
Checking General Safety Criteria on UML Statecharts

Zsigmond Pap, István Majzik1 and András Pataricza

Dept. of Measurement and Information Systems
Budapest University of Technology and Economics

H-1521 Budapest, Műegyetem rkp. 9.
[papzs,majzik,pataric]@mit.bme.hu

Abstract. This paper describes methods and tools for automated safety analysis
of UML statechart specifications. The general safety criteria described in the
literature are reviewed and automated analysis techniques are proposed. The
techniques based on OCL expressions and graph transformations are detailed
and their limitations are discussed. To speed up the checker methods, a reduced
form for UML statecharts is introduced. Using this form, the correctness and
completeness of some checker methods can be proven. An example illustrates
the application of the tools developed so far.

1 Introduction

As the complexity of safety-critical systems increases, the task of the engineers in
specifying the system becomes increasingly difficult. Specification errors like incom-
pleteness and inconsistency may cause deficiencies or even malfunctions leading to
accidents. These problems are hard to detect and costly to correct in the late design
phases. The use of formal or semi-formal specification and design languages and the
corresponding automated checker tools may help the designer to avoid such faults.

Nowadays UML (Unified Modeling Language [1]) is the de-facto standard for the
object-oriented design of systems ranging from small controllers to large and complex
distributed systems. UML can be used to construct software specification of embed-
ded systems [2], often implementing safety-critical functions. The well-formedness
rules of UML (defined in a formal way) helped its spreading in the area of safety-
critical systems. Of course, the general syntactic rules of UML are not enough to
guarantee the correctness of the specification. UML models are often incomplete,
inconsistent and ambiguous. Tool assistance is required to help the designer to vali-
date these properties of the specification.

Our work aims at the elaboration of methods and tools for the checking of the most
important aspects of completeness and consistency in UML models. We concentrate
especially on the behavioral part of UML, namely the statechart diagrams. It is the
most complex view of the specification, which defines the behavior of the system.
Sophisticated constructs like hierarchy of states, concurrent regions, priority of transi-
tions etc. help the designer to structure and organize the model, but their careless use
may also lead to specification flaws.

1 Supported by the Hungarian Scientific Research Fund under contract OTKA-F030553.

mailto:papzs@mit.bme.hu

Our examination is focused on embedded control systems. In these systems, the
controller continuously interacts with operators and with the plant by receiving sensor
signals as events and activating actuators by actions. UML statechart formalism al-
lows constructing a state-based model of the controller, describing both its internal
behavior and its reaction to external events.

The paper is structured as follows. Section 2 motivates our work and presents the
model we will use in the paper. Section 3 introduces the basics of the safety criteria.
In Section 4 the possible checking methods are discussed. Section 5 describes the so-
called reduced form of UML statecharts that was defined to help in proving the cor-
rectness of the checker methods and also to accelerate the checking of the model. The
paper is closed by a short conclusion.

2 Motivation

The work on automated checking of general safety criteria was partially motivated by
our experience gathered during the design of Clt4iT, a safety-critical, multi-platform,
embedded real-time system: a fire-alarm controller which is a part of a complex fire/
gas/ security alarm system.

The Clt4iT system consists of a central unit and a set of data units that collect data
from the detectors (smoke, fire, gas, etc.). Every unit can handle alarms independ-
ently, and has its own user interface. Since the amount of data originating in the units
is large (detector information, alarms, logs etc.) and the communication bandwidth is
low, only the recently changed data should be read into the central unit. The task of
the central software is to keep record of the aging of data, poll the units, read the
changed data or unconditionally refresh the aged ones. All units are monitored in this
way; the units that are currently displayed on the screen are called active ones.

Fig. 1 presents one of the statechart diagrams of the central unit software. Its re-
sponsibility is to handle the data aging for a given group of data. For each group,
there is a time limit defined for data being “old” and “very old”, in the case of active
operation, non-active operation, “changed” or “unchanged” data.

The above-presented statechart defines the behavior of a “Model”-type class,
which belongs to the internal data model of the system. In this type of class, there
must be a distinguished state "Unknown" (which is the initial state, and represents
that the internal data model is not up-to-date) and time-out transitions from each state
to this "Unknown" state.

The original version of the alarm system (which had to be replaced due to the
change of the requirements) was developed on the basis of a verbal specification,
without the use of UML. The design and implementation required more than half a
year. Despite of the careful testing, residual software faults caused regular crashes of
the system. The reasons of these failures were not found.

The development of the new version started by a systematic modeling using UML.
As a modeling tool, Rational Rose was used which supports XMI model export [9]. In
this case the design and implementation required 4 months.

Our goal was to develop automated tools for the checking of the dynamic UML
diagrams of the design to highlight specification flaws early in the design process.

3 General Safety Criteria

N. G. Leveson and her colleagues have collected 47 safety criteria for the specifica-
tion of software systems [3] and also elaborated checker methods for some of the
criteria applied to the statechart-based languages RSML and SpecTRM [5, 6, 7]. The
criteria are general and can be applied to all systems independently of the application
area. In fact, they form a requirement safety checklist. These criteria can be grouped
into several categories as follows: state space completeness, input variable complete-
ness, robustness, non-determinism, time- and value limits, outputs, trigger events,
transitions and constraints. The most important groups of these criteria target the
completeness and consistency of the specification.

Our main goal was to apply and check these existing criteria on UML statechart
specifications. (The checking of a full UML model including object-oriented features
like inheritance requires developing new criteria, which is out of the scope of this
paper.) Accordingly, we had to formalize and adapt the criteria to UML statecharts
and elaborate tools for automated analysis. Formalization and adaptation is a crucial
task since the criteria are given in natural language thus they cannot be checked di-
rectly. Moreover, some criteria must be decomposed into a set of rules in order to be
able to interpret them on the model elements of UML.

Fig. 1. One of the statecharts of the central unit of the Clt4iT system

In a previous paper [13] we formalized the criteria in terms of the UML model
elements and presented an approach to check some selected criteria by applying
Prolog rules and by manipulation of the UML model repository. Now our analysis
covers the full spectrum of the criteria excluding the ones related to timing and sug-
gests efficient and elegant methods to check those of them that are amenable to auto-
mated checking.

4 Overview of Checking Methods

The analysis of the criteria proved that more than three-quarters of the criteria can be
checked automatically (Fig. 2). Moreover, almost two-thirds of them are static criteria

th
au
be
lo

cr
[1
m
an
th
m
m
th
pr

ca

0

9
12

5

11

20

7 7

3

8

4 5

0

5

10

15

20

25

OCL

Grap
h-t

ran
sfo

rm
ati

on

Spe
cia

l p
rog

ram

Rea
ch

ab
ility

 an
aly

sis

Necessary Possible Complete

Model
transformation

28%

Manual
check
15%

Other
8%

Reduced form
49%

Fig. 2. The methods of checking
at do not require reachability-related analysis. The criteria that cannot be checked
tomatically refer mainly to assumptions related to the environment of the system to
 checked e.g. environmental capacity, load assumptions, stability of the control
op. They are included in a checklist for manual examination.
In the following, we examine four potential methods for automated checking of the

iteria: (1) formalizing rules as expressions of the Object Constraint Language, (OCL
]) as part of UML, (2) examining the satisfaction of the criteria by graph transfor-
ation, (3) executing a specialized checker program and (4) performing reachability
alysis. Of course, some criteria can be checked in more than one way; in this case
e most efficient one has to be selected. In Fig. 3, three numbers are assigned to each
ethod. The first one gives the number of criteria that can be checked solely by that
ethod. The second one shows how many criteria can be checked theoretically by
at method. Finally, the third number shows how many criteria can be completely
oven by that method.
In the following, we give an overview of these methods and the typical criteria that

n be checked. A more detailed analysis is found in the Appendix and in [16].

Fig. 3. The static methods

4.1 Completeness and Consistency Rules in OCL

The most natural way to express criteria in UML is the application of the Object Con-
straint Language (OCL), since it is the language that was developed to specify the
well-formedness rules of UML. These rules were given by a set of structural con-
straints interpreted on the metamodel elements of UML [1].

In our case, some of the criteria can be formalized in a similar way, by assigning
constraints to metamodel elements. Let us present an example. One of the safety rules
requires that all states must have incoming transitions (including the initial transi-
tion). Considering only simple states (that have no sub-states), this rule refers to the
UML metamodel element SimpleState, and results in the following formalization:
self->forAll(s:SimpleState | s.incoming->size > 0)

Note that OCL expressions are also well usable to formalize application-specific
constraints, e.g. pre- or post conditions.

