuable results are supplied. Further considerations can be adapted to the CSP solver very
easily. For example if we consider a limited number of faulty units, the CSP solver can check whether
this consideration holds and even automatically increases the error limit. This feature makes the system
extremely fast for a few of errors and still usable with errors of a number above the limit.

2.1.4 Results of a test run

The CSP-based diagnosis algorithm was tested with a logic fault injector: the host machine generated
a random fault pattern for the Parsytec processors and downloaded it with the testing initialization
messages. The low-level testing mechanism on the Parsytec processors interpreted the fault pattern and
acted according to the fault state: “fault-free” processors tested their neighbors and sent the results back
to the host, “faulty” processors did the testing but reported a random result and “dead” processors did
nothing. This construction was necessary because no physical fault injection was available for the Parsytec
prototype equipped with T805 transputers and the fault injector developed for T9000 was unusable due
to the difference in hardware structure.

Figure 3 shows the results of a typical test run. In this case the fault pattern contained a single
faulty processor. The upper curves display the number of the solutions found by the CSP solver and the
number of processors that have already sent some test results and the lower ones display the number of
consistency checks made as a measure for the computational efficiency.

2.2 The distributed approach

The centralized diagnosis algorithm described above is suitable for minor configurations of the Parsytec
multiprocessor system because the use of at least one central resource (the host machine) is inevitable.
Constraint-based system diagnosis, however, can be implemented in a fully distributed environment as
well for large configurations, avoiding the time-consuming node-host communication for each individual
syndrome part. An alternative algorithm was developed to evaluate this idea.

In this approach the diagnosis is made by each of the transputers individually, not by a central
supervisor machine. Another important difference is that syndrome messages can be corrupted in much
more “interesting” ways as they travel via a chain of transputers and links, not only one link.

2.2.1 The fault model

The fault model of this approach contains a lot of simplifications compared with the centralized one.
The system consists of processors and links forming a two-dimensional grid. There are no routers in
this model.
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Figure 3: Test results of the centralized CSP diagnosis algorithm

The fault state of a processor can be either good or faulty (omission fault is considered). No distinction
is made between faulty and dead processors, in contrary to the centralized approach, as in this approach
the rapid reconfiguration using the spare processors is of a primary priority in order to minimize the
error-related computing time loss. “Suspicious processors” are checked off-line.

In order to save communication bandwidth and to reduce the diagnostics related computational over-
head, only elementary syndrome messages with a test outcome indicating a faulty unit will be sent by
the testers to its neighbours and no message transfer is invoked in the other case.

A faulty tester processor will generate and distribute random syndrome elements, according to the
PMC test invalidation model. In addition, syndrome messages from other processors will be potentially
corrupted or simply not forwarded by a faulty processor. The majority of changes can be detected using
a simple error detecting protocol (e. g. checksum protection). The diagnostics program assumes that
no undetected changes will occur. The second case of syndrome losses cannot be detected in such a
simple way, therefore the diagnosing processor will never or only occasionally receive fault reports from
unfortunately placed — good or faulty — processors [3].

The fault state of a link can be “good” or “faulty”. In the latter case the communication is blocked.
A change in the contents of messages is impossible for the reasons stated above.

2.2.2 Representation of the constraints

A variable is assigned to a processor and the links to its eastern and northern neighbours, thus for the
4x4 grid 16 variables are used. (the Oth bit to the eastern link, the 1st bit to the northern link and the
2nd bit to the processor). The domain consists of 5 elements: (Figure 4)

e FAULTFREE (000)
FAULTEAST (001)
e FAULTNORTH (010)
e FAULTBOTH (011)
FAULTPROC (100)
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Figure 4: Assignment of fault states to a variable

A part of the implication expressing the dominance of a processor fault over the link faults in the form of

1lp = Op, AOp, AOr, AOr, (the Lyindicates a link connected to P)

is already incorporated i. e. the values 101, 110 and 111 are not allowed.

2.2.3 Reducing communication overhead

If simply the CSP based on the arriving syndromes indicating a fault were solved, this would produce
— in most practical cases — a huge number of solutions from which practically no useful diagnosis can
be generated. This problem originates in the small number of available syndrome elements, as typically
only few components fail and only error messages are forwarded; at this point no information is available
about processors which tested each of their neighbours fault-free. Thus the solution space remains large
due to the few constraints generated.

To overcome this problem, the set of components is determined which are undoubtedly fault-free, i.e.
fault-free in each of the solutions.! Then it is possible to obtain which fault-free processors are reachable
from the diagnosing one via fault-free links and processors. Tests show that this algorithm works only if
a fault-free “starting point” is given; that is the reason why the diagnosing processor is assumed to be
fault-free. If it were faulty, one could not rely on the diagnosis made by it anyway.

These “reachable” fault-free processors are important, because they allow to draw additional conclu-
sions. They have the special property that all syndrome messages they generated were received by the
diagnosing processor, therefore in case no message arrived from one of them, one can conclude that all
tests performed by it had the outcome fault-free. Thus new constraints can be extracted and consequently
the solution space shrinks.

The constraint network should be solved repeatedly until no new constraints can be extracted.

It is important to note that this simplified strategy implicitely contains the assumption that links
can have only permanent failures, i.e. the fault state of a link does not change during one diagnosis
step. This assumption is justified by the short syndrome processing time. Without this assumption it
cannot be ensured that the set of “reachable” processors will be determined correctly. An example is
shown in Figure 5; if the faulty link behaves fault-free when processor #9 tests processor #10 but blocks
communication during the distribution of messages, the diagnosis program comes to the conclusion that

IThe importance to consider a maximal number of faults should be clear: without it, even the solution “every component
is faulty” would always occur according to the applied PMC test invalidation model; hence the idea would fail.
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Figure 5: Fault pattern in a system; the failure of link 9-10 is transient.

every processor is “reachable”, therefore the fact derived by the program that the link 1-2 is tested both
faulty and fault-free leads to a global contradiction, which indicates that a new fault has occurred.

2.2.4 Permanent failures

The program can be given some certified diagnosis results representing permanent faults in the system.
These conditions often ease solving the CSP. Transient and permanent failures are distinguished the
following way: in the first phase diagnosis is based only on the permanent fault information, then diagnosis
uses information from all faults; in the latter the failure type of each item is set to permanent in case the
same item occurs in the former.

2.2.5 Performance tests of the algorithms

The efficiency of the algorithm is strongly influenced by the preset upper limit for the number of faults,
as the number of consistency checks increases fast for small limits. (Fig. 6) The decision which limit
is the most appropriate one depends on the failure characteristics of the system; a high limit increases
running time unnecessarily while an excessively low limit can lead to contradiction and thus prohibiting
diagnosis if there are more faults than this limit.

3 Conclusions

The CSP-based syndrome decoding algorithms have proved their proper operation during the tests and
the correctness of the concepts behind it. Additional tests showed that the constraint solver is up to five
times faster than an exhaustive search (the average processing time of a test result was 88 us vs. 448 us
in a test series). However, he applied CSP solving algorithm (graph-based backjumping [6]) has not yet
theoretically proved to be optimal for this application; further work is needed to find the most efficient
strategy for the solver. The main advantages of the new approach presented are the following:

e It can be realized both in a centralized as in a distributed form as well.
¢ It supports the evaluation of partial information in the form of a diagnostics on-the-fly.
e More detailed and thus realistic functional fault models can be handled.

e Diagnosis in inhomogenous systems can be performed as well.
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