PhD Thesis:

Constraint-Based Architectural

Test Pattern Generation

Balazs Sallay
Department of Measurement and Information Systems
Budapest University of Technology and Economics
H-1521 Budapest, Miiegyetem rkp. 9, Hungary

April 8, 2000

Advisor:

Associate Prof. Andras Pataricza
Department of Measurement and Information Systems
Budapest University of Technology and Economics

Contents

1 Introduction
1.1 Cost factors in testing Lo
1.2 Problem statement and contributiono
1.2.1 Test computation goals
1.2.2 Contribution of BudaTest
1.2.3 Test executiongoals 0L
1.2.4 Contribution in WST 0oL
1.3 Environment and terminology L.
1.4 Outline of the thesis 0oL
2 Current trends in digital design
2.1 CAD toolfeatures L
2.2 Digital design flow oL
2.2.1 Synthesizable behavioural VHDL
2.2.2 High-level synthesis,
2.2.3 Architectural VHDLo o oo
2.24 Low-level synthesis
2.2.5 Gate-level descriptions L L o oL
3 Previous ATPG approaches
3.1 Faultmodels
3.2 Gatelevel ATPG e
3.2.1 Gate-level fault model L.
3.2.2 Gate-level ATPG algorithms
3.2.3 Implication
3.2.4 Sequential extensiono L L oo
3.25 CONTEST e
3.2.6 Algorithm evaluation
3.3 High-level ATPG approaches
3.3.1 Architectural approaches
3.3.2 Hierarchical testing

3.3.3 Behavioural approaches,

10

12
12
13
14
14
16
16
17

v

CONTENTS

3.4 BudaTest objectives e 31
Constraint-based modelling 33
4.1 CSP definition L 33
4.2 CSPsolution e 35
4.2.1 Backtracking oL 35
4.2.2 Thedecisiontree e 36
4.3 Existing CSP solving methods. 37
4.3.1 CSP preprocessing techniques 38
4.3.2 Forward schemes 38
4.3.3 Backward schemes Lo oL 39
4.4 Constraint-based ATPG modelling in CONTEST 40
4.4.1 ATPG problem representation in CONTEST 41
4.4.2 CSP solving in CONTEST 42
ATPG modelling in BudaTest 43
5.1 The constraint networko Lo oL 43
5.1.1 Variable representation 43
5.1.2 Constraint representation L. 44
5.1.3 CSP-based ATPG problem formulation 44
5.2 Advantages of the constraint technique 46
5.3 Hierarchical support 48
5.3.1 Hierarchical options in BudaTest 48
5.3.2 Problems in CTDF expansion 49
5.4 Control-dominated and sequential circuits 50
5.4.1 Control-dominated circuits 50
5.4.2 Sequential modelling o o oL 50
5.5 Arrayselection Lo e 51
5.6 Faultmodel 52
CSP solution 55
6.1 Backtracking in BudaTest 95
6.2 Forward techniqueso L 56
6.2.1 TImplication e 56
6.2.2 Interval, masked and set logic 58
6.3 Backjumping L e 60
6.4 Type-uninterpreted search Lo oL 61
6.4.1 Node classification L L0 61
6.4.2 Colouringgoals L 62
6.4.3 Token semantics o 63
6.4.4 Constraints in the colouring domain 65

6.4.5 Correctness of the colouring search 66

CONTENTS v

6.4.6 A colouringexample Lo 67
6.4.7 The handling of fan-outs, indexing and slicing 68

6.5 Result evaluation 70
6.5.1 Evaluation of implication-related techniques 71
6.5.2 Backjumping performance o oL 72
6.5.3 Evaluation of the type-uninterpreted search technique 73

7 Manufacturing test on the wafer 76
7.1 Diagnosis terms and wafer-scale testing 7
7.2 Evaluation of the syndrome 78
7.3 Impact of comparator faults o o oo 79
7.4 Pre-diagnosis comparator test sessiono 80
7.5 Fault-tolerant result observation 84
7.6 Fault tolerant comparison modelo, 87
7.7 Wafer implementation L. 88
A Benchmark circuits A-1
A1 Gatelevel circuits Lo A-1
A1l Adderfamily A-1
A1.2 TSCAS85family A-2

A.2 High-level benchmarks L oL A-2
A.2.1 Combinational multiplier A-3
A.2.2 Greatest common divisor 0oL A-3
A23 Bubblesort A-5

B The BudaTest program B-1

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3

In-circuit and functional testing of a board 9
Digital design flowo 14
Architectural style 16
Active s-a-1 and wired-or short fault 20
General sequential circuit o oL, 24
Iterative combinational model of a sequential circuit 24
Use of high and low-level models 28
Recursive application of the hierarchical principle 28
Different architectures of the same behavioural source 30
Comparison of ATPG entry points 31
Constraint network hypergraph representation. 34
Exemplary decision treeo Lo 37
ATPG problem represented as a constraint network 46
Symmetric constraintso L oL 47
Network flattening L oo 48
Representation of stuck-at faults of wide signals 53
Phases of Sziray’s node classification 62
Large proportion of duplicated variables 62
The colouring and the typed domains 63
Two phases of CSP solving 64
GCD in 4 frames, all variables in two instances 68
GCD in 4 frames, some variables eliminated by node classification 68
GCD in 4 frames, many variables eliminated by colouring 69
The effect of UNKNOWN (input) 69
Auxiliary information used in D-propagation 70
Faulty chips o e 79
Comparator slice test session, 81

A simple 1-bit comparatoro Lo 82

LIST OF FIGURES vii

7.4
7.5
7.6
7.7
7.8

Al
A2
A3
A4
A5

B.1

A simple n-bit comparator oo 83
Syndrome collection circuitry oL 85
Complete test L e 86
Syndrome collection at the gate level 86
Non-identical chips on the wafer 89
Fulladder o o A-1
n-bitadder L e A-1
4-bit combinational multipliero oo A-3
Greatest common divisor L Lo Lo A4
Bubblesort A-5
BudaTest block diagram oL oL B-2

List of Tables

1.1
1.2
1.3

2.1

3.1
3.2

4.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Al
A2
A3
A4
A5

Comparison of different ATPG approaches 5
Advantages (4) and drawbacks (=) of WST methods 7
Various testing aspectso 10
Features of representation levels 18
Meaning of composite values in the D algorithm 21
D propagation table of an OR gate 21
CONTEST resultso oottt e e 42
Effect of limited CTDF size on the fault coverage 50
A constraint representing a wired-and short fault 53
Intersection results Lo Lo 60
2-to-1 multiplexer colour set 65
Multiplier colour set e 66
Implication performance for different techniques. 72
Backjumping performance L oo 73
Effect of node classification and colouring 74
Invalidation rule in the PMC model i
Violations of the Chwa-Hakimi model 80
Impact of the behaviourof B 81
Single-bit comparator faults and detecting patterns 82
Test patterns for mslice 83
Gate level fault coverage of thetest 87
Refined comparison modelo, 88
The adder family A-2
The ISCAS’85 family o A-2
The multiplier family o oo A-3
The GCD family A-5

The bubble sort family o oL A-6

Chapter 1

Introduction

The appropriate testing of manufactured components is an essential requirement in the
electronics industry, especially in applications requiring highly reliable devices. Since
an electronic device can be damaged during manufacturing, assembly, or normal use
due to physical faults, the detection of faults is crucial in any phase of the life cycle of
the device. In special applications the erroneous behaviour of a faulty component may
sometimes cause inestimable damage in the system. Even if the damage is moderate,

the early detection of faulty components should always have an important priority.

1.1 Cost factors in testing

It is evident that testing must be carried out for a circuit after its production or occa-
sionally during its lifetime, even if testing is costly.

We will examine the cost and the quality of the test by identifying some important
cost factors, mainly from the point of view of test patterns. Note that other cost factors
exist, e.g. those related to the applied test technology. However, the cost components
listed below are important in every technology.

The prerequisite of every testing method is a proper set of test patterns. The selection
of the test patterns has a crucial impact on the test quality, and therefore on the testing

cost as well. We will place emphasis on the following aspects:

e test development time: The time required to generate the test patterns. The
test patterns need to be developed only once for a given circuit, therefore the

relative cost of test development depends on the testing volume.

e test execution costs: These cost factors apply every time an instance of the

given circuit is tested.

— fault coverage: This feature shows what proportion of physical faults from
a given fault model is detected by the test sequence. The cost of faults not

covered by the test includes the damage caused by the possibly faulty circuit,

2 CHAPTER 1. INTRODUCTION

or the cost required for testing the faulty component at a higher structural
level. It is a common rule in the testing industry that the detection of a fault
in a component becomes an order of magnitude more expensive when the
component is built in a larger system than when it is tested as a stand-alone

circuit.

The fault coverage is highly related to the test development time. Obviously,
the higher fault coverage is required, the more time is spent with the more

accurate test computations.
— test size: The space required to store the test patterns.

— test execution time: The time required to apply the patterns. This feature
is often proportional to the test size, but can also significantly differ, e.g. when

test patterns are generated by a certain algorithm (or randomly).

Placing emphasis on different aspects leads to different test strategies. The applied
strategy depends on the testing environment and objectives. For example, random test
patterns involve negligible test computation time and storage space. However, the fault
coverage may remain severely limited (especially in case of sequential circuits), while
the test application time can be long due to redundant vectors that actually do not
detect any fault. In large systems fault coverage is a much more important issue than
little storage space, and in highly dependable systems it becomes particularly crucial. In
order to obtain a high fault coverage a test pattern generator (TPG) algorithm is required
whose task is to find test patterns for given faults with a guaranteed lower bound on
the fault coverage. Certainly, deterministic TPG entails that test computation time
increases significantly. It should be noted that test patterns are computed only once
for a circuit, therefore a high-volume production can decrease relative test computation

time.

1.2 Problem statement and contribution

The present thesis aims at the reduction of the costs that correspond to the test quality

aspects described above. The following cost factors are addressed:

1. test computation time and fault coverage: I have developed a high-level
circuit modelling style and automatic TPG (ATPG) which can efficiently handle
high-level digital circuits appearing in the engineering practice. The method pro-
vides higher fault coverage under the same time constraints, or, equivalently, can
reach a similar fault coverage in a shorter time than traditional gate-level ATPG
algorithms. In parallel with this performance improvement, the proposed ATPG
method provides much better interface to existing high-level computer-aided de-

sign (CAD) methodologies and tools.

1.2. PROBLEM STATEMENT AND CONTRIBUTION 3

2. test execution time: I propose techniques that improve the applicability of an
existing wafer-scale testing (WST) idea. In contrast to traditional manufacturing
testing which performs chip tests one by one, diagnosis-based WST allows for their
parallel execution. This method is, however, very susceptible to the physical faults
of certain additional circuitry which is assumed to be fault-free. The techniques
proposed in this work provide fault-tolerant features for the diagnosis-based WST
method.

1.2.1 Test computation goals

Logic design and CAD systems have undergone a rapid development in the past ten
years. Not only the designed circuits became larger by orders of magnitude (in terms
of transistor number), but the abstraction level of circuit descriptions was pushed in-
creasingly higher thanks to the sophisticated CAD tools. This improvement has made
traditional (gate-level) ATPG algorithms obsolete and out-of-date. The main problems

with these algorithms are the following:

e They suffer very much from the exponential nature of ATPG, an NP-complete
problem, as proved by Fujiwara [1]. Gate-level ATPG can be in practice applied to
combinational circuits consisting of at most a few thousand gates, or to sequential

circuits of a much smaller size.

e They are rather awkwardly interfaced with CAD systems. They require a gate-
level circuit description, which in many cases does not appear at all in the design

flow, since the design target library is not necessarily a gate library.

On the other hand, an unquestionable advantage of the gate-level tools is their
accuracy in the area of fault modelling.

It is commonly accepted in the TPG community that the gate-level efficiency prob-
lems can be significantly reduced by raising the abstraction level of TPG. In addition
to the advantages of CAD-conform circuit models, another gain expected from high-
level ATPG tools is faster operation. The high-level ATPG algorithms can exploit that
structured high-level descriptions are not simply a large set of unstructured bit signals
and gates. Since many bits of signals of wide word lengths can be handled together
and large clusters of gates can be regarded as a single component, the ATPG steps can
be performed in a significantly smaller problem space. In addition, as control and data
signals are explicitly separated, data and fault propagation features of the circuit can
be much better revealed.

However, there is no general agreement on the new ATPG entry level. Many high-
level approaches exist that use the so-called behavioural description level as the basis for
TPG. Unfortunately, fault modelling in these approaches is ambiguous or even inappro-

priate for certain physical fault classes.

4 CHAPTER 1. INTRODUCTION

I have chosen the architectural circuit description level as the ATPG entry point.
Architectural descriptions are structural descriptions with abstract data and high-level
components. TPG at this level is as efficient as at the behavioural level due to the
compactness of the model, and fault modelling is as accurate as in gate-level tools. It
will be shown that component interconnection faults can be directly modelled, while the
faults internal to components can be handled by hierarchical modelling.

In spite of the variety of existing approaches at this level, there is a lack of meth-
ods that could efficiently handle data-dominated high-level circuits with intensive data
manipulations. Some of the existing approaches are limited to special circuit types (mi-
croprocessors or logic controllers), while others have difficulties with handling intensive
data dependencies.

BudaTest, the architectural ATPG method and tool proposed in this work, is in-
tended to meet the need for a general approach that is capable of handling circuits with
wide data signals and intensive data manipulation.

BudaTest uses constraint-based circuit and fault modelling. The approach owes much
to CONTEST, a constraint-based gate-level ATPG tool proposed by Tilly [25]. He has
proven the applicability and the efficiency of the constraint mechanism in gate-level
TPG [26].

BudaTest focuses on the following questions:

e What modelling problems arise when the constraint based modelling is applied
to typical architectural circuits? How to represent wide domains and high-level
component descriptions? What are the other new features in architectural repre-

sentations, and how to model them?

Chapter 5 deals with this problems. I identify the modelling aspects where gate-
level (enumeration-based) methods cannot be applied, and propose new represen-
tation techniques for them. I also identify architectural features whose satisfactory

treatment by the high-level constraint model is a new feature of the methodology.

e How can be exploited the high-level information that is present in architectural

descriptions? What acceleration techniques do they allow?

Chapter 6 discusses these issues. The exponential increase in the state space caused
by the wide word length is moderated by a type-uninterpreted, token-based search
technique. This technique also enables the tool to handle moderately sequential

and control-dominated circuits.

BudaTest is not fine-tuned yet as long as heuristic decision control is regarded. I
will show, however, that the application of non-heuristic methods that extensively
exploit the high-level characteristics of the architecturally described circuit brings
such improvement in terms of fault coverage and time demand that makes it a

competent high-level tool.

1.2. PROBLEM STATEMENT AND CONTRIBUTION 5

H gate-level tools CONTEST BudaTest
circuit level gate gate architectural
ol 1 bit bit bit, integer,
signal type i i vector
component set fix extendable open
component
. table DBCN rule-based
representation
- del fix fix library-based
t .
auth mode (s-a, short) (s-a) incl. s-a and short
) constraint solving | constraint solving
algorithm fix))
(customisable) (customisable)

Table 1.1: Comparison of different ATPG approaches

1.2.2 Contribution of BudaTest

BudaTest is an architectural TPG method and tool applicable for highly data-dependent
and moderately control-dependent circuits. Its operation is based on the same constraint-
based principles as those in CONTEST, but the following features are present only in
BudaTest:

e Abstract-typed signals are supported.

e The rule-based high-level representation of components is solved. The component
library is open. The extension of the constraint library requires only the program-

ming of a single function in a high-level language (C++).

e The accurate modelling of low-level physical faults in the high-level circuit model
is solved by defining single-bit interconnection faults and using hierarchical mod-

elling. The coverage of the gate-level stuck-at fault model is proven.

e The modelling problems of using partially wired signals (half-words, indexed bits

etc.) are solved.

e The high-level data and discrepancy propagation information present in the archi-

tectural description is heavily exploited.

Table 1.1 summarises the differences between general gate-level tools, CONTEST,
and BudaTest.

1.2.3 Test execution goals

Chapter 7 deals with test execution issues in the environment of wafer-scale testing
(WST). WST takes place after the production of integrated circuits (ICs) and before the

6 CHAPTER 1. INTRODUCTION

packaging of good chips. Thus WST is a specific test execution environment, but is also
the most typical one with a very high testing volume.

A recent idea in the post-manufacturing test of ICs is to replace traditional automatic
test equipment (ATE) based testing with a concurrently executable comparison-based
test of the chips on the wafer. The comparators are wired to the IC outputs and
compare the IC responses for identical inputs. The comparison outcomes are evaluated
by a subsequent diagnosis algorithm. The diagnosis algorithm regards the entire wafer
as a single system and the ICs as the components of this system. Since the resolution
of the diagnosis is exactly the chip level, the system diagnosis consists in identifying
the individual chips as fault-free or faulty using the downloaded comparison results (the
diagnostic syndrome).

The following list and Table 1.2 show the advantages, drawbacks and problems of

the diagnosis-based testing technique compared to the traditional testing method.

e The ATE performs testing by positioning the ATE pins on the wafer chip test
points and executing the test chip by chip. Diagnosis-based testing can be per-
formed in parallel. This is an important advantage of diagnosis-based testing,

especially when the chip test is long or the number of chips is large.

o At-speed testing is frequently difficult with the ATE, because the disturbance
caused by the present ATE may be important when the chips operate at high

frequencies. Diagnosis-based testing has no such problems.

e The hardware cost in ATE-based testing is represented by the usually extremely
expensive ATE. The ATE machinery must be very accurate in the timing of driven

and observed pins and in the physical positioning.
e Diagnosis-based testing needs no reference responses while ATE-based testing does.

e The cost of diagnosis-based testing consists in the area overhead caused by the
dedicated circuitry required to execute the comparisons. This circuitry is present
in every produced chip. It includes the comparators, comparison collectors, and

the wires implementing pattern distribution and result collection.

e The test results of the ICs tested with an ATE do not depend on factors other
than the coverage of the executed IC test. In diagnosis-based testing, they depend
on the number and distribution of faulty chips as well. Since the classification
of ICs depends on the comparisons, incorrectly diagnosed chips may entail that
other chips become also wrongly diagnosed. Moreover, the correctness of the entire
diagnosis algorithm depends on the validity of the applied diagnostic invalidation
rule, which prescribes what outcomes are possible between components of fault-free

or faulty states.

1.2. PROBLEM STATEMENT AND CONTRIBUTION 7

‘ ‘ ATE-based diagnosis-based
execution time — sequential + parallel

ATE required - yes + mno
reference required | — yes 4+ no
speed problems — may be 4+ no
IC area overhead || + no — yes

IC test coverage IC test coverage

. — number of faulty ICs
validity risks — distribution of faulty ICs
— invalidation rule

Table 1.2: Advantages (+) and drawbacks (-) of WST methods

In my view the problems related with validity issues prevent diagnosis-based testing
from becoming popular. The number and distribution of faults is not a crucial prob-
lem, because there exist diagnosis algorithms that give realistic bounds under any fault
distribution for the correctness, provided that the number of faults does not exceed a
certain limit. This limit is usually high enough and the possibly low yield of the IC
technology does not endanger the validity.

However, all diagnosis algorithm require that the applied invalidation rule not be
violated because of "malicious” faults in the dedicated circuitry. A valid diagnostic rule

is even more important than good IC test coverage because of the following;:

e A chip containing a fault that is not covered by the IC test will pass the test, but
the diagnostic incorrectness for this chip does not influence the correct or incorrect

classification of other chips.

e Since the diagnostic algorithm uses the adjacent chips as references, incorrectly
diagnosed chips may involve that adjacent chips are also wrongly diagnosed. A
comparator fault frequently implies the wrong diagnosis of some local chip even if
the IC test is very good, and this local incorrectness can be propagated wafer-wide

without limits.

In spite of this serious weakness, there are no diagosis-based WST approaches that

are applicable for general ICs and take into account this validity risk.

1.2.4 Contribution in WST

This dissertation concentrates on fault-tolerant issues of the WST technique. A test
session is proposed that is dedicated to the comparators and the comparison compression
circuitry. It is formally proven that the test session detects any combination of multiple

stuck-at faults in this circuitry. The diagnostic model is refined to include reliable and

8 CHAPTER 1. INTRODUCTION

unreliable comparisons. A wafer-scale scheme is proposed to meet the requirements of

the dedicated circuitry test.

1.3 Environment and terminology

This section gives a short introduction to the terminology and some testing aspects of
electronic circuits. A second goal of this classification is to set the scope of this work in

the various test-related areas.

o digital vs. analogue. In digital testing, the values in the used circuit mode are have
all discrete ranges. The analogue and continuous output measured during testing
is quantised into discrete time and discrete values which must match exactly the
expected values to pass the test. Digital testing has the property that the number
of possible circuit states is finite. In analogue testing analogue-type outputs must

remain within a specified range.

— We deal with digital testing in this dissertation. We note that the data-
dominated nature of BudaTest allows for a moderate extent of quantisation
of analogue signals, although the size of the resulting problem space inhibits

its use for larger circuits.

— We propose the fault-tolerant techniques for digital WST. Diagnosis-based
WST is applicable to analogue testing as well, but analogue comparators
should be designed with care, and the presented fault-tolerant features apply
for the digital part of the diagnostic circuitry.

e physical vs. design faults. Testing against design errors has many common features
with testing against physical failures, but the set of design errors is not defined as

exactly as in a physical fault model.
— We always assume physical faults in this thesis.

o permanent vs. transient or intermittent. Permanent faults entail deterministic cir-
cuit behaviour in digital circuits while the circuit behaviour depends on whether
or not transient or intermittent faults are present. Permanent faults are usually
detected by dedicated post-manufacturing or maintenance off-line test sessions.
Transient or intermittent faults are not detected by precalculated test patterns.
Instead, fault-tolerant systems are protected against such faults by various on-line
error detection mechanisms (watchdogs, error detection/correction codes, mas-
ter/checker configurations etc.), which are methods based on information redun-

dancy.

— In accordance with these principles, the goal of the testing in this work is the

detection of permanent faults.

1.3. ENVIRONMENT AND TERMINOLOGY 9

o deterministic vs. random TPG. Practical ATPG usually starts with random TPG
and the random phase is terminated when the generated random vectors do not
detect enough untested faults. At this point, the only way to increase fault coverage
is launching a deterministic ATPG algorithm which searches for test patterns using

the circuit model and assuming specific target faults.
— The BudaTest approach addresses efficiency issues of deterministic TPG.

e detection vs. diagnosis. There exist testing approaches aiming at system diagnosis.
The goal of diagnostic tests is not merely the detection of the presence of faults,
but the identification of the faulty part as well. They are typically performed in
multi-component systems to find faulty components to replace, but they can be
useful in the IC technology as well, inasmuch as they help identify critical design

or manufacturing problems.

— We do not address diagnostic issues in this work.

— Note that the diagnosis-based WST approach is an interesting mixture of
diagnosis and detection where the detection test of the chips is performed as
the diagnostic test of the wafer. The proposed fault tolerant technique can

be used by any wafer diagnosis algorithm.

o functional vs. in-circuit. According to the tester’s access to internal points of the
device, we can distinguish between in-circuit and functional testing (Figure 1.1). In
in-circuit testing the tester can drive and observe the internal points of the tested
circuit. Since components can be isolated and tested independently, the ATPG
and testing tasks can be decomposed into several small and combinational tasks.
In functional testing, the circuits are driven at their input pins and observed at
their output pins, exactly like during normal operation. Since internal points are
only indirectly controlled and observed, this latter type of testing requires longer

and more complex test sequences.

control these observe this

inputs outputs inputs outputs
>~ Wl

control fhese observe these

a, in-circuit testing b, functional testing

Figure 1.1: In-circuit and functional testing of a board

10 CHAPTER 1. INTRODUCTION

aspect options

fault source | physical, manual design, transformation

fault life permanent, transient, intermittent

circuit type digital, analogue, mixed

ATPG kind | deterministic, random, pseudo-random

test purpose | fault detection, diagnosis

access type functional, in-circuit

testing speed | at-speed (parametric), static (functional)

circuit age manufacturing, maintenance

Table 1.3: Various testing aspects

A current trend in electronics is the increasingly frequent use of functional testing.
In-circuit testing requires a costly ATE, and the rapidly growing speed and inte-
gration of devices raises other problems with the accessibility of internal points,

especially in surface-mounted technologies.

There exist a few solutions by which a logically in-circuit test can be implemented
as a functional test. Design for testability (DFT) is the comprehensive name of
design solutions that provide a logical interface to physical access points. DFT
techniques include test point additions and scan-based designs (including LSSD [3]
and boundary-scan [4]). However, DFT is usually very expensive since it requires
extra surface and additional circuit pins. Although for today’s really large circuits
the introduction of some DFT is inevitable, ATPG algorithms should be neverthe-
less improved and made capable of handling larger subcircuits, thus reducing the
cost of DFT.

— Since test computation problems do not characterise the simple in-circuit
tests, the BudaTest method should be used in an functional test enviropn-

ment.

— The discussed WST technique is also a functional test, because it compares

IC outputs.
Table 1.3 gives an overview about the listed and some other ATPG-related aspects.

We use bold typeface when BudaTest is characterised by the given feature and italics

when the feature is related to diagnosis-based WST.

1.4 Outline of the thesis

This work is structured as follows:

1.4. OUTLINE OF THE THESIS 11

Chapter 1 presents the motivation of this work and lists what contributions it provides.
It gives an introduction to ATPG-related terminology and sets the scope of the

proposed approaches.

Chapter 2 describes the current trends and status of digital design. It describes the

design process and explains its stages from the point of view of test generation.

Chapter 3 gives an overview on existing ATPG approaches. First, gate-level algo-
rithms and their enhancement schemes are discussed. Then existing architectural
and behavioural TPG approaches are presented together with their advantages,

drawbacks and main application fields.

Chapter 4 describes what constraints are and how constraint satisfaction problems
can be solved. It draws attention to the efficiency-related issues of the solving
algorithms and gives an overview what main enhancement ideas the constraint
literature provides. The chapter also presents an existing constraint-based gate-
level ATPG approach.

Chapter 5 identifies modelling problems that must be solved if we want to raise the
abstraction level of TPG. It shows how BudaTest handles these problems.

Chapter 6 presents the constraint solving engine incorporated in the BudaTest tool.
It describes how high-level circuit information is exploited by the ATPG-specific
solver, and presents performance data measured on high-level and low-level bench-

mark sets.

Chapter 7 deals with the fault-tolerant issues of the diagnosis-based WST approach.
Since this chapter is not directly related to the previous chapters, a short intro-
duction is given about the diagnosis literature. Then a specific circuitry test is
proposed which is gradually extended until it covers all important parts of the
diagnosis-related circuitry. A wafer template that allows for the execution of the

fault tolerance test is also shown.
Appendix A describes the benchmark circuit set used for performance measurement.

Appendix B briefly introduces the structure and interface of the BudaTest program.

The dissertation is usually written in passive or plural first person. I use singular

first person whenever I want to emphasise my personal contribution.

Chapter 2

Current trends in digital design

Since testing in inseparable from design issues, we summarise what major trends apply
in digital design.

It is probably needless to emphasise in what extent the integration of circuit com-
ponents improves, and, consequently, the number of transistors in a single unit grows.
In the sixties and seventies when the ATPG methodology was developed, the terms
small, medium, large and very large scale integration (SSI, MSI, LSI, VLSI), ranging
from dozens to thousands of transistors on a surface unit, was a meaningful distinction
between technologies. Now we speak of millions of transistors in a single chip, and this

quantity doubles about every three years [5].

2.1 CAD tool features

With the increase in size and integration, design methodologies have undergone a fast
development in the past ten years. It was initially the engineer’s job to carry out
the entire design procedure from the specification until the circuit lay-out. As the
result of CAD methodology improvement, ad hoc designs of any complexity have been
replaced by structured design techniques where the majority of tasks are automated.
The methodology, implemented by state-of-the-art CAD tools (e.g. Cadence, Synopsys,
Mentor [6, 7, 8]), are characterised by the following main features:

o Hardware synthesis is based on design libraries, which contain existing compo-
nents provided by the CAD tool vendor or generated by the user. The libraries
promote intellectual property (IP) reuse. Their use decreases the development time

significantly, because the library elements do not need to be redesigned.

e The design direction is top-down. The goal of the digital design procedure is to
gradually refine the initial specification into a structural description of utilised
library elements. Accordingly, the design process consists of several stages repre-
sented by increasingly detailed and decreasingly abstract descriptions of the same

circuit.

2.2. DIGITAL DESIGN FLOW 13

e The tasks that can be automated are passed from the engineer to the tool. As
a result of a continuous improvement, the automatic entry point moves toward
more and more abstract description levels. Silicon compilers that appeared about
fifteen years ago transform a satisfactorily detailed structural description into lay-
out plans. A recent improvement is the appearance of high-level synthesis (HLS)
tools (e.g. AMICAL [9]) which push the automatic design entry point even higher
in abstraction. They are capable of processing behavioural register transfer level
(RTL) descriptions and generating architectural descriptions. The features of these

levels will be discussed later in this chapter.

e A common hardware description language (HDL) is used at every stage of the
design of a circuit. The most popular languages are the IEEE standard VHDL [10]
and Verilog. VHDL has a high modelling power and allows for various descriptive
styles: it permits the use of procedures and even of dynamically allocated memory
where only behaviour is important, but it can be also used for the mass simulation
of gate-level netlists. The advantages of VHDL include the portability between

CAD tools and the possibility of mixed-level simulation.

o Tagks other than logic design are automated and incorporated in the CAD tool.
Such tasks include automatic or computer-assisted verification (e.g. microprocessor

verification in [12]), quality evaluation, or, as in the case of this thesis, ATPG.

2.2 Digital design flow

This section describes the stages of the design process which are important from the point
of view of ATPG. The input of this process is the informal (and therefore ambiguous)
specification of what the circuit should do, while the output is the lay-out masks directly

used by the manufacturer. The intermediate stages are illustrated in Figure 2.1.

The first part of the process, denoted as behavioural capture in Figure 2.1 is actually
a very complex manual task and usually consists of several substages and iterations.
Large systems are first modelled at the system level by means of procedural and abstract
constructs. This description can already be simulated but the used language constructs
are so abstract that they cannot be automatically processed. Thus the description is
manually refined and separated into smaller modules. During this transformation, many
rules of thumb must be respected and the most abstract language constructs must be
implemented in less abstract ways.

Since ATPG is related to the automatic part of the logic design, now we are not
interested in this part. After the manual design, we reach the synthesizable behavioural

level where automatic synthesis begins.

14 CHAPTER 2.

[e) [
should do...
q D

engineer E

— — ci=a+b;
modulel module2
scheduling

resource allocation
data path synthesis

informal specification

— =

behavioural capture
(manual design)
—/ =

behavioural specification
(synthesizable)

— =

high level synthesis

e

architectural description

— =

gate level synthesis

e

gate level description

—4 =

layout generation

e

physical layout

Figure 2.1: Digital design flow

2.2.1 Synthesizable behavioural VHDL

This level is characterised by the following features:

CURRENT TRENDS IN DIGITAL DESIGN

1ed onewoine

e The behaviour of a component is specified as a set of VHDL processes, which can
be complex procedures as well. Certain restrictions apply to resetting and clock

usage styles.
e The use of abstract data types and complex expressions is allowed.

e Conditional statements, loops etc. are permitted.

2.2.2 High-level synthesis

High-level synthesis tools read synthesizable descriptions and generate an architecture,
i.e. a structure of high-level components. The main goal of HLS is to generate a structure
functionally equivalent to the processes.

They go through the following basic steps:

2.2. DIGITAL DESIGN FLOW 15

e scheduling. The procedures in the behavioural descriptions are divided into time
frames in this step. Instructions in a time frame will be executed simultaneously

in one clock cycle.

The HLS output is functionally equivalent to the synthesized behvaioural descrip-
tion, but its timing may be different. The code can explicitly define time frame
boundaries with VHDL wait statements, but the HLS tool can also introduce new

frames by revealing data dependencies or by other means.

Assignment delays and other kinds of explicit time values of the behavioural spec-
ification are ignored. The exact parameters are determined by the characteristics

of the library elements.

e resource allocation. VHDL operators and function calls are mapped into functional
units (FUs), those components that implement the operations. There is a FU
library whose elements are capable of executing one or more VHDL operations.
An adder unit, for example, implements the “+” operation while a suitable ALU

“_”

can be utilised wherever the VHDL parser encounters the “+”, “-”, and the word-

wise logical operators.

Scheduling and resource allocation are complementary tasks. There are usually
design options to prefer either fast or cost-effective (in terms of surface usage)
design styles. A cost-driven design, for example, may define two time frames for
instructions which use the same FU resource and would be executed parallelly in

a speed-driven design.

e data path synthesis. This step generates the wires and defines the routing between
data containers and FUs. In a multiplexer-based design, multiplexers are placed
in front of multiply used FUs and before data containers that are driven by sev-
eral assignments in a procedure. In a bus-based design the multiplexer outputs
are replaced by buses and multiplexers are substituted with bus driver auxiliary

elements.

e control flow extraction. The HLS tool creates a so-called control part in the form
of a behaviourally described finite state machine (FSM). This component collects
the Boolean signals coming from the data part and generates control signals such
as the selector inputs of multiplexers, register write enable signals and operation

codes of multi-operation FUs.

It is usually possible to define design constraints that limit the number of time frames,
the circuit area, the power consumption and other various design parameters. If such a

constraint is violated, a subsequent iteration may produce a different architecture.

16 CHAPTER 2. CURRENT TRENDS IN DIGITAL DESIGN

2.2.3 Architectural VHDL

We call the HLS output description style architectural. Its main features are the follow-

ing:
e It is a structural description, i.e. a list of components interconnected by signals.

e The signals have abstract data types (integer, bit vector, or even records) and

therefore large word widths.

e The components correspond to the elements of the FU library, can be high-level
and sometimes sequential. In addition, there are registers needed for data storage,

and auxiliary components required for the establishment of data paths.

e The components can be parametrised. The used instance depends on the actual

data size.

e Control and data are clearly separated (Figure 2.2). The signals within the data
part are data signals and may have wide abstract types. The signals interconnect-
ing the two parts are considered as control signals. Thus control signals include
expression result signals, FU operation codes, multiplexer selectors (bus driver

controls), and register control signals. Control signals have a small range.

data part [ij control part

registers L] L_F]

expression

evaluators control

data path signals
aux. elements \T/

FUs)
| | I

Figure 2.2: Architectural style

2.2.4 Low-level synthesis

Low-level synthesis (LLS) starts with an architectural description and generates the
target of the design, usually the lay-out plans and the masks required in manufacturing.

The most important tasks are the following:

o component and wire placement. This task determines the physical position of the
pre-designed library elements and the wires interconnecting the components. In
addition to the overall surface optimisation, a number of design rules must be

respected to avoid technology-related problems.

2.2. DIGITAL DESIGN FLOW 17

e control part synthesis. The FSM generated by the HLS tool is implemented, e.g.
with a PLD.

e parametric design, e.g. decisions on the resolution of imaging, design for power

consumption etc.

From the point of view test generation, the most important feature of LLS is that
decisions made during LLS do not influence the logical manifestation of the most widely
assumed physical faults. A stuck-at fault (see Section 3.2.1), for example, is defined the

same way for any line width and wire placement.

2.2.5 Gate-level descriptions

LLS is not necessarily divided into gate-level synthesis and lay-out generation as shown
in Figure 2.1, because the vendor-supplied library elements can directly contain lay-out
information. We still discuss this intermediate stage, because it is important from the
point of view of traditional ATPG methods.

Gate-level descriptions are the last logical and technology-independent representa-

tions of a digital circuit. The characteristics of this level are as follows:

e It is a structural description.

e Only the bit data type exists. Originally complex signals are encoded into a set of

bit-type signals.

e The component ”library” is fix, containing the basic gate types (and, or, wor,

nand, nor) and basic flip-flop types (D primarily).

e The number of signals and components is enormous. It is usually hopeless to

understand the function by human reading.

Table 2.1 gives a summary on some important features of the different representation

levels and description styles.

18

CHAPTER 2. CURRENT TRENDS IN DIGITAL DESIGN

H system-level | behavioural | architectural | gate-level
simulatable yes yes yes yes
synthesizable no yes yes yes
procedures allowed yes yes no no
components allowed yes yes yes yes
component type any any library element gate
data type abstract abstract abstract bit
compact yes yes yes no
control-data separation no no yes no

Table 2.1: Features

of representation levels

Chapter 3
Previous ATPG approaches

This section gives an overview on existing ATPG approaches for digital circuits described
at various levels. We divide the discussion into presenting gate-level and high-level

approaches.

3.1 Fault models

I devote special attention to the question of fault modelling because in my view this
determines the abstraction level that can be used for ATPG.

Faults are physical failures which are caused by defective hardware material or pro-
duction machinery, by incorrect design or by human error (Mourad [13]).

Logical faults change the logical function of the circuit while parametric faults modify
non-digital circuit parameters such as delay, capacitance, temperature dependence etc.
[1].

The fault model is the representation of the physical fault effect in a given application.
Fault modelling must therefore conform to circuit modelling some way so that the fault
effect can be interpreted at the level the application uses. Obviously, the relation between
physical faults and the fault model must be thoroughly examined in every application

that uses fault models. In particular, the following things must be proven:

e Physical faults indeed cause such a perturbation as assumed by the fault model.

e The fault model is able to represent all the expected kinds of physical faults.
Certainly, we cannot take into account every imaginable fault, but the most likely

ones should be listed.

3.2 Gate-level ATPG

Gate-level ATPG algorithms have existed since fairly complex digital circuits appeared

in the sixties. We show what basic gate-level methods exist and what improvements

20 CHAPTER 3. PREVIOUS ATPG APPROACHES

have been made to traditional algorithms. Besides this overview, a good comparison of

gate level methods can be found in [27].

3.2.1 Gate-level fault model

The most popular logical fault model is the stuck-at (s-a) model. This fault model
assumes that physical faults are manifested in the logical form that certain signals fail
to hold a 0 or 1 logical value. A signal stuck at 0 (1) always carries 0 (1) even if driven
with 1 (0) by a certain gate.

Though the stuck-at model is defined as signal problems, the analysis of different
technologies shows that it represents fairly well component (gate) faults as well. Many
internal transistor faults are equivalent to the logical s-a fault of some signal appearing
in the gate-level description. We note that there are a few transistor faults in MOS
technologies that cannot be represented as stuck-at faults. There exist other dedicated
fault models (stuck-open, stuck-on) to cover these problems [14, 15], although they are
rarely used in practice.

The single stuck-at fault model allows at most one stuck-at signal. The multiple
stuck-at model allows several s-a faults to occur at the same time but the fault list is
very long in this case.

In the short fault model (also known as bridging or coupling faults) two signals fail
to hold different values. If they would take different values in the fault-free case, the
common value is determined by the used technology. Certain technologies cause wired-
or, others cause wired-and relation between the shorted signals.

Figure 3.1 shows an activated s-a-1 and a wired-or short fault. Both faults cause
an erroneous 1 value instead of the correct 0 at the fault location. Note that the input

patterns are test patterns as well, since the circuit without the fault would produce a

different response.
—DH —Das,
1 L) 0/1 Lt) 0/1
1)96 01 1)‘ 01
0 4 o “*

[P sa-1 fault e wired-or short fault

Figure 3.1: Active s-a-1 and wired-or short fault

Extensive studies show that test pattern sets generated for single s-a faults cover
fairly well other fault types [16]. Applications that use the single s-a fault model are

usually considered by the testing community as accurate in fault modelling.

3.2.2 Gate-level ATPG algorithms

In the following, functional TPG algorithms will be presented. Such an algorithm finds

test patterns for which the logical function modification effect of the fault becomes

3.2. GATE-LEVEL ATPG 21

‘ composite value H fault-free value | faulty value

0 0 0

1 1 1

D (discrepancy) 1 0
D (not D) 0 1

Table 3.1: Meaning of composite values in the D algorithm

‘ input 1 ‘ input 2 ‘ output ‘

0 0 0
0 1 1
0 D D
0 D D
1 0 1
1 1 1
1 D 1
1 D 1
D 0 D
D 1 1
D D D
D D 1
D 0 D
D 1 1
D D 1
D D D

Table 3.2: D propagation table of an OR gate

apparent.!

The D algorithm

The first systematic ATPG approach was the D algorithm presented by Roth in 1966 [17].
As every systematic ATPG method, it is a composite simulation of the fault-free and
faulty circuit. He used the 4-valued logic of {0,1,D,D} to model value pairs (Table 3.1).

The gate pairs of the two simulations are handled together in a similar way. The
truth table of and OR gate is given as an example in Table 3.2.

The D-algorithm consists of three basic phases:

!There exist other kinds of testing which exploit parametric effects of faults. Ippg testing, for
example, is based on the fact that an activated fault is likely to involve abnormal power consumption,
and does not require that the fault effect be functionally visible on any output.

22 CHAPTER 3. PREVIOUS ATPG APPROACHES

1. fault semsitisation. An activated fault is a prerequisite for successful test genera-
tion, thus this phase assigns D or D to the faulty signal pair. The input signals of
the gate driving the fault location are set to produce the negated s-a-value.

2. D propagation. A path is selected from the fault location to one of the outputs.
The other input of the gates comprising the path are set in a way that the D or D

value can be propagated.

3. justification. The remaining signals are set backwards by using the gate truth

tables (without the tuples containing Ds or Ds).

Since contradictions may occur, backtracking is allowed in all phases. The D algo-
rithm does not define priorities between truth table rows when more options are avail-
able, so decisions can be regarded as random. This can lead to an unnecessarily high
number of backtracks. Another problem is backtracking in the D propagation phase.
If the path selection is contradictory, another D-path must be chosen. When the fault

location is far from the output, the number of paths can be very large.

PODEM

Goel’'s PODEM [18] is the most frequently used gate-level ATPG algorithm. It is a
rearrangement of D steps where decisions consist in assigning values to the input signals.
Once a new input is set, the circuit is partially simulated as deep as possible.

The goals are again fault sensitisation and D propagation. The ordering of variables
to assign reflects these goals. The so-called backtrace technique is used for selecting the
variables that have the largest impact on the target signals. The first target signal is the
fault location, then the signals constituting a selected D-path to the output are targeted.
A very important feature of the algorithm is the use of controllability measures during
backtracing and of observability measures during D-path selection. These measures were
proposed by Goldstein [19].

The input-oriented nature of PODEM means that it is efficient for circuits with
relatively few inputs, but its performance drops with the increase in the number of

inputs.

Composite justification

Proposed by Sziray [20] in 1979, composite justification consists of output selection and
only justification steps. Omnce an output is selected for fault effect observation, the
algorithm assigns D or D to the output and the fault location. The rest is simply
backward justification using the full tuple set of the gate truth tables, during which
the signal values become determined from the output to the inputs. Since the full
tuple set contains Ds and Ds, the circuit is first preprocessed in order to explore where
discrepancies are admitted and what signals matter at all. This filtering technique is

called node classification.

3.2. GATE-LEVEL ATPG 23

From the point of view of this work, composite justification has similar features with
the approach proposed here. Although Sziray does not use constraint terminology, the
lack of the path selection phase makes the entire representation uniform. Furthermore,
the node classification technique is the first explicit technique that reveals which signals
may take different values in the two simulation. The colouring technique presented in

Section 6.4 has the same goals, although the implementation technique is rather different.

3.2.3 Implication

The FAN algorithm (Fujiwara, [1]) is an improvement to D. It performs an implication
step to explore and effectuate the value assignments that are equivalent with the most
recent decision. The result of implication is a smaller subspace of unassigned wires after
every decision, which necessitates fewer backtracks.

The idea of assigning implied values to signals other than the decision subject appears
most explicitly in the 16-valued approach of Hegedis [21]. Each value used by his
algorithm represent a superset of the basic set {0,1,D,D}. This greatly improves the
implication capabilities of the ATPG tool because the exclusion of every basic value
combination can be expressed. The drawback of the method is the large size of gate
descriptors. Similar 9 or 10-valued logic is used in [22] and [23].

Another very important result of Hegediis’ work is the decentralised implementation
of the ATPG decision engine. The mechanism of weights that can be associated to
decision choices provides good support for topological measures an heuristics. He has
shown that the generic algorithm may become PODEM or other algorithms by means
of extreme weighting, so the algorithm can match the characteristics of the circuit it is

applied to.

3.2.4 Sequential extension

The basic gate-level algorithms generate single-vector tests for the faults of combina-
tional circuits. Sequential circuits may have (and usually do have) faults which require
not test vectors but sequences to detect.

There is a simple ATPG extension technique that enables combinational algorithms
to cope with sequential circuits. The iterative array model [43] cuts the feedback loops of
the sequential circuit and unrolls the consecutive time frames into a large combinational
circuit (Figure 3.2 and Figure 3.3). Finding a test sequence for the sequential circuit is
equivalent to finding a test vector for the unrolled circuit.

The iterative array technique is applicable when the following circuit requirements

are met:

e The concept of ”consecutive time frames” requires synchronous single-clock sensi-

tivity.

24 CHAPTER 3. PREVIOUS ATPG APPROACHES

IN
— 1 Combinational OUI
FEEDBK part

state vars |

Figure 3.2: General sequential circuit

FEEDBK

f Combinational | OUT
part

ouT(0)

IN(0)

FEEDBK

Combinational | OUT
N part

ouT(1)

FEEDBK

Combinational | OUT

IN part ouT@E) .-
INQ) — —————————— S - - - ————————— '

etc.

time frame #0 time frame #1 time frame #2

Figure 3.3: Iterative combinational model of a sequential circuit

e Registers must have reset so that their initial value be known to the ATPG algo-

rithm in time frame 0.

Although there are proposals in the literature aiming at the testing of asynchronous
circuits without known homing sequences, this problem is rather avoided than solved.

The price of the extension is the soaring size of the ATPG problem space. The
problem space of an n-frame long expected test sequence is n times larger than that in

the combinational case, which is crucial in an NP-complete problem.

3.2.5 CONTEST

CONTEST (Tilly, [25, 26]) is a gate-level tool that solves ATPG as a constraint satis-
faction problem (CSP). We give special attention to CONTEST because the BudaTest

approach presented in this work is based on the same constraint-based principle as
CONTEST. CONTEST’s main features are the following:

e The signal pairs of the fault-free and faulty simulation are regarded as constraint

variables. (Section 4.1 or [27, 25] contains constraint-related definitions.)
e The function of the gate pairs is described as constraints over the variables.

e The variables have an initial domain of {0, 1, D, D}. The actual domain of a
variable describes what values can be part of a solution, which is as powerful in
implication as the 16-valued logic of Hegediis [21]. Variables are assigned locally

consistent values by decisions.

3.3. HIGH-LEVEL ATPG APPROACHES 25

e The requirements against a test pattern are expressed by the initial domains of
the variables. The initialisation of CONTEST is practically the same as that of
composite justification [20], i.e. the fault location and a selected output is ini-
tialised with {D, D}, and a domain preprocessing similar to node classification is

performed.

e Since the field of CSP solving has an already wide literature, general CSP solving
ideas are employed to speed up the ATPG process. In particular, a variation of

dependency-directed backtracking (backjumping) [59] is used.

e Since all ATPG requirements are represented as constraint network data, the CSP
solver has a high extent of freedom in decision control. In CONTEST, a hesitation
queue is established to store decision candidates. This helps keeping decisions
concentrated in one growing part of the circuit, but also leaves space for measure-

based heuristics.

3.2.6 Algorithm evaluation

Since there are no analytical features to which the circuits designed in practice con-
form, the performance evaluation of ATPG algorithms is performed by benchmarking.
Besides the benchmark circuits that individual approaches propose as measurement ba-
sis, there exists a commonly accepted gate-level benchmark circuit set. The ISCAS
benchmark [11], specially designed for testing gate-level related tools, contains circuits
different in various aspects: different input/internal/output signal numbers and ratios,

different gate numbers and ratios, tree-structured vs. highly reconvergent etc.

3.3 High-level ATPG approaches

High-level approaches are characterised by an abstract model which describes the propa-
gation and dependencies of usually abstract data. We will call architectural those ATPG
approaches where the abstract model is in direct correspondence with the actual circuit

hardware, and behavioural the other high-level approaches.

3.3.1 Architectural approaches
Extensions of gate-level approaches

Many gate-level algorithms use some combination of three basic steps (fault sensitisation,
D propagation, justification). There is no theoretical obstacle in defining high-level
equivalents of these steps for architectural descriptions. The new methods must revise

the following aspects:

e In contrast to gate-level approaches which handle the two simulations as one by

defining composite values (see Table 3.1), abstract value pairs cannot be efficiently

26 CHAPTER 3. PREVIOUS ATPG APPROACHES

treated as one value.

e Value tables either become very large or must be replaced with the execution of
functional component procedures. Backward justification, i.e. the inversion of com-
ponent procedures becomes rather difficult. For this reason, high-level PODEM

which uses only forward data propagation is easier to implement [42].

e Fault modelling becomes nontrivial. Single-bit stuck-at faults, for example, af-
fect single bits of abstract values, the effect of which must be separately defined.

Internal faults of components must also be taken into account.

Many existing approaches belong to this category. The D algorithm was defined for
hardware description languages in [24]. An extension for the 9-valued logic gate-level
approach [23] was done by Steingart et al. in [28]. The DIAS tool [29] performs high-
level composite justification (Section 3.2.2, [20]) for a dedicated hardware description
language OPART [30].

In fact, the BudaTest method described in this work can be also regarded as the
extension of the CONTEST constraint-based gate-level ATPG approach. Chapter 5
deals with modelling problems that are implied by the use of abstract values and high-
level components. However, the extension consists not merely in the transformation
of steps into abstract equivalents, but in the use of abstract algorithms which have no

gate-level equivalents.

S-graph

S-graph based circuit representation was used by Thatte and Abraham [31], and was
refined by Brahme and Abraham in [32]. The method is specific to microprocessors whose
register-level model is the system graph (S-graph). The nodes of the S-graph represent
the registers of the processor, while edges between nodes stand for instructions that
move data (manipulated or not) between the registers. Two distinguished nodes, IN
and OUT, model the pins controllable and observable by the external word.

The processor is regarded as a set of the following functions: register decoding, in-
struction decoding and control, data storage, data transfer, and data manipulation. A
functional fault model is defined for each of the specified functions except data manip-
ulation.

The faults of the register decoding, data storage and data transfer functions are tested
by relatively simple algorithms which are mainly based on the topological distance of the
registers from the INPUT and OUTPUT nodes. The instruction decoding and control
function model was later refined in [32] and its functional faults were tested by assigning
codewords to registers.

The S-graph approach is an efficient architectural method for testing general parts
of microprocessors. The test generation time and the test length is polynomial with

the number of registers. However, data manipulation faults are not considered and

3.3. HIGH-LEVEL ATPG APPROACHES 27

microprocessor features are heavily exploited, thus the method is hardly extendable to
general digital circuits.

The S-algorithm proposed by Su et. al [33, 34] uses a similar but somewhat more
general model for register transfer level descriptions. The method still assumes some

explicit instruction sequence.

Alternative Graph

Ubar’s method creates generalised decision diagrams based on the circuit and fault
description [36].2 Unlike in traditional algorithms dealing with binary decision dia-
grams [35], high and low abstraction levels as well as control and data faults are efficiently
and uniformly handled by generalised DDs.

A novel concept of mixed level combining of deterministic and random techniques
in test generation is introduced in AG. On the RT-level, deterministic path activating
is combined with constraint techniques by means of random techniques. The gate-
level local test patterns for components are randomly generated driven by high-level
constraints and partial path activation solutions.

The AG approach permits test generation for finite state machines (control parts)
as well [37]. For the description of functions, structure and faults in a FSM, three levels
are used: functional level (state transition diagrams), logical or signal-path level, and
gate level. For all these levels a uniform description language, a uniform fault model and
uniform procedures for ATPG and test analysis were developed. This uniformity allows
easily to move and carry partial results from level to level when solving the mentioned
tasks.

The path activation and the FSM testing features of the AG approach make it
an excellent method for control-dominated circuits where long and non-trivial paths
and state transitions. High data dependencies are, however, not necessarily handled

effeiciently due to the randomness of the solving of such subtasks.

3.3.2 Hierarchical testing

Hierarchical testing is not an alternative to architectural approaches but an additional
technique which allows the accurate modelling of gate-level faults.

In architectural approaches components and interconnections are meaningful terms
because they reflect the circuit architecture. The different high-level ATPG algorithms
generate tests for interconnection faults that appear in some way in the utilised circuit
model. Thus high-level algorithms do not directly cover component faults.

High-level testing is introduced on account of the expected performance advantage
due to the circuit model compactness. However, the effect of component faults cannot be
generally described at the high level, because modelling physical fault effects by altered

functionality is unrealistic. Thus we face two contradicting requirements:

®Generalised decision diagrams were first poroposed under the name of Alternative Graphs (AG).

28 CHAPTER 3. PREVIOUS ATPG APPROACHES

1. High-level representation is required for efficiency.

2. Accurate models of component fault effects can be obtained only by low-level

component representation.

Hierarchical testing offers a reasonable solution for this problem by means of mized-
level modelling. In a high-level tool supporting hierarchical testing the components have

two representations:

e a high-level representation (functionally described) for efficiently representing the
fault-free operation. For example, an adder component can be represented with

the high-level addition operator.

e a low-level representation (structurally described), consisting of several smaller
components for exact fault modelling. For instance, the same adder component
can be represented with a chain of full adders. The low-level representation must

conform to the design generated by the CAD tool to obtain exact fault effects.?

In the mixed-level technique, only the component affected by the assumed fault
is represented with the low-level model, while others are modelled with the high-level
equivalent (Figure 3.4). This way the low-level representation of certain components does
not entail a dramatic increase in the component number, and the average abstraction
level drops only in a minimal extent. The hierarchical principle can be applied in a

recursive manner (Figure 3.5).

° H high-level representation
—’D—>D—>D—" T T B L low-level representation

e fault location

circuit interconnection component
architecture fault fault

Figure 3.4: Use of high and low-level models

Figure 3.5: Recursive application of the hierarchical principle

3In theory, functional replacement would be an alternative way to model faulty behaviour with pre-
serving efficiency. However, as it is argued in Section 3.3.3, only a small fragment of realistic physical
fault effects can be described at the high level, therefore the applicability of this concept is limited.

3.3. HIGH-LEVEL ATPG APPROACHES 29

3.3.3 Behavioural approaches

We call behavioural those approaches where the circuit graph (or whatever other model
is used) is extracted from the procedural HDL description of the circuit. Such ATPG
methods are the Behavioural Test Generator (BTG) of O’Neill et al. [38] defined for
general HDLs, and other algorithms developed from it. Cho and Armstrong suited the
algorithm to the semantics of VHDL [39]. They presented later the B-algorithm [40],
which can generate tests for behavioural faults, and follows the basic steps of the D
algorithm with good/bad value pairs and high-level VHDL assignment statements.

The fault model of these approaches is defined as the perturbation of the HDL source
code of the circuit. The behavioural modification includes the following:

o signal assignment faults. A VHDL signal assignment statement assigns the value
of an expression to a signal. A behavioural stuck-at fault is a stuck-at fault of a
bit of a signal or a virtual signal. Virtual signals are intermediate signals used for
expression construction, or fan-out stems and branches when a signal is used in
several expressions. The fault model allows so-called behavioural stuck-open faults

as well for incorrectly performed assignments.

o control faults. A control fault is the incorrect execution of a VHDL conditional
statement. Control faults include stuck-then, stuck-else branches, dead clauses,

dead processes etc.

o microoperation faults. An arithmetic or relational VHDL operator is faulted to
another operator. For example, the faulty model may execute addition instead of

subtraction.

In the view of the author, the price of compact circuit modelling is improper fault
modelling in these approaches. Signal assignment and control fault modelling suffers
from ambiguity.

Section 2.2.2 describes how high-level synthesis works and what decisions it makes.
We show how different structures HLS may produce from the same behavioural de-
scription. Even if bus-based and multiplexer-based architectures are rather similar, the
ambiguity originates in different scheduling and functional unit allocation strategies. If
the VHDL code contains n “+” operations, specifying strict area constraints for the HLS
tool may result in allocating only one adder component and introducing a separate time
frame for each addition (FU reuse). On the other hand, preferring a quick architecture
could allocate n adders, reduced by the number of concurrently performable operations,
which may depend again on whether the HLS tool is sophisticated enough to recognise
parallellism.

Ezample: Consider the following VHDL code:

if x > y then

30 CHAPTER 3. PREVIOUS ATPG APPROACHES

X =X - 7;
else

y =¥ - %
end if;

A sophisticated tool notices that one subtractor FU is sufficient for this fragment,
because they stand in mutually exclusive branches of an if statement. It may generate
therefore a data part with a single subtractor FU and a condition evaluator FU. A less
intelligent tool could decide that two FUs implement the two subtractions. (In fact,
the same tool can decide so if there are other subtractors used in other time frames.)
Combined with bus-based data path synthesis, the same VHDL code could result in an
entirely different the data part implementation (Figure 3.6). As a consequence, exact

component fault effects are unknown in the behavioural stage.

X y

ALU("-")

non non

diff

diff

Figure 3.6: Different architectures of the same behavioural source

Of course, where the behavioural test generator is part of a CAD tool whose high-
level synthesis algorithm is known to the ATPG tool, this fault modelling technique
(except microoperation faults) is admissible. In this case, however, the behavioural fault
model is nothing else than a reverse-engineered architectural fault model. It is easy
to show the equivalence between behavioural signal assignment faults and architectural
component interconnection faults, as well as that between behavioural control faults and
architectural control signal faults. Some behavioural microoperation faults may have an
architectural opcode s-a fault equivalent, but it is quite speculative to claim that general
physical faults may cause arithmetic units to perform other operations. Instead, the
space for component fault modelling should be left open, as it is done in architectural
approaches.

Although the fault model employed by the behavioural approaches covers physical
faults of some signals that would appear in the top-level hierarchy of the subsequently
generated structure, some features, e.g. microoperation faults, are rather applicable to

design faults.

3.4. BUDATEST OBJECTIVES 31

3.4 BudaTest objectives

The summary and the consequences of the previous discussion of ATPG methods are
shown in Figure 3.7. We regard the architectural level as the highest possible ATPG
entry point when physical faults are concerned. An earlier ATPG would entail unrealistic
modelling of physical faults, while a later ATPG start would cost prohibitively much

ATPG time. Similar conclusions are reached in Benyd’s ATPG comparison [41].

behavioural behavi | compact, fast
description © A%-VFl,%Jra unrealistic physical BTG, B
fault model
high-level
synthesis
architectural compact, fast D-extensions
description good physical S-graph, S
P ATPG fault model AG
gate-level
synthesis
ate-level ate-level unstructured, slow D, FAN, PODEM
c?escription ° ATPG very good physical 9-v, 10-V, CJ
fault model CONTEST
design ATPG evaluation examples

Figure 3.7: Comparison of ATPG entry points

In spite of the existence of architectural ATPG approaches, there is a lack of meth-
ods that could efficiently handle general data-dominated high-level circuits. Although
D-extensions equipped with mixed-level testing are theoretically capable of handling
such circuits, they contain no new invention that would exploit high-level features. The
S-graph and S-algorithm approaches are fast functional tools where the correspondence
between functional faults and physical faults is apparent, but their use is limited to mi-
croprocessors or microcontrollers, and they do not deal with data manipulation. Ubar’s
AG approach is promising for general circuits but especially for control-dominated ones.

The BudaTest approach, presented in this work, is intended to handle data-dominated
circuits with intensive data manipulation and moderate control. Moderate control means
that the number of control signals is unrestricted but the control part FSM (see Sec-
tion 2.2.3) can be implemented with a few gates.

BudaTest is not fine-tuned yet as long as heuristic decision control is regarded.
We will show, however, that the application of non-heuristic methods that extensively

exploit the high-level characteristics of the architecturally described circuit brings such

32 CHAPTER 3. PREVIOUS ATPG APPROACHES

improvement in terms of fault coverage and time demand that makes it a competent
high-level tool. In addition, it solves such modelling problems as the handling of vector

slicing and indexing and other practical issues.

Chapter 4

Constraint-based modelling

The concept of discrete constraints provides a convenient means to describe the various
requirements for an input pattern to be a test pattern for a given fault and a given
circuit. The operation of the digital circuit, the effect of the considered fault, and the

fault effect observability condition can be all represented as constraints.

4.1 CSP definition

A constraint network is a set of constraint variables and constraints defined over the
variables (Dechter, [52]).

The constraint variables (or simply variables) X = {Xy,..., X,,} are defined by their
domains D = {D,...,D,}. The D; domain of the X; variable describes the set of the
z;j values X; can take.

A constraint C; is defined as a k-ary relation over k variables, which is expressed as
a subset of a k-ary Cartesian product:

Ci C€D;; XDy x...x Dy,

Less formally, a constraint permits some consistent value combinations of the in-
volved variables and excludes the others. A constraint C; is satisfied when the relation
evaluates to true for a value assignment {z;, ;,, Zi,j,, - ., Ziyj, }, i-6. when the tuple is an
element of the subset defined by C;. We also say that the {z;,;,,Zi,j,, ..., Zi,j, } tuple
is locally consistent with respect to C;.

A value assignment x5 = {z1;,,%2j,,...,Tnj, } (Zij; € D;) is a solution of the con-
straint network if all the constraints are satisfied with the corresponding subsets of z;.
zs is also said a globally consistent vector.

The constraint satisfaction problem (CSP) is to find a solution (or all solutions) for
a given constraint network. A CSP is in general NP-complete (Montanary, [49]).

A constraint network is called a binary constraint network if every constraint is
defined over at most two variables. The largest part of the existing constraint literature
has been elaborated for binary CSPs.

A constraint graph is the graphical representation of a constraint network. A binary

34 CHAPTER 4. CONSTRAINT-BASED MODELLING

constraint network can be represented by an ordinary graph G : {X,C} possibly con-
taining loop edges. Each node of G represents a constraint variable X; and there exists
an edge between X; and X if there is a binary constraint over X; and X;. There exists
a loop edge around X; of G if there is unary constraint defined over X;. The constraint
graph of a non-binary CSP is a so-called hypergraph where hyperedges connect more than
two nodes.

We will call the Cartesian product Dy x Dy X ... X D,, the state space of the CSP.
Thus, a solution is an element of the state space allowed by the constraints. Similarly,

a state subspace is the Cartesian product of the ranges of some constraint variables.

Examples

The following is a CSP of three variables: Xi: (a,b); Xo: (c,d); X3: (e, f). Let C
consist of three constraints:
C1 (X1, Xo9) : (ac,ad, be), Cy (X1, X3) : (af,be,bf), C3(Xa, X3) : (ce,de, df)

The CSP has two global solutions: adf and bce, out of the state space of eight tuples.
In this example, the constraints were given by means of enumeration of the allowed pairs.

The next exemplary CSP has three variables, X1, X9, and X3, each having a domain
of integer numbers between 0 and 9. Thus the whole state space consists of 1000 tuples.
The equality system

2x X1 =Xy Xo % X9 = X3

can be regarded as two implicitly given constraints over the variables, because the
two equations define relations in X1 x X9 and X9 x X3, respectively. The CSP has two
solutions:

X1=0,X2=0,X3=0and X; =1,X9=2,X3=4

A CSP does not necessarily have a solution. If we add a new constraint X1+ X5 > X3
to the latter CSP, we obtain the CSP shown in Figure 4.1.! This CSP is unsolvable.
Although every individual constraint can be satisfied with a properly chosen value pair
or triple, all the constraints at the same time cannot be satisfied. This shows that locally

consistent value sets do not necessarily lead to a global solution of the overall problem.

2*X1=X2
X2* X2=X3
X1+X2>X3

X3
Figure 4.1: Constraint network hypergraph representation

X2

'"Rounded boxes denote hyperedges.

4.2. CSP SOLUTION 35

Digital gates, e.g. a NAND gate can be also modelled with constraints. A 2-input
NAND gate defines a relation between three variables, two of them corresponding to gate
inputs, one corresponding to the gate output. In fact, this is the modelling technique on
which Tilly’s CONTEST ATPG system (Section 3.2.5 [25]) is based, although it defines
one constraint for the gates of the fault-free and faulty simulations.

Using {0, 1} logic, the problem space consists of 8 tuples and contains all possible
value combinations. Since the NAND gate output is a function of the input signals, only
the following four them are consistent: 001, 011, 101, 110 (the third value in a tuple
corresponds to the output).

4.2 CSP solution

Since discrete CSPs have finite state spaces, the solution can be found by exhaustive
search. The question is therefore not whether the CSP can be solved but how this can be
done efficiently. As the CSPs derived from practical problems (including ATPG) often
have huge state spaces, it is essential that the solution (or one of the solutions) be found

quickly.

4.2.1 Backtracking

In order to find an existing solution, a, CSP solver algorithm must proceed in a systematic
(often called deterministic) way through the state space. In the CSP literature the
backtracking search technique is universally used to guarantee the systematic feature
due to its limited space complexity. The approach presented in this work is also based
on backtracking.

Backtracking is conditional searching. Its basic steps are assigning some values to
some variables (decision), then looking for a solution under the assumption the assigned
values make part of the solution. If the resulting subproblem turns out to be unsolv-
able under this assumption, the assumption, disapproved by the subsequent search, is
withdrawn, and other assignment is tried. This principle can be applied in a recursive
way for the resulting subproblem. Decisions are also called forward steps, while decision
withdrawals are called backward steps or contradiction resolutions.

In Dechter’s definition [53] a decision is an assignment to a single variable. In this

case the backtracking algorithm proceeds as follows:

Forward(z1,...,z;)
if i = n then exit with current assignment
Ci+1 + ComputeCandidates(z1,...,2;, X;11)
if Ci11 # 0 then
Zi+1 < first element in Cj4q

remove z;y1 from Cjqq

36 CHAPTER 4. CONSTRAINT-BASED MODELLING

Forward(z1,...,%;, Zit1)
else
Backward(z1,...,2;)
Backward(z1,...,z;)

if 7 = 0 then exit. No solution exists.
if Ci 3’é 0 then
x; < first element in Cj

remove z; from C;

Forward(z1,...,z;)
else
Backward(zi,...,Z;—1)

The ComputeCandidates function selects all values for an X; variable that are
consistent with previously assigned values. Backtracking is started with ¢ = 0 and a
Forward() call.

4.2.2 The decision tree

The operation of backtracking can be easily illustrated by the decision tree (DT) nota-
tion.

The full decision tree (FDT) is a tree graph which describes the order in which the
state space is built up. The arcs of the tree represent decisions. When two nodes are
related as parent and child, then the child represents the result of a decision made in
the parent state which transfers the system in a more determined state. The root node
is the initial, entirely undetermined state, while the leaves stand for final states where
every variable is assigned. The leaves where the assigned values satisfy all constraints
are the solutions of the CSP. Note that the structure of the FDT is highly algorithm-
specific, depending on the nature and order of decisions. The set of the leaves of the
FDT is always the problem space of the CSP while their number is always []|D;|, the
production of the domain cardinalities.

Since backtracking is depth-first search, the backtracking algorithm traverses the
nodes in depth-first order. When it visits a node, it checks whether the currently deter-
mined variables are locally consistent or inconsistent. In the former case, it is either a
FDT leaf (i.e. a CSP solution) or a new node creation (a forward step) follows. Other-
wise, backtracking goes back to the parent node (a backward step) by means of retracting
the decision the arc represents, because it is impossible to obtain consistent settings by
the restriction of already inconsistent settings.

Since inconsistencies are frequently detected before backtracking would reach the
FDT leaves, only a part of the FDT is traversed by the search algorithm. We call this

part the decision tree (DT). The number of nodes in the DT, i.e. the number of traversed

4.3. EXISTING CSP SOLVING METHODS 37

o
. ‘é‘oe@g’é‘@@‘é

Figure 4.2: Exemplary decision tree

nodes in the FDT, is one of the indicators of the algorithm efficiency. Since most of the
time needed by a backtracking algorithm is consumed by exhausting subtrees where no
solution exists, the traversed DT number is a good platform-independent measure for

algorithm efficiency.

Example

Consider the following CSP: D; = {0,1,2,3}; D, = {1,2,3}
X1 +Xo=14 X1 =2xXo+1,

and assume that we want to find all solutions. A dumb backtracking algorithm that
simply assigns values and checks for consistency only if all the variables of a constraint
are assigned would proceed in the node order of Figure 4.2, i.e. it would traverse the
entire FDT for finding the only goal node 14. A more sophisticated algorithm which
notices that an even value for X; cannot satisfy the second constraint would visit only
nodes 0, 1, 5, 6, 7, 8, 9, 13, 14, 15, 16, a significantly smaller DT.

The brute force search method can be also regarded as an extreme sort of backtrack-
ing. Here a decision consists in assigning values to all variables simultaneously, and
checking whether or not the assigned tuple is a solution. If the tuple is inconsistent,
then the assignment is retracted and another one is selected. In this case, the deci-
sion tree consists of only one level, and the expected number of the traversed nodes is
extremely high. This obviously very inefficient method calls our attention to the fact
that the balance of the decision tree is very important. A large extent of restrictions
during one decision can cause the decision tree to swell unnecessarily, which eliminates
the opportunity of detecting inconsistencies early, without traversing large subtrees. On
the other hand, too little restrictions increase the number of internal nodes with respect

to the number of leaves, which makes the expected number of traversed nodes grow.

4.3 Existing CSP solving methods

The field of efficient constraint solving has already a wide literature. In the following, we
give a short summary on the existing ideas that can decrease the average time demand
of ”dumb” backtracking. Unfortunately, most of these techniques have been elaborated

and analysed for binary CSPs where constraints are defined over at most two variables.

38 CHAPTER 4. CONSTRAINT-BASED MODELLING

However, a few techniques can be adapted for more complex constraint networks, at the

cost that involved data structures become more complex as well.

4.3.1 CSP preprocessing techniques

Constraint preprocessing or filtering aims at the better representation of the CSP, i.e. to
transform the CSP into an equivalent one which has smaller variable domains or more
appropriate constraint sets. We call here two constraint networks equivalent if they have
the same solution vectors.

Consistency algorithms try to exclude some values from the variable domains prior
to the solving procedure. Values (or value pairs) are deleted if they cause local incon-
sistency in adjacent binary constraints. Node consistency checking considers only unary
constraints. If some value of the constraint’s only variable does not satisfy the constraint,
then it is deleted from the domain. Mackworth [47] has introduced the concept of arc
consistency: a binary constraint C'(X;, X;) is arc-consistent if for every value z € D;
there is a value y € D; such that C(z,y). If a constraint is not arc-consistent, there
are superfluous values to delete from the domains of the variables. Montanari’s path
consistency algorithm [48] uses the following definition: A constraint path is defined as a
Xiyy -
Xi,, is path-consistent if for any value z € D;, and y € D, , there exists a value sequence
z1 € D;, ..., 2m—1 € D;,_, such that

Cioil (ZE, Zl), Cilig (zl, 2’2), ceny and Cim—lim (zm_l, y).
Verbally, a path-consistent value pair in D;, x D; should be allowed by every existing

path in the binary constraint graph. A path of length m through variables X;

0

constraint path between X;, and X;, . If a pair is not path-consistent, the value pair
should be prohibited and this information be recorded for the search, e.g. by inserting
new constraints into the CSP.

In [50] polynomial algorithms for achieving arc and path consistency have been exam-
ined. It has been shown that the time complexity of obtaining arc and path consistency
is O(cd®) and O(n3d®), respectively, where n and ¢ and denotes the number of variables
and of binary constraints, while d stands for the cardinality of the domains (assuming

equal domain sizes).

4.3.2 Forward schemes

Forward schemes try to optimise variable selection or value selection.

Freuder provided a variable ordering by static CSP preprocessing [51] and gave suf-
ficient conditions for the search to be backtrack-free. He has shown that arc-consistent
trees and path-consistent tree-like structures are easy (backtrack-free) CSPs. Dechter
and Pearl identified larger classes of easy problems [52]. Still in the area of easy CSPs,
Dechter presented the cycle-cutset decomposition method [53], which makes early loop-
cutting variable instantiations so that the resulting constraint graph remains a set of

trees. The cutset-phase finds cutsets as if it were a separate backtracking, and in ev-

4.3. EXISTING CSP SOLVING METHODS 39

ery leaf of this upper layer the efficient tree-solving algorithm is started until a global
solution is found.

Look-ahead algorithms [54, 55, 56] avoid the assignment of values that could cause
inconsistency in the future. Partial looking ahead methods make sure that every variable
to assign in the future has at least one value consistent with already assigned variables.
Full looking ahead algorithms also check that these future variables have values compat-
ible with each other, but the additional overhead is significant. Forward checking is a
kind of partial looking ahead method with remembering already done consistency checks
by means of special variable-value table structures. Backchecking, on the other hand,
remembers already detected inconsistencies. It makes fewer consistency checks than for-
ward checking, at the cost that it makes more backtrack steps. Gaschnig’s backmarking
algorithm [57, 58] is backchecking with an additional feature. If the algorithm tries to
assign again a value to variable v after a backtrack of v, it checks value consistencies
only against those variables that may have been changed after the first visit.

Haralick et al. compared these methods on the benchmark of the n-queen problem
and random CSPs [59]. He found that after the traditional backtracking, which performs
the worst, backchecking, full looking ahead, partial looking ahead, backmarking, and

forward checking follow in the order of increasing efficiency.

4.3.3 Backward schemes

Backward schemes control what to do in dead-end situations in order to minimise sub-

sequent tree search.

Backjumping

Backjumping [60, 61] aims at going backward several levels in the DT when backtrack
follows, instead of going back to the most recent node in the tree, thus skipping possibly
large FDT subtrees without the risk of losing solutions. The backjump target level can
be determined by exploiting topological properties of the constraint network. If there is
no consistent value available at the assignment of variable v, the backjump target must
be one of the variables adjacent to v in the constraint graph. To avoid losing solutions,
the most recently assigned of these neighbours is selected for the new assignment, and
all decisions made after the assignment of this target are withdrawn.

Backjump target calculation requires the maintenance of a list TLIST of possible
targets, a global variable. In the following code, P(X;) is the set of variables that

precede X; in the variable ordering and are adjacent to X; through a constraint.

BackjumpTarget(X;)
if X; is the first variable in the ordering then

exit. No solution exists.

40 CHAPTER 4. CONSTRAINT-BASED MODELLING

TLIST < TLIST U P(X;)
if TLIST = () then
exit. No solution exists.
X ¢ the largest indexed variable in TLIST
TLIST :=TLIST \ X;

return j

It should be emphasised that only in dead-end situations is the backjump target the
most recently assigned neighbour. When a backjump is immediately followed by another

backjump, the candidate list (TLIST) may include other variables as well.

Learning

In CSP context, learning means transforming some recorded information into explicit
constraints. When we attempt to assign a value to X; and recognise that there is no
compatible value for it (a dead-end situation), it is obvious that the already assigned
tuple X; = z1, ..., X;—1 = x;—1 is inconsistent and no solution will incorporate this
tuple. We call this tuple a conflict set. We could add a constraint over the first 7 — 1
variables that excludes the conflict set to prevent it from reoccurring. However, there is
no point in doing that, because backtracking will never reassign the conflict set. On the
other hand, if the conflict set contains a smaller conflict set that disallows every value of
X;, it may be worth recording the smaller set as an explicit constraint, because it might
reoccur later.

The task is therefore finding subsets of the original conflict sets that are conflict sets
themselves. Obtaining smaller sets by excluding irrelevant variable-value pairs consti-
tutes shallow learning. A pair X; = xz; (j < 1) is said to be irrelevant with respect to X
if it is consistent with every value of X;. (Note that we are still discussing binary CSPs.)
Deep learning consists in identifying minimal conflict sets [62], such sets that contain no
conflict subsets. Obtaining all minimal conflict sets is usually quite a time-consuming
procedure, may cause severe space complexity problems, and there is no guarantee that
the added constraint will not slow down the backtracking procedure. It is therefore usual
to limit the search for minimal conflict sets in terms of constraint number, constraint
size, and required time. Dechter gives a comparison of the performance of various types

of learning techniques [53].

4.4 Constraint-based ATPG modelling in CONTEST

We present Tilly’s CONTEST ATPG tool [25] in details so that existing gate-level
constraint-based ATPG techniques can be identified.

4.4. CONSTRAINT-BASED ATPG MODELLING IN CONTEST 41

4.4.1 ATPG problem representation in CONTEST

The constraint network is constructed the following way from the ATPG problem:

e (SP variables represent circuit signals. Since ATPG is a composite simulation of
the fault-free and faulty behaviours, each variable has a domain D; = {0,1, D, D},
as described in Section 3.2.2.

e The test requirements are expressed by confinements in the initial domain of the

variables:

— The faulted variable is set to {D} or {D}. (CONTEST uses the single stuck-at
fault model.)

— The output where the discrepancy is expected is confined to the domain
{D,D}.

— The domain of the variables that can be influenced by the fault is the full set
{0,1,D,D}.

— The domain of the variables that cannot be influenced by the fault is limited
to {0,1}.

— Irrelevant variables, i.e. those not in the coverage cone of the selected output,

are removed from the network along with the constraints defined over them.

e Each gate is represented by a constraint. A constraint is internally represented
with a so-called Dynamic Binary Constraint Network (DBCN). A DBCN generates
the locally consistent tuples by a DBCN interpreter. The main advantage of using
DBCN is that it requires less space even for 3-4 input gates than truth-table based
descriptions. The constraint representing the gate that drives the fault site is

modified somewhat.

The variable assignment zcsp in the CSP is transformed into a bit vector in the

following way:

1. Disregard the values of the variables that do not correspond to an input pin. Let

the resulting vector be zsarpg = {z1,...,2,} (n is the input number).

2. If zarpg, = D (1 <i < n) then z; + 1. If zarpg, = D then x; + 0. These

cases can only happen when an input signal is stuck-at.

T AaTPG 18 a test vector if zogp is a CSP solution.

42 CHAPTER 4. CONSTRAINT-BASED MODELLING

o time (sec) fault coverage (%)
circuit backtracking backjumping | backtracking backjumping
c432 2258 470 90.81 99.23
c499 14371 97 53.73 98.94
c880 142 18 99.77 100
c1355 50987 2207 24.95 97.7
c1908 58432 1826 53.28 60.3
c2670 57325 5989 60.3 85.1
c3540 72541 20318 35 81.5
cb315 73208 8548 76.3 93.14
c6288 54221 44469 62.27 67.18
c7552 121239 19338 47.28 86.34

Table 4.1: CONTEST results

4.4.2 CSP solving in CONTEST

CONTEST has a dedicated built-in CSP solver. The decision engine of CONTEST
differs from ”conventional” backtracking (Section 4.2.1) in the sense that all variables
of a gate constraint are assigned simultaneously during a decision. The gates that are
candidates for decision selection are placed on the hesitation queue, a queue on which
forward heuristics operate.

CONTEST extensively uses implication (Section 3.2.3). The multiple-valued domain
of the variables has a maximal power to express value exclusions made by the implication
procedure. Since 16 actual domains exist for 4 values (0,1,D,D), the implication part of
CONTEST resembles to the 16-valued logic of Hegediis [21], but the gates are described
more briefly.

Dead-end situations are resolved by a contradiction resolution algorithm which is
based on the principles of backjumping (Section 4.3.3). Since the original backjumping
algorithm assumes single variable assignments during decisions, value dependencies are
maintained by more complex data structures.

The performance of the CONTEST CSP solver has been evaluated on the standard
gate-level ISCAS benchmarks (Appendix A, [11]) using a SUN-10 workstation. Table 4.1
shows the performance figures of CONTEST.

Chapter 5

ATPG modelling in BudaTest

This chapter describes the constraint-based ATPG modelling technique of the BudaT-
est architectural tool. As constraint-based ATPG modelling already exists at the gate
level (Section 4.4), I will underline the new concepts that solve problems arising at the
architectural level. The source of these problems can be one of the following:

e The large domain of data signals and the high-level component description makes

traditional variable and constraint representation very inefficient.

e The architectural description, a CAD tool output, contains such elements that
do not appear at the gate level. Such problems include wide signals, hierarchical

descriptions, wiring of half-words to components, and fault modelling issues.

Since BudaTest is intended to operate at the architectural level (Section 2.2.3), it
accepts a circuit description conforming to that style as input. The input language is
the structural subset of the IEEE standard VHDL [10].}

5.1 The constraint network

5.1.1 Variable representation

We define two constraint variables for each signal appearing in the architectural descrip-
tion. Both variables have the same domain, equivalent to the type range of the signal.
The variables represent the signal’s value in the fault-free and faulty simulation.

This style is contrary to gate-level signal modelling, which handles together the two
signals (see the meaning of the 0, 1, D, and D values in Section 3.2.2). However, joint
handling would involve a quadratic domain size, which is prohibitively large at the
architectural level.

In addition, bookkeeping of what values are actually permitted from a domain re-

quires also prohibitively large space. For instance, to store the actual domain of a 16-bit

'BudaTest contains an ISCAS parser too.

44 CHAPTER 5. ATPG MODELLING IN BUDATEST

integer would require 2'¢ bits. Although variable storage is not a crucial problem in cur-
rent environments, the saving/restoring operations with these values would slow down

backtracking.