Constraints interpreted on the UML metamodel can be enforced by a CASE tool
that supports the modification of the metamodel. On the other hand, constraints inter-
preted over the model elements require a common OCL interpreter. In both cases, the
checking requires an unfolded statechart model in which the hierarchy and concur-
rency are resolved, since OCL is not capable of browsing the state hierarchy.

4.2 Graph Transformation Techniques

UML statecharts can be considered as a graph language [11]. Accordingly, graph
transformation rules can be defined to modify or transform the statechart models [14].
These transformation rules can be utilized in two ways:
− The model can be transformed into a form that is more suitable for checking. E.g. a

hierarchic model can be flattened to check OCL expressions.
− Systematically removing the complete and consistent parts of the model eventually

results in the current specification flaws.
Let us consider the following criterion: For all states, there must be a time-out

transition defined. It can be checked in the following way:
1. Converting the state hierarchy into a flat model (for details see Section 5 and

[11]). The approach is illustrated in Fig. 4.

New

Old

VeryOld

OnTimerUnChanged

OnTimer

NewData
New

Old

VeryOld

OnTimer

OnTimer

OnTimerOnTimerNewData
NewData

NewData

a)
b)

Fig. 4. Example for resolving the state hierarchy

2. Looking for the following situation: There is a SimpleState in the graph AND
there is NO Transition connected to this with the stereotype “TimeOut” OR with
an action “OnTimer”.

In general, the graph transformation rules are defined by giving a left side (condi-
tion) and a right side (result). The system tries to match the left side on the source
model. If it matches then transforms this part of the model into the right side of the
rule. The transformation is ready, when the rule does not match any more. In our case,
it is not practical to modify the source model. Instead of this, a second model is built,
that will contain the result of the transformation steps. Accordingly, the left and right
sides of the rule are duplicated, describing the condition and the result including the
patterns both in the source and in the target model (of course, the source will not
change) [14].

Currently the graph transformations are implemented in Prolog. The UML CASE
tool saves the model in standard XMI format (using XML as model description lan-
guage [15]). This common representation is parsed and loaded into memory as a set of
predicates. The rules are executed and the resulting model is saved again in XMI
format, which can be loaded into the CASE tool to highlight the specification flaws.

4.3 Checking by Specialized Programs

Some criteria cannot be checked by graph transformation and/or the assignment of
OCL constraints. We mention here one criterion: for each state and each trigger
event, the guard conditions must be mutually disjoint. The checking of this rule re-
quires the interpretation of the guard expressions, which cannot be done by a general-
purpose OCL interpreter (that targets structural constraints) or by graph transforma-
tion (as the values of the guards dynamically modify the model structure).

To verify the guard conditions, we restrict the use of guards similarly to RSML [5].
We require expressions built from atomic propositions (that are true or false) con-
nected by Boolean operators OR, AND or NOT. Accordingly, we can assemble a
disjunctive normal form of the propositions and a truth table of the terms.

Using this form, the guard conditions can be converted to events and transitions.
After a standard optimization, which can find and eliminate uniform cases [4], the
checker removes all original transitions starting from the given state and triggered by

Unknown

On Changed/

NewData

IsChanged

[!IsChanged]

a)

Unknown

On Changed/
NewData/0

NewData/1

c)

Unknown

NewData

NewData/0 NewData/1

IsChanged=1IsChanged=0

b)

Fig. 5. Example with two guard conditions

the given event. Then for each term of the normal form (combination of guard condi-
tions), it generates a new virtual event and a transition triggered by that virtual event.
In this way, guarded transitions will be resolved by virtual events, and the mutual
exclusiveness checking is traced back to the checking of the trigger events.

Fig. 5 (a) shows one state from our example. According to the guard expressions
"IsChanged" and "!IsChanged", here two virtual events are generated from the origi-
nal event "NewData" (Fig. 5 (b)). The original transition is replaced with the ones
triggered by the virtual events (Fig. 5 (c)).

4.4 Reachability Analysis

There are criteria that require reachability analysis. To formalize and check these
criteria, temporal logic expressions and model checking can be used.

Typical reachability problem is the checking of the existence of unreachable states
and transitions that can never fire. The rule that prescribes that each output action
must be reversible is a similar problem. Another important consistency criterion is
related to the avoidance of nondeterminism. In UML statecharts, one source of nonde-
terminism is the simultaneous firing of transitions in concurrent regions of composite
states. In this case the order of their actions is not defined. The suspicious state pairs
can be found by static checking, i.e. looking for situations where transitions in con-
current regions are triggered by the same event, guards can be true at the same time
and there are actions defined. However, the static checking cannot claim that these
state pairs are reachable during the execution of the system.

We use the model checker SPIN [10] as external tool to decide reachability prob-
lems. The UML statechart is transformed to Promela, input language of SPIN [8], and
the reachability problem is formulated in linear temporal logic (LTL).

5 The Reduced Form of UML Statecharts

During the elaboration of the checker methods and identification of the basic rules
that are sufficient and necessary to check the criteria, we discovered that checking of
several criteria could be traced back to the same set of basic steps. The common char-
acteristic of these steps is that their execution results in a simplified, flattened model
structure that is easier to check (both by OCL constraints and graph transformation).
We call this model structure the reduced form of the statechart.

The reduced form was utilized also during the formal proof of the correctness and
completeness of the proposed checking methods. For a given criterion, it is proved
first that the steps generating the reduced form preserve the properties to be checked.
Then the proof of the later steps can be built on the relatively simple and formally
tractable reduced form.

Fig. 6 shows the UML metamodel of the reduced form of statecharts. It has several
advantages. The special UML elements are removed or converted into the set of
"standard" ones consisting of simple states, transitions, events and actions. The hier-
archy is resolved and the model is fully static, no guard conditions are in the model.

The reduced form is generated by a series of graph transformation steps as follows:

1. Multiple statechart diagrams in the UML model are merged into a single diagram.
2. Associations are inserted among states and events (the checker must verify all

states and all possible events on that state, i.e. the Cartesian product of the set of
SimpleStates and Events).

3. Temporary states (SimpleStates that have completion transitions, i.e. an output
transition without a trigger event defined) are eliminated, since they are not part of
any stable state configuration. The completion transitions are converted into a set
of regular transitions, where there is exactly one transition for each possible event
- this method also saves the information of the guard conditions.

4. Associations are inserted between each pair of concurrent states. Since the state
hierarchy will be converted into a flat model, the information on the concurrency
of states should be kept.

5. The state hierarchy is converted into a flat model. Every SimpleState inherits the
outgoing transitions of its parent states and the initial states inherit the incoming
transitions of their parent states. The associations between the SimpleStates and
their parents are preserved.

6. Entry (exit) actions are moved to the incoming (outgoing) transitions. Entry (exit)
actions are last (first) ones in the sequence of actions executed by the incoming
(outgoing) transitions [12].

7. Internal events are converted into self-loop transitions. Since the entry and exit
actions were already removed in the previous step, this step does not violate the
semantic rules of UML.

8. Pseudo-states (e.g. initial and final states) and composite transitions are converted
into normal states and transitions. Fork transitions are marked, otherwise the re-
sulting transitions starting from the same state and triggered by the same event
would result in inconsistency. In the case of join and Sync transitions, the source
states are assigned a self-loop transition guarded with an "in_state" condition.

9. Guard conditions are converted into events (see Section 4.3).
Let us present an example how the reduced form is used. Since there are only sim-

ple states and transitions in the model of reduced form, the criterion of the complete-
ness of state transitions can be formalized in OCL as follows:

Fig. 6. UML metamodel of the Reduced form of statecharts

self -> forAll(s:State | s.myevent -> forAll(e:Event |
s.outgoing -> select(t:Transition | t.trigger = e) -> size > 0))

Almost all criteria can be checked on the reduced form. In some cases, however, it
turns to be more practical to use the original model. E.g. the Promela code used dur-
ing reachability analysis is generated on the basis of the original statechart.

6 Conclusion

This paper presented methods and tools for the checking of UML statechart specifica-
tions of embedded controllers. The existing criteria given in [3] were adapted to UML
statecharts and efficient methods were proposed for the automated checking.

The developed methods were successfully applied in the case of the Clt4iT system.
The general safety criteria were checked for all statechart diagrams. The automatic
checking of a statechart using the graph transformation framework required about 30
seconds in average. Since there was only limited concurrency in the system, the state
space explosion problem was practically avoided. By the automated checking, (be-
sides some typing errors) typically incompleteness due to malformed guard conditions
and missing transitions were detected in the early design phase. The validation testing
detected additionally some non-suitable settings related to timing (that could not be
checked in the design phase). The problems that occurred in the previous system did
not appear in the new version.