5.1.2 Constraint representation

In gate-level ATPG tools the small number of consistent tuples allows for the table-
based enumeration of component functions. This method, however, is deficient again at
the high level. The large width of data signals immediately leads to immense storage
complexity even at the description of a simple arithmetic or auxiliary unit. For example,
a 2-to-1 multiplexer operating on 8-bit integer numbers has 2'7 different ways to set the
inputs, and a table describing the constraint would contain so many rows.

For this reason, while admitting that enumeration is an efficient technique wherever
the small number of tuples permits its use, we must provide an alternative way if we
want to move forward high-level complex components. The consistent value sets of the
2-to-1 multiplexer component could be briefly described with a simple rule: When the
selector input holds value 0, the output value should equal input 1, otherwise it should
equal input 2.

This implicit description defines the same consistent tuple set as the enumeration-
based one, but the consistent tuples cannot be immediately read out of it. Instead, a
function that uses the implicit definition for the consistency check must be provided.

This is easily implemented in the BudaTest object-oriented library-based ATPG system.

5.1.3 CSP-based ATPG problem formulation

The TPG problem poses the following question: Considering a given physical fault,
which circuit input vector produces different responses during the fault-free and faulty
operation of the circuit?

The answer for this question can be determined by means of fault simulation. During
that, the operation of two circuits (the fault-free and that containing the target fault)
is simulated together for various input vectors.

The verbal requirements against a test vector are easily formulated as a CSP. The

constraint network representing the TPG problem is built up the following way:

e Two variables are defined for each circuit signal as described in Section 5.1.1.
The variables representing the fault-free simulation are fault-free domain variables

while the remaining ones are faulty-domain variables.

e The constraints of the network are derived from the circuit functionality, the fault

effect, and the observability condition:

1. The majority of constraints are derived from the circuit components. Two

identical constraints are generated from one component: the first is defined

5.1. THE CONSTRAINT NETWORK 45

over the fault-free domain variables that represent the signals the component
is connected to while the second is defined over the equivalent faulty-domain
variables. These constraints restrict value combinations so that they represent

the component functionality, like in the case of the multiplexer example above.

2. The presence of the target fault is a local perturbation of the faulty domain
in the constraint network. The kind of modification depends on the exact
fault type, and will be discussed in details later in Section 5.6. As a frequent
case, a stuck-at fault of a single-bit signal is represented by the duplication
of the faulty-domain variable and the addition of a unary constraint which

permits the duplicated instance to take only the stuck-at value.

3. The fault effect observability prescribes that at least one output signal take
discrepant values in the two domains. If there is only one circuit output, this
condition is represented by an inequality constraint between the two output
variables. Otherwise, a somewhat more complex constraint is defined over all

outputs variables.

4. The input variables must take the same values in the two domains. This is

expressed by equality constraints.

Figure 5.1 depicts a small exemplary circuit with the ATPG-purpose constraint net-
work derived from it. The constraints C7, Cs, and C3 are derived from the components
of the circuit. They are present in two instances, defined over the faulty-free domain
and faulty domain variables. The unary constraint fault, permitting only the stuck-at
value, is responsible for implementing the effect of the stuck-at fault. The inequality
constraint # assures that the effect of the fault is observable on the output.

The following theorem proves the equivalence of the ATPG problem and the obtained

constraint satisfaction problem:

Theorem 1 If a value assignment is a CSP solution, then the values of the fault-free

domain input variables are a test pattern for the target fault. Every test pattern is part
of a CSP solution.

Proof: Both statements follow from the way the CSP is constructed. Assume that
zcogsp is a CSP solution. Let za7pc be the vector consisting of the fault-free domain
input variable values. Since the constraints of Type 1 define exactly one output value for
every input combination, they describe what functions the components implement. Thus
the values of the fault-free and faulty domain variables (except the auxiliary variable
inserted into the faulty domain) describe what values the signals of the fault-free and
faulty circuits take when simulated without and with the presence of the fault. The
fault perturbation constraint assures that the faulty domain variables are influenced by
the fault value the same way as the faulty simulation is influenced by the injected fault.
The observability constraint assures that at least one output is discrepant, so T a7 p¢g is

indeed a test pattern.

46 CHAPTER 5. ATPG MODELLING IN BUDATEST

—
—
-
e
— -
—
A
\
\
— \
\
\
fault

Figure 5.1: ATPG problem represented as a constraint network

Now consider a test pattern zarpg. Simulate the behaviour of the circuit for this
pattern and assign the obtained values to the CSP variables. We show that all constraints

are satisfied:

¢ Component-derived constraints are satisfied because of their construction method.

e The fault effect constraint is satisfied because a fault activated by x 47pg produces

exactly the value allowed by the unary fault constraint.

e The observability constraint is satisfied otherwise z47pg could not be a test pat-

tern. O

The proof can be obtained in a similar way for fault classes other than the single

stuck-at one (see Section 5.6).

5.2 Advantages of the constraint technique

The constraint technique has been chosen to be the ATPG platform on account of several

advantageous features.

e Constraints are a very generic descriptive tool with a high modelling power. In
the constraint-based ATPG representation, everything is modelled as a constraint.
All test requirements can be handled in a uniform way, therefore the constraint

solver algorithm does not have to distinguish between irregular cases. The circuit

5.2. ADVANTAGES OF THE CONSTRAINT TECHNIQUE 47

architecture, the fault effect and additional test conditions constitute together a

uniform constraint network.

e In addition to uniformity, constraints are an open representation; new concepts
and ideas are as easily added to the ATPG system as they can represented by
constraints, which is usually the case.

e Constraint satisfaction problems and constraint solving algorithms already have
a wide literature. Unfortunately, a large part of the literature is elaborated and
analysed for binary CSPs (Section 4.1). For this reason and for the particularity
of the ATPG problem, this dissertation proposes an ATPG-specific constraint
solving method, which still includes many general constraint solving ideas and
accelerating techniques. For example, such techniques known from the literature
as implication, domain filtering, and assignment heuristics can be employed with

adequately chosen data structures.

e One of the important characteristics of constraints is their symmetry. In contrast
to a model with output signals given as a function of input signals, constraint
have related variables without a predefined direction of data flow. During con-
straint solving the values are frequently assigned earlier to internal variables than
to inputs. Symmetric constraints facilitate backward implication (data propaga-
tion against the data flow direction of the original circuit) due to their symmetric

representation (Figure 5.2).

7 s .
u — O
B O

R(res, opl, op2)

res :=opl - op2;
res := opl - op2;
direction of data flow: —» opl := res + op2;
op2 :=opl-res;

order of value assignments: ANY

Figure 5.2: Symmetric constraints

e Since every kind of the requirements can be defined by uniform constraints, a non-
central, heuristics-controlled solving algorithm can be used. In such an algorithm,
there is no prescribed order for decision types, as opposed to many gate-level
algorithms, including D and PODEM (Section 3.2). Instead, more freedom is left
for cost-function based heuristics which can control the search according to the

circuit characteristics.

48 CHAPTER 5. ATPG MODELLING IN BUDATEST

5.3 Hierarchical support

Besides efficiency, support for state-of-the-art design methodologies has a priority in
this work. Since many levels of hierarchy are introduced during the design process (see
Section 2.2), the compliance with the hierarchical design methodology is essential in the
ATPG methodology. This is achieved by support for hierarchical circuit modelling and
hierarchical fault modelling (Section 3.3.2).

5.3.1 Hierarchical options in BudaTest

The constraint library of BudaTest contains the rule-based (high-level) arithmetic de-
scriptions of the utilised components. As argued in Section 3.3.2, the exact represen-
tation of component faults necessitates an alternative, low-level representation of these

components. BudaTest provides several options for the low-level representation:

1. structural flattening. As the examined component can be replaced with a set
of interconnected subcomponents, the faulty-domain constraint representing the
component can be replaced with a smaller constraint network reflecting the internal
structure of the component (Figure 5.3). Obviously, the solution of the extended
CSP will be a test vector for the top-level circuit. The replacement can be done
in accordance with the recursive technique shown in Figure 3.5 in order to have

minimal parts represented at the low level.

—
—
-
——
R
4
. ;
!
!
— !
!
— /
!
!
fault

Figure 5.3: Network flattening

2. BudaTest can be interfaced with low-level ATPG tools. The tool calculates test
for a component, then BudaTest expands the generated component test to the top

level of the hierarchy using the high-level constraints. The tool should be able to

5.3. HIERARCHICAL SUPPORT 49

generate consecutive patterns in case contradictions occur during the high-level

expansion.?

3. component test description files (CTDF). Hierarchical testing can be simplified in
a library-based approach like BudaTest. After the ATPG for a given component is
accomplished, the test patterns are stored as a CTDF in the library together with
the high-level constraint representation. If the library element is used within a
higher-level architecture, either the high level constraint equivalent or the CTDF
is used, depending on whether the target fault is located outside or inside the
given component. In the latter case, the high-level ATPG task becomes again test
expansion. The advantage of this method is the reuse of already computed test
patterns. It is also advantageous because only one level of abstraction is used at

a time.

5.3.2 Problems in CTDF expansion

A CTDF-based ATPG procedure may face space complexity problems. A component
test expansion can fail at the top level, because test patterns can not be necessarily
propagated to the component inputs and the component output is not necessarily ob-
servable at the top level. To avoid the risk of losing solutions, the only possibility is that
the CTDF contains all test patterns of a component. In contrast to other algorithms or
to BudaTest without the CTDF extension, the storage requirement of the technique is
not linear, because it must store every component test pattern along with the expected
and faulty-domain results in the CTDF. Don’t care outputs must be also determined,
because the may affect the propagation of the component output discrepancy. These
requirements may inflate the size of a CTDF, which grows rapidly if we move up the
hierarchy. Nevertheless, when the CTDF size becomes intolerable, it is still possible to
fall back to the structural flattening technique.

Another trade-off is to limit the size of a CTDF. This involves the risk of CSP
solution loss, so we must be aware of the fact that the fault coverage of the methodology
will decrease. Table 5.1 reports the circuit-level coverage when the CTDF size is limited
to a single test line per fault. The benchmark set is described in Appendix A.

The flattening technique involves no solution losing, therefore the corresponding
column contains the ratio of detectable faults. The column of top CTDF coverage
indicates the coverage when top-level components are replaced with their limited CTDF.
The decrease in fault coverage is usually 5-10%. In the circuits of more than two levels
of hierarchy, the cost of using 1-line limited CTDF is about the same each level. We
note that having a higher limit for CTDFs would bring much better results.

2If the utilised component tool is BudaTest itself executed on a low-level constraint network, we
obtain the case of structural flattening, where decisions are made within the examined component first.

50 CHAPTER 5. ATPG MODELLING IN BUDATEST

o levels of | flattened | top CTDF | total CTDF
cireuit hierarchy | coverage | coverage coverage
adder3 2 93.02% 87.07% 87.07%
adderb 2 95.77% 92.18% 92.18%
adder6 2 96.47% 93.47% 93.47%
adder7 2 96.96% 94.40% 94.40%
adder8 2 97.34% 95.09% 95.09%

multiplier 2x2 3 72.34% 67.71% 60.56%
multiplier 4x4 3 80.00% 62.21% 58.69%

Table 5.1: Effect of limited CTDF size on the fault coverage

5.4 Control-dominated and sequential circuits

5.4.1 Control-dominated circuits

We call a circuit control-dominated if its architectural description contains many control
signals between the data part and the control part (see Section 2.2.3 for the definition of
these terms).

BudaTest poses no restrictions on the number of such signals. Since the value of
control signals can be usually used very well in rule-based component descriptions (Sec-
tion 5.1.2), the existence of such signals involves no problems in modelling. The token
propagation technique of BudaTest (Section 6.4) makes extensive use of the control
signals.

On the other hand, we expect that the control part component, responsible for pro-
cessing the Boolean result signals and generating other control signals, can be imple-
mented with a few (1-2 dozens) logic gates. The reason of this limitation is that the
control part component, different for each design, cannot be part of the constraint li-
brary. It is inserted into the constraint network as a number of synthesized logic gates

which process control input as it were simple data.

5.4.2 Sequential modelling

At the gate-level a sequential circuit is defined as one containing combinational logic, a

feedback loop and a register array (Section 3.2.4).

Feedback sequentiality

BudaTest supports sequentiality by the iterative array model. As discussed in Sec-
tion 3.2.4, using this technique multiplies the number of variables and therefore inflates
the state space of the problem. Searching for a one frame longer test sequence implies

the creation of a new instance of every variable which multiplies the state space by its

5.5. ARRAY SELECTION 51

domain. Thus the iterative array representation is mainly applicable for data-dominated
circuits where most of the values in every time frame indeed matter. For circuits where
many faults require several clock cycle long state transition sequences but the data val-
ues are unimportant this method is impractical because of the extensive but needless
data computations. In [44] a promising ATPG approach for such circuits is presented,
which deals with explicit state transitions and not with the time frame concept.

Note, however, that the type-uninterpreted colouring technique of BudaTest (de-
scribed in Section 6.4) is aimed at the elimination of redundant data variables. This
technique efficiently reduces the overhead when BudaTest is executed for moderately
sequential circuits, as the experiments performed on sequential benchmarks show.

The expected test length is an important question, because this determines the size
of the CSP. In the BudaTest system frame incrementation is used to determine this
length. First a one time frame-long sequence — a vector — is sought. In case of failure,
the expected length is increased before every new search one by one. This is repeated
until a test is found or the frame limit is exceeded. As a result, the shortest possible
test sequence is found. The first searches may turn out to be superfluous if there is
a length minimum for the test sequence, but they are still worth trying, because the
wasted time is only a fragment of the time consumption of the next run. In addition,
the time required for the last run is reduced, because there is no point in expecting
discrepant responses on the outputs belonging to the previous frames.

BudaTest assumes the same circuit restrictions as described in Section 3.2.4, with
one difference. Registers do not need to have reset (though having reset is more efficient),

because the unknown logic used in the colouring technique can handle this case.

Component sequentiality

In hierarchical testing the use of sequential components is a new source for sequentiality.
When such a component is unrolled by the iterative array technique, the constraint model
of the component would not be a relation over the variables, because its evaluation would
depend on its actual state.

BudaTest supports sequential components only if the state registers appear explicitly
in the architecture. This can be regarded as flattening the component in the fault-free
domain as well, but the output logic and the next-state logic of the component can be
modelled at the high level.

5.5 Array selection

Accessing selected elements of arrays is a fundamental feature in hardware descriptions.
For instance, vectorsignal(index) selects an individual element of an array, while

vectorsignal(lowbound to highbound) refers to a part of a signal.® It is common

3These are called indezed and sliced ezpressions in VHDL.

52 CHAPTER 5. ATPG MODELLING IN BUDATEST

in hardware architecture that, for example, a half word is used by some component,
and the other half goes to the parity checker. However, in traditional CSPs the term of
referencing constraint variables partially is undefined.

In gate-level ATPG approaches this problem does not occur, because bit arrays are
treated as sets of separate bits and components are wired to bit-level signals. The most
essential feature of architectural ATPG is, however, the joint handling of bits of wide
data variables, which involves complex arithmetic operation over abstract variables.
Constraints defined over partial variables should be permitted.

The CSP derived by BudaTest from a VHDL description supports this feature. We
obtain the desired modelling effect by the duplication of the referenced variable and the
introduction of a new constraint. The original variable has the length and domain of
the referenced array signal, while the domain of the added one corresponds to the array
selection. The mask data structure (Section 6.2.2) permits efficient data propagation
between the two variables. Of course, since the selected array part is not a separate

physical signal, faults are not injected into it.

5.6 Fault model

Fault modelling is a crucial issue in every ATPG technique. There is no point in inventing
ultra-fast algorithms if what the generated test detects is not the effect of realistic
physical faults. It must be therefore shown that the employed constraint modelling
methodology is capable of modelling the effect of physical faults.

Since constraints are a highly generic modelling tool, the fault model is as appropriate
as relevant faults can be represented by constraints. In the following part, individual
fault classes will be investigated and shown to be representable by constraints.

The coverage of the gate-level stuck-at and short model (Section 3.2.1) will be proven.
The stuck-at fault model is commonly acknowledged by the test community to suffi-

ciently represent the effect of physical faults. Short faults are used less frequently.

Theorem 2 All gate-level stuck-at faults of a synthesized architectural circuit can be

represented by the introduced constraint modelling technique and hierarchical modelling.