References

1 Object Management Group: Unified Modeling Language Specification v 1.3. (1999).
2 B. P. Douglass: Real-Time UML - Developing Efficient Objects for Embedded Systems.

Addison-Wesley (1998)
3 N. G. Leveson: Safeware: System Safety and Computers. Addison-Wesley (1995)
4 N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese: Requirements Specifica-

tion for Process-Control Systems. IEEE Trans. on SE, pp. 684-706 (1994)
5 M. P. E. Heimdahl and N. G. Leveson: Completeness and Consistency Checking of Soft-

ware Requirements. IEEE Trans, on Software Engineering, Vol. 22. No. 6 (1996)
6 N. G. Leveson, J. D. Reese and M. Heimdahl: SpecTRM: A CAD System for Digital

Automation. Digital Avionics System Conference, Seattle (1998)
7 N. G. Leveson, M. P. E. Heimdahl, and J. D. Reese: Designing Specification Languages

for Process Control Systems. Lessons Learned and Steps to the Future.
8 D. Latella, I. Majzik, M. Massink: Automatic Verification of a Behavioral Subset of UML

Statechart Diagrams Using the SPIN Model-checker. Formal Aspects of Computing, Vol.
11 No. 6 pp 637-664, Springer Verlag, (1999)

9 Rational Corporation. Rational Rose 2000. http://www.rational.com/
10 G. Holzmann: The Model Checker SPIN. IEEE Transactions on Software Engineering,

Vol. 23, pp 279-295 (1997)
11 M. Gogolla, F. Parisi Presicce: State Diagrams in UML: A Formal Semantics using Graph

Transformation. Proc. ICSE'98 Workshop on Precise Semantics of Modeling Techniques
(PSMT'98), pp 55-72. (1998)

12 M. Gogolla: Graph Transformation on the UML Metamodel, Workshop on Graph Trans-
formation and Visual Modeling Techniques, ICALP’2000, Geneva, Switzerland, 2000

13 Zs. Pap, I. Majzik, A. Pataricza and A. Szegi: Completeness and Consistency Analysis of
UML Statechart Specifications. Accepted to DDECS-2001, Győr, Hungary (2001)

14 D. Varró, G. Varró, and A. Pataricza: Automatic Graph Transformation in System Verifi-
cation. In Proc. DDECS-2000, pp 34, 2000.

15 Object Management Group. XML Metadata Interchange. (1998).
16 Zs. Pap: Checking Safety Criteria in UML Statecharts (In Hungarian). Technical Report

No. 2/2001 of the DMIS, Budapest University of Technology and Economics, 2001.

Appendix

Table 1 presents the groups of general safety criteria (without the timing related ones)
and the methods required to check them. (We introduced groups here because the
methods of checking the criteria cannot be clearly separated, and some criteria must
be decomposed into several rules.) In the Table, "Yes" means that the method is ap-
plicable and necessary, "No" means that the method is not applicable. "-" means that
the method is applicable but not optimal to check the given group of criteria.

Static Methods Others Group of criteria

O
C

L

G
raph Trans-

form
ation

Special Pro-
gram

R
educed Form

R
eachability

C
onditional

M
anual

The system should start in a safe state No Yes - Yes - - -
The internal model must be valid No Yes - Yes - - -
All variables must be initialized Yes - - Yes - - -
The specification must be complete No Yes Yes Yes - - -
The specification must be deterministic No Yes Yes Yes Yes - -
There must be timeout transitions defined No Yes - Yes - - -
No path to critical states should be included Yes - - No Yes Yes -
There must be behavior specified in the case
of overloading

No Yes - Pre - Yes Yes

All states must be reachable Yes Yes Yes Yes Yes - -
All valid output values must be generated Yes Yes - Yes Yes - Yes
Paths between safe and unsafe states (soft
and hard failure modes)

No Yes Yes Yes - - -

Repeatable actions in live control loops No No Yes No Yes Yes Yes
Limits of data transfer rate must be specified No Yes - Yes - Yes -
The time in critical states must be minimized No No - - Yes - Yes
The output actions must be reversible No Yes - Yes - Yes Yes
All input information must be used No No - - - - Yes
Control loops must be live and checked No No - - - - Yes
All input values must be checked Yes Yes - - - Yes Yes
The overloading parameters must be defined No Yes Yes Yes - Yes Yes

Table 1. Groups of criteria (without the timing related ones) and the checker methods