Proof: We deal first with top-level interconnections. The constraint representation
of stuck-at faults affecting single-bit signals is really straightforward. The fault effect
is simply injected into the network by the duplication of the faulty-domain variable
representing the faulty signal. The constraint representing the component which drives
that signal will be defined over the new variable instead of the original one. In addition,
a unary constraint which permits only the stuck-at value is connected to the original
variable, as shown in Figure 5.1.

If a single bit of a wide signal is stuck, a binary constraint is inserted instead of the

unary one (Figure 5.4). The constraint enforces equality on the unaffected bit positions,

5.6. FAULT MODEL 53

and permits only the stuck-at value at the fault position of the original variable.*

Figure 5.4: Representation of stuck-at faults of wide signals

The exact modelling of component stuck-at faults is performed in the hierarchical
way as described in Section 5.3. Structural flattening will reach sooner or later the level
where the gate-level signal appears as an explicit interconnection. We can perform here
the described constraint network perturbation.’ O

The modelling of short faults requires the duplication of the faulty-domain variables
of the two shorted signals. Then, a constraint defined over the four variables is inserted
into the network. This constraint prevents the duplicated variables to take different
values, and the common value is determined by the values of the original pair. The
allowed value settings are listed in Table 5.2. This table applies for wired-and short

faults. Values should be negated to represent a wired-or short fault.

original original | duplicated | duplicated
variable 1 | variable 2 | variable 1 | variable 2 comment
1 1 1 1 inactive fault

0 0 0 0 inactive fault
1 0 0 0 active fault
0 1 0 0

active fault

Table 5.2: A constraint representing a wired-and short fault

Short faults must not cause feedback and introduce new states in the faulty be-
haviour. This is a common expectation in every ATPG algorithm. Due to the large
number of signal pairs in a circuit, tests for short faults are worth computing only if the
fault is relatively likely to occur.

Though the discussed fault classes are considered the most standard ones, the con-
straint technique allows for the inclusion of many other fault types. For example, for

ATPG program debugging purposes a hypothetical fault type, full-width stuck at abstract

4Note that different constraints are needed for different data encoding styles.
SWe note that in sequential circuits the implicit clock and reset signals do not appear in the constraint

model.

54 CHAPTER 5. ATPG MODELLING IN BUDATEST

value, was also widely used.
Constraint modelling is not limited to single faults. Since there is no fault-dependent
part of the ATPG algorithm (a general CSP solver), as many perturbations can be made

in the faulty domain as desired.

Chapter 6

CSP solution

This chapter describes what techniques are used for obtaining the solution of the con-
straint satisfaction problem. We discuss here which existing ATPG and CSP solving
methods can be exploited in the high-level constraint-based ATPG. Our most impor-
tant goal is to highlight acceleration possibilities inherent in the high-level representation
of the circuits.

We describe the constraint solving engine of the BudaTest ATPG tool, developed by
the author under the FUTEG (Functional Test Generation and Diagnosis) project [2].
The following goals motivated the development of BudaTest:

o to exploit existing CSP solving ideas. 1 wish to exploit existing generic CSP accel-
eration techniques described in Section 4. Since most of the general CSP solving
algorithms have been developed for binary CSPs and analysed almost exclusively
in binary CSP environments, the described ideas had to be tailored to non-binary
CSPs where constraints are defined over an arbitrary number of variables (see
Section 5.1.3). In some cases, this means only a somewhat more complex data
structure behind the same algorithm. In other cases, an entirely different algo-

rithm was developed which considers the same principles.

o to exploit that the CSP is a special ATPG-dedicated one. I would like to show that
a solving engine that exploits acceleration opportunities can perform much better

than general CSP solving methods.

o to exploit the features of the high-level circuit description. I would like to show that
if we exploit high-level information inherent in architectural circuit descriptions, we
can efficiently moderate the time consumption required by exponentially growing

state spaces.

6.1 Backtracking in BudaTest

As every constraint solver, BudaTest uses backtracking (Section 4.2.1) to obtain the CSP

solution. Of course, the basic backtracking algorithm is enhanced with various features

56 CHAPTER 6. CSP SOLUTION

borrowed from the literature or developed by exploiting architectural characteristics.

A decision or a forward step is an assignment of a value to a constraint variable.
After each decision, an implication step is performed to reveal implied effects of the
decision.

A backward step is the withdrawal of a previous decision, including the restoration of
the previous constraint network state. Backjumping (Section 4.3.3) is used in BudaTest
so that many backward steps can be performed at the same time without losing CSP

solutions.

6.2 Forward techniques

6.2.1 Implication

Implication means exploring the implied equivalent restrictions of a decision. Some
form of implication has been incorporated in every ATPG algorithm due to the reduced
resulting problem subspace (Section 3.2.3).

We will use the following terms in the discussion of implication:

e The actual domain D 4; of a variable X; are those that are regarded by the CSP
solver as possible elements of a solution. To represent actual domain, the algorithm

needs to have some dedicated data structure.

e A variable X; is bound when its actual domain consists of one value z;. Otherwise,

the variable is unbound.

A decision is an assignment of a value z; to a variable X;. After that, the constraints
defined over X; are called to perform a consistency check. Let Xp = {Xp,,...,XpB,}
denote the set of bound variables of the constraint (X; € Xp), and Xy = {Xv,,..., Xy, }
the set of still unbound ones. A traditional consistency would examine whether there
exist values in the actual domain of every unbound variable so that they are related with
the already assigned tuple. Formally, the consistency check of constraint C' passes if

Vi (1<i<l): Fzy,€Day;: C(TBys- B ZUL -+ TUss-- LU,)-

The decision on X; is approved if all the constraints defined over X; pass the consis-
tency check. Otherwise, it is a contradiction and a backward step follows.

Implication not only checks consistencies but tries to exclude values from the actual
domain of the adjacent variables. If there is a variable value for which there exists no
related assignment to the other unbound variables then the value is excluded from the

domain:

Vi (1<i<l): 3wy, € Day;: Vay, € Day;, (1<j<li#j):

ﬂC(.’I}Bl,...,:CBk,LEUl,...,.’EUi,...,iEUl)) :>DAU,- <_DAUZ- \iUUi

6.2. FORWARD TECHNIQUES o7

When an adjacent variable is restricted, the implied restriction is part of the decision.
Since the restricted variable may participate in other constraints, they are also called
to perform implication. The implication procedure is therefore an iterative sequence of
primitive implication steps performed by the constraints. The constraints waiting for
implication are added to an implication queue. As implication means always a restriction
in some actual domain, the queue will sooner or later become empty and implication
terminates.

The practical implementation of implication is a different question. Two aspects

must be taken into account:

1. The representation of actual domains requires data structure support. The next

section deals with this issue.

2. It would be very impractical to organise deeply nested loops in order to explore
all value exclusion possibilities. Implication must be balanced to prevent the time

required by implication from impairing the gain of value exclusions.

The implication functions of the BudaTest constraint library elements are written in

the following way:

1. When all the variables of the constraint are bound, it performs a consistency check.

This itself is sufficient to obtain a correct CSP solution.

2. If there are unbound variables, the function tries to extend the effect of the activat-
ing decision. Of course, inconsistencies can be detected in this phase as well. The
effect propagation is not performed by the enumeration of all possible value com-
binations of unbound variables (as described above), but by means of rule-based
functions. The implication primitive is therefore not a fixed procedure executed on
different tables (as done in gate-level algorithms), but a different function varying

with the modelled architectural-level components (a virtual C++ function).

A 2-to-1 multiplexer constraint, for example, can examine if the selector variable is
assigned. If it is, then the constraint becomes an equivalence between the selected
input and the output. If no, we may try to apply other rules (e.g. check if the
output cannot match one of the inputs)), or leave the function thinking that the

expected gain is not worth the extra check.

Note that the result of the backtracking search does not depend on this implicative
behaviour, but its performance does. In the extreme hypothetical case of having
every constraint with empty propagation body we simply fall back to normal back-

tracking when consistency is verified after the variables are set.

As the presented multiplexer example shows, the efforts made to perform implication

is the choice of the developer of the constraint library. Gathering all information implied

58 CHAPTER 6. CSP SOLUTION

by a decision would be as time-consuming as the backtracking procedure itself. In fact,
a failing search in a decision subtree can be regarded as a perfect implication detecting
the inconsistency, performed only in the subtree node.

Employing implication involves some modification in the original backtracking pro-
gram. We must keep a record of all variable restrictions for each DT level, used for
the restoration of previous search states in case backward steps are needed. (Without
implication, this is a single change each DT level.)

Implication, since it performs significant reduction in the remaining subspace after
every decision, is a very powerful enhancement. It is easy to show that it covers entirely
partial looking ahead (Section 4.3.2) when applied in binary CSPs.

6.2.2 Interval, masked and set logic

Many constraint solvers and ATPG algorithms are equipped with some sort of impli-
cation procedure. Since the goal of implication is always the exclusion of values from
the domain of certain variables, a suitable data structure supporting exclusion must be
chosen. In gate-level ATPG approaches set structures are used to represent still per-
mitted values. The multiple-valued variable domains of Tilly’s CONTEST (Section 4.4,
[25]) or the 16-valued logic of [21] can be also regarded as sets. The results of these
approaches show that the gain consisting in efficient exclusion is worth the cost of extra
administration.

Architectural circuit modelling includes abstract components and signals of abstract
data types (Section 2.2.3). Abstract variables (integers, long vectors) are usually dif-
ficult to handle efficiently for the CSP solver, because their large domain inhibits the
enumeration of still possible values or other kinds of set structures. A variable repre-
senting a 16-bit integer signal would consume 8 Kilobytes of memory as a set structure,
which is prohibitively much for saving/restoring.

The BudaTest approach still wants to make certain forms of data exclusions available.
A not entirely unrestricted variable may have bound, interval or mask values. Sets are

also permitted for signals of moderate domains.

e bound. A specific value is assigned to the variable, either as a result of a decision
or that implications make it bound. This structure is denoted as B, where v is

the specific value.

e interval. The permitted values of a variable are expressed by a lower and a higher
bound [/, h]. The structure denoted as Ij;. Since all the variables have discrete
domains, there exists a full ordering over the domain values, thus defining intervals

is meaningful.

This interval representation has been introduced on account of the frequent use
of arithmetic units performing addition and subtraction in the data part, and

especially of integer comparisons in expression evaluations (see Section 2.2.3). The

6.2. FORWARD TECHNIQUES 59

implication procedures of these constraints can be written in a way that the implied

restrictions can be expressed in terms of intervals.

e mask. The permitted values of a bit array are expressed in terms of assigned and
unassigned bit positions. A mask structure is denoted as M,,,,, where v is a specific

value and m is a bit mask showing which positions are important.

The mask logic comes again from the features of digital circuits in practical use:
component wiring refers very often to array parts only instead of full arrays (Sec-
tion 5.5). The auxiliary constraints that handle these cases and the injected faults

are capable of mask data propagation.

o set. This data structure is the more general, since all the above described structures
could be described by extreme set structures. A set structure is denoted as Sg

where the S index specifies the set of elements.

For reasons discussed above, a set it is very expensive to use, therefore it should be
applied for variables of moderate domain sizes where every excluded value really
matters, i.e. especially for control-related variables. Using set structure matches

very well the colouring topological processing technique described in Section 6.4.

During implication the constraint functions assign values expressed by these struc-
tures to the variables. The new values of the variables are determined by the intersection
of their actual values with the recently assigned one. The intersection operator (®) is
defined according to Table 6.1.! The operation assigns the intersection result to the
variable or indicates contradiction if the consistency condition is not met. (If the result
is a one-long interval, a one-element set or an entirely important vector, it is changed
to bound). The result depends on whether or not the set structure is allowed for the
given variable. If yes, intersection is always commutative. If no, the variable retains its
original value in the indicated cases. Though we do not perform the restriction, this will
not lead to false solutions, because implication does not have to effectuate the implied
changes, just improves efficiency in doing that.

The advantage of the used logic is the following:

e bound, interval and mask structures require at most twice the variable word size.

e The intersection between these structures can be performed very quickly, using

only a few instructions.

e The result can be very often represented with this logic, and no harm happens if

not.

14, A,V denote bit-wise xor, and, or operations.

60 CHAPTER 6. CSP SOLUTION

operands set allowed result consistent commutative
B, ® By, B, v =w yes
By, ® Ity B, [<v<h yes
By @ Mym B, (v+w)Am =0 yes
B, ®Sg B, vES yes
I, ® Ly, Inaa(ljymin(hk) ™az(l,j) < min(h, k) yes
I, ® My, yes ST Mom I N My, # 0 yes
Iy, ® My, no Iy yes no
I, ® Sg yes Stuns Ip,NS#0 yes
I, ®Ss no Iip yes no
My, ® Ity no Mym yes no
Mym @ My Muam)yvan)mvn (v +w) AmAn=0 yes
Mym ® Ss yes Sn,,,NS MynNS #0 yes
My, ® Sg no Mym, yes no
Ss¢® St Ssar SﬂT;é@ yes

Table 6.1: Intersection results

6.3 Backjumping

BudaTest implements backward steps by backjumping (see Section 4.3.3). Note that
the practical implementation of dependency recording is much more complex in an
implication-equipped CSP solver than in the traditional consistency-check based bi-
nary ones. When we use implication, assigned variables, restricted variables and checked
variables are three different things, so the procedure using a simple parent list is deficient
at backjumping target calculation.

The backjumping algorithm is implemented in BudaTest as follows.

e The list of restrictions (the variable assignment and those made during the sub-
sequent implication) are recorded for every level of the DT. Such a list is created
in every forward step and destroyed in every backward step. This is a necessity
without regard to backjumping, because it serves for the restoration of previous

states as well.

o A list of accessed variables is also maintained for every level of the DT. In forward
steps a new access list is created. It is not destroyed, however, in backward steps,
but it is merged with the access list of the previous DT level because a subtree
search can be regarded as an implication in the subtree root node, and therefore

the accessed variables belong to the dependencies of the subtree root decision.

e At backjump target calculation, the access list of the current level is checked

against the change lists of the previous levels, starting from the most recent one,

6.4. TYPE-UNINTERPRETED SEARCH 61

and the level of the first hit is the backjump target. The backjump is then per-
formed as a sequence of backward steps without making new decisions in the

intermediate levels.

6.4 Type-uninterpreted search

This section presents an acceleration technique that does not fall into the conventional
categories of CSP solving techniques. The colouring technique improves the represen-
tation of the CSP, because it eliminates a significant part of the variables. The idea is
highly specific to ATPG-derived CSPs, and can be best performed in high-level descrip-
tions.

Since an ATPG-based CSP is basically a fault simulation, the variables derived from
circuit signals and the constraints derived from circuit components are present in two
instances (Section 5.1.3), one belonging to the fault-free and the other belonging to the
faulty domain. Considering a solution, we can easily realise that only those pairs may
take different values that are affected by the injected faults.

If we knew in advance which are the signals that can be affected by the injected
fault, we could inject an equality constraint between the two instances in order to make
implication more powerful, or even better, not duplicate the variable at all. In addition,
in multiple-output circuits there can be some signals that have no impact on the output
where the discrepancy appears in the solution. If we knew in advance which these signals

are, the generation of even the first variable instance could be avoided.

6.4.1 Node classification

Gate-level ATPG approaches (Section 3.2) include this idea. In some algorithms like D
and PODEM, the nature of the algorithm guarantees that the discrepant D and D values
cannot appear on signals before the fault location. Other approaches (Sziray’s composite
justification and Tilly’'s CONTEST) perform a dedicated preprocessing algorithm that
reveals which signals have impact on the output and which may carry D or D values.
Although at the gate level duplicated variables are handled as a single variable of the
{0,1,D,D} domain, permitting Ds and Ds expresses the same concept.

Sziray’s node classification algorithm (interpreted in the constraint environment)

proceeds as follows:

1. The signals in the coverage cone of the selected output are classified as relevant,
because only they can have an impact on the output. They will be generated in
one or two instances in the CSP. The rest is labelled as don’t care, and no copies

of them are generated.

2. In the set of relevant signals, those that depend on the value of the faulty signal are

classified as potentially active, and are generated in two copies in the CSP, since the

62 CHAPTER 6. CSP SOLUTION

signal may take different values in the different domains during fault simulation.
The remainder of the set is classified as inactive, and the corresponding variables
are generated in a single instance in the CSP, since their values will not differ

during fault simulation.

In programming terms, this algorithm can be implemented very easily by means of a
backward token propagation beginning at the output, followed by a forward propagation

beginning at the fault location (Figure 6.1).

circuit fault location
0O— O o - o
30 I selected \../'Ox\"\.dp \:‘Kf\‘o’o
inputs, — No——o—Youtput T Ne o9 — '/ Moo
02.0>C4>) N 02.>0<;> N 02. > \.O>O N
b. relevant-don’t care c. active-inactive
a. unlabelled separation separation

Figure 6.1: Phases of Sziray’s node classification

The method is indeed a static preprocessing of the problem as long as there is only
one output. For multiple-output circuits, we select one of the outputs where we expect
the fault effect in the form of a discrepancy, which is a decision that can be wrong as well.
The technique is applicable for sequential circuits too, but forward propagation must
be performed from every time frame instance of the faulty signal. Thus the portion of
variables to be duplicated will be much higher, resulting in a relatively small acceleration
(Figure 6.2).

D don't care
D inactive
. active

Za
output

time frame 3

time frame 0 time frame 1 time frame 2

Figure 6.2: Large proportion of duplicated variables

6.4.2 Colouring goals

The idea of type-uninterpreted search or colouring has the same goals as Sziray’s algo-

rithm. However, it creates smaller CSPs for the same ATPG problem efficiently, because

6.4. TYPE-UNINTERPRETED SEARCH 63

it exploits the structural features of the circuit as well as component characteristics. The
information required for this is available in compact form only in behavioural or hierar-
chical descriptions, but not in long gate-level netlist that are used by traditional ATPG
algorithms.

The type-uninterpreted search phase exploits the fact that in high-level descriptions
there are relatively few signals with large domains. Instead of assigning values from the
domains of the signals to CSP variables, it assigns tokens (colours) from a small set
to the signals in order to reveal which signals are relevant and which signals will carry
different values during the fault simulation. Once a solution is found in the colouring

domain, it has a chance to be a typed solution, a solution of the original CSP (Figure 6.3).

colouring domain
R " R sub D _

| u D=discrepant

R=relevant

R | = irrelevant

typed domain
(fault-free+faulty)

=—m = Wide data type

____ =narrow data type

Figure 6.3: The colouring and the typed domains

Assigning tokens instead of typed values also appears in Csertdn’s approach [42] for
early testability analysis. He uses tokens for the exploration of non-deterministic fault
effects.

The type-uninterpreted phase of the BudaTest tool is no more a static preprocessing
technique but the first part of the search. If a suitable solution is found in the type-
uninterpreted domain, a second CSP with the identified number of variables and with
the full variable domains is generated, and a typed search follows for the concrete test
patterns. Since the second phase can fail, the high-level part of the search must be
able to backtrack and generate systematically type-uninterpreted solutions. In other
words, the two-phase algorithm proceeds as a single backtracking, but in some internal
nodes of the decision tree (in the solutions of the high-level search), the entire problem

representation is changed and a different CSP is generated (Figure 6.4).

6.4.3 Token semantics

The colour set appearing in the BudaTest algorithm is rather large. The variables of

the type-uninterpreted domain can hold only a few of them. The semantics of these

64

CHAPTER 6. CSP SOLUTION

colouring phase
small search cost

typed CSP creation

type-interpreted phase
small state space

Figure 6.4: Two phases of CSP solving

colours directly correspond to the token set of the node classification algorithm, as they

describe the relevance of the signal for the given fault.

UNASSIGNED. In the course of the colouring process all unassigned variables are

assigned a colour from the following set.

UNKNOWN. This colour means that the value of the signal is irrelevant, therefore
the typed CSP, generated at the boundary of the untyped and typed phases, will

not even contain this variable.

IDENTICAL. Due to the location of the variable or to the nature of the first
decisions, this variable will have the same value in the fault-free and faulty typed
domains, so it will suffice to generate it in a single instance, representing both

domains.

DISCREPANT. The variable may take different values in the typed domains, there-

fore it is generated in two instances.

Although the type-uninterpreted phase generally does not aim at assigning typed

values to variables, in some distinguished cases (described at the discussion of colouring

constraints), some additional information is recorded with the token. Examples for this

include the following:

a typed value if the token is IDENTICAL. This value will be set in the beginning
of the typed search. Such values are not present for general data signals, only for

those which are considered as control signals in some sense.

a Boolean flag indicating whether a DISCREPANT pair will surely carry or only
may carry different values (under the condition the CSP is solvable, i.e. a test
exists). This latter flag is useful for subsequent heuristics, since settling down

values for surely discrepant pairs should have smaller priority.

an index mask indicating the bit positions where a DISCREPANT array signal is
surely identical. The number of fault propagation paths can be reduced using this

index when only a part of an array variable is used by a constraint.

6.4. TYPE-UNINTERPRETED SEARCH 65

6.4.4 Constraints in the colouring domain

The constraints derived from the components define a subset of the possible token com-
binations, like during the typed search. Due to the small type-uninterpreted domains
table-based representation of the constraints is possible, which makes the colouring im-
plication functions of the constraints rather simple and similar. In fact, the BudaTest
tool uses the same colour checking function for every kind of constraint, although this
function is highly customisable for the individual constraint. In addition, thanks to the
object-oriented implementation of the entire system, the check function can be owver-
loaded, so special components may have their individual accelerated consistency check
and colour propagation function.

By default, each constraint has a table that describes its data propagation behaviour.
These tables may contain more colours than listed in Section 6.4.3. The new tokens are
not assigned to variables, but have an impact on what tokens are assigned. (This means
that the colouring intersection operator is not commutative at all.)

A 2-to-1 multiplexer operating on any data type, for example, uses the following
table:

‘ output ‘ selector ‘ input 1 ‘ input 2 ‘
UNKNOWN UNKNOWN (input) UNKNOWN (input) | UNKNOWN (input)
EQUAL (to var 3) | IDENTICAL (typed 0) | EQUAL (to var 1) | UNKNOWN (input)
EQUAL (to var 4) | IDENTICAL (typed 1) | UNKNOWN (input) | EQUAL (to var 1)
DISCREPANT DISCREPANT KNOWN KNOWN

Table 6.2: 2-to-1 multiplexer colour set

Every row contains 4 colours, one for each variable of the constraint. The first row
is not specific to the multiplexer behaviour, because it is present in every component-
derived constraint. It describes the case when the constraint is totally irrelevant, which
can happen when the constraint has no impact on an output, or when its output is
blocked and not used at all. The difference between UNKNOWN and UNKNOWN
(input) is explained later (Section 6.4.7).

The remaining rows specify the data and discrepancy propagation features of the
multiplexer, which primarily depends on the value of the selector input. Rows 2 and 3
describe that the condition of setting the value of the selector to 0 or 1, respectively,
involves the equivalence of the tokens of the output variable and the selected variable
whatever they be, including that of the additional information. In addition, the other
variable can take any token, its propagation is blocked in the direction of the multiplexer.
Hence, through multiplexers it is easy to establish a chain of unchanged values to prop-
agate, or to block undesired propagation. To include EQUAL entries in colour tables
wherever possible is very important because they allow the propagation of additional

information, which means further significant reduction in the resulting typed CSP. If

66 CHAPTER 6. CSP SOLUTION

we fail to propagate additional information due to the data transformation behaviour of
the constraints, this auxiliary field is cleared.

The last row covers the case when we do not manage to force identical values on the
selector in the two typed domains. KNOWN values mean that they allow IDENTICAL
or DISCREPANT values on the values, but cause contradiction if they are already
UNKNOWN.

There is a pre-search phase when the constraints can configure the behaviour of the
variable assignment engine by setting certain static variable fields. This constraint, for
instance, will explicitly prohibit the assignment of the IDENTICAL (without typed)
value to its selector variable, because it has no corresponding row for it. This way it
recognises that this variable is a distinguished control variable, the typed value of which
is interesting even in the type-uninterpreted phase.

Another informative example for the constraint colour tables is that of a multiplier

component that operates on wide integers:

product ‘ factor 1 ‘ factor 2 ‘

UNKNOWN

UNKNOWN (input)

UNKNOWN (input)

IDENTICAL (typed 0)

IDENTICAL (typed 0)

UNKNOWN (input)

IDENTICAL (typed 0)

UNKNOWN (input)

IDENTICAL (typed 0)

EQUAL (to var 3)

IDENTICAL (typed 1)

EQUAL (to var 1)

EQUAL (to var 2)

EQUAL (to var 1)

IDENTICAL (typed 1)

IDENTICAL IDENTICAL IDENTICAL
DISCREPANT DISCREPANT KNOWN
DISCREPANT KNOWN DISCREPANT

Table 6.3: Multiplier colour set

Here row 1 is the general irrelevant case. Rows 2-5 represent ”interesting” distin-
guished cases. Rows 2 and 3 describe the propagation blocking case by setting one of
the input variables to 0. Rows 4 and 5, on the other hand, specify how to propagate
tokens and assure they do not change. The remaining rows are general again and do not
exploit special features of the multiplier, but are necessary for covering all cases. In the
pre-search CSP solver configuration phase this constraint tells the solver that it may be
worth assigning typed 0 and 1 IDENTICAL tokens to the corresponding variables, but
does not enforce this. This demonstrates how control features of even the most generic

data variables are recognised.

6.4.5 Correctness of the colouring search

After the introduction of the basic features of the type-uninterpreted search, we show
that employing this search phase affects only the efficiency but not the results of the
ATPG algorithm:

6.4. TYPE-UNINTERPRETED SEARCH 67

Theorem 3 The CSP solver equipped with the colouring phase finds the same solutions

as the one without colouring.

Proof: We define the concept of generalised restrictions in a backtracking algorithm.
A generalised restriction is some additional confinement in the composite domain of
some variables, expressed in any form. The inclusion of dynamic constraints which are
valid only below a certain decision tree level is also a generalised restriction.? Dynamic
constraint replacement under a certain DT level is a generalised restriction too, as long
as Cpew C Colg-

Consider a ”conventional” CSP solver which starts with the duplicated network
shown in Section 5.1.3. We show that a colouring-equipped solution procedure is equiv-
alent to backtracking in the conventional network.

As already discussed, backtracking is conditional search. A decision means that a
solution is searched under the assumed condition. There is no risk of solution loss if
the union of local decision candidates in a given DT node give back the unrestricted
backtracking state the node represents.

The assignment of DISCREPANT colours represents no restrictions. IDENTICAL
assignments mean the insertion of a dynamic equivalence constraint in the conventional
network between the fault-free and faulty-domain variables. UNKNOWN assignments
involve a constraint replacement in the conventional network with a more strict one:
those row groups are deleted from the relation where the value of the UNKNOWN vari-
able is relevant. Additional information assignments can be also expressed by restrictions
in the conventional solution.

The union of the conditions the assigned tokens represent is the lack of restriction.
Colouring implication effectuates only implied restrictions but does not create new ones,

thus colouring is a normal backtracking in the conventional network. O

6.4.6 A colouring example

The gain of this token assignment phase can be well illustrated by showing how large the
typed CSP can be with and without the untyped phase. Assume that we generate test for
the GCD circuit (Appendix A), and that we expect a test length of 4 time frames. The
”?dumb” CSP, generated the way as described in Section 5.1.3 with the application of the
iterative model (Section 3.2.4), will contain two copies of every variable and constraint
shown in Figure 6.5, one participating in the fault-free, the other in the faulty circuit
simulation. Node classification brings improvement, but still too many variables are
active, because the first fault location is too close to the inputs (Figure 6.6).3 In addition,
all multiplexer inputs are considered relevant, even if it is always sure that relevant data

come from the inputs in the first frame, and the effect of the fault in the first time frame

In fact, the constraint literature often uses the concept of dynamic constraints. For example, the

learnt information recorded by a solver (see learning in Section 4.3.3) is expressed by dynamic constraints.
3 Inactive variables are shown with dashed line, while don’t care ones are not shown at all.

68

is blocked. The next figure (Figure 6.7) shows how small the resulting typed CSP can be
at the boundary of the two phases if we use colouring. Since the initial decisions of this
phase select certain propagation paths and regard the others as irrelevant, the majority
of variables are eliminated, and there are many variables present in one instance even
if they could (but don’t) depend on the value of a faulty signal. However, there are
possibly many typed CSPs similar to that shown in Figure 6.7, because possibly wrong
decisions precede the creation of the typed CSP. The decisions that lead to this typed

CSP are also given in the picture.

MEHM

N

CHAPTER 6. CSP SOLUTION

N

AL

fhi H fhi H
i

]
ke

]
t

-

1

Figure 6.6: GCD in 4 frames, some variables eliminated by node classification

6.4.7 The handling of fan-outs, indexing and slicing

The difference between UNKNOWN and UNKNOWN (input) is whether they are forcing
or not. An UNKNOWN table entry is always associated with component outputs, and

6.4. TYPE-UNINTERPRETED SEARCH 69

-4

Figure 6.7: GCD in 4 frames, many variables eliminated by colouring

assigns an UNKNOWN token to the variable (or initiates backtrack if it is set otherwise).
An UNKNOWN (input) can be consistent with other colours if the variable value may
still be relevant, i.e. when it is a fan-out variable and it is input to several constraints.
The effect of UNKNOWN (input) is illustrated in Figure 6.8. ID and DIS denote already
assigned IDENTICAL and DISCREPANT colours. Assume that the colouring engine
has just assigned an IDENTICAL (typed 1) colour to the variable selector. This will call
the implication function of the multiplexer, which, in turn, will assign DISCREPANT to
the multiplexer output and UNKNOWN (input) to the non-selected input. The latter
assignment results in inconsistency in case a, because the BudaTest program avoids by
force the unnecessary creation of irrelevant variables. In case b the value of the fan-out
variable may still be required to satisfy other constraints, so the actual colouring can be

part of a type-uninterpreted solution.

ID ID
ID ID
ID ID
| |
DIS DIS
selector selector
a. inconsistent b. consistent

Figure 6.8: The effect of UNKNOWN (input)

Section 5.5 discusses the modelling technique of partial array referencing while Sec-
tion 6.2.2 describes how they are related to the mask logic during the typed solution.

The colouring phase also uses masks that specify in which position an abstract integer

70 CHAPTER 6. CSP SOLUTION

or vector carries discrepant values. This mask is important when a discrepant variable
is referenced, because an element or a part of an array is not necessarily discrepant.
For example, in Figure 6.9/a it is known that only the stuck-at position of the array
carries discrepant values in the two simulations. This information is processed by the
constraints that represent indexes and slices, so the DISCREPANT region will not grow
unnecessarily (Figure 6.9/b). It is always preferable to propagate auxiliary information
through IDENTICAL mechanisms so that the engine always know where the variables

are exactly discrepant.

2
/ ID
/4 // (|
ﬁ 2 DIS (0010)
[//
[/ | O
fault site DIS(10)
a, fault site b, constraint representation
with colours

Figure 6.9: Auxiliary information used in D-propagation

6.5 Result evaluation

Since it is impossible to use analytical models of typical circuits, the efficiency of incorpo-
rated mechanisms will be examined by means of benchmarking, a common comparison
technique in the ATPG area. The used benchmark set is described in Appendix A. In
spite that the BudaTest approach is primarily targeted at architectural descriptions, the
set includes the ISCAS’85 gate-level benchmark circuits [11] so that the evaluation of
the "general” capabilities of the tool be possible. In accordance with the goals of this
work, the emphasis will be placed on the architectural circuits of the set.

Unfortunately, no widely used high-level ATPG-purpose benchmark set exists, but
FUTEG [2] participants have defined such a set. The set includes high-level synthesis
(Section 2.2.2) benchmarks and high-level equivalents of some ATPG benchmarks, and
represents various aspects and cases of digital circuit design: combinational or sequential,
data- or control-dominated, simple or highly reconvergent etc.

The measurement report tables contain the following columns:

e ratio of detectable faults (when known): Some of the benchmark circuits, especially
sequential ones, have a large proportion of undetectable faults. Small ratios are

interesting because the time consumption shows how fast the algorithm traverses

6.5. RESULT EVALUATION 71

the entire decision tree (Section 4.2.2). Moreover, when no CSP solution exists,

forward heuristics have no impact on the time demand.

e time-out: To obtain reasonable response times, a time-out value is used frequently.
The employed time-out value limits the number of decision tree nodes to valuex2'6,

then abandons the search.

e time consumption: The time demand of the CSP engine (including overheads
like VHDL parsing, CSP creation etc) in seconds. The experiments have been
performed on a 333 MHz PC-compatible.

e total coverage: The ratio of faults for which BudaTest has found a test. With no
timeout it must equal the detectable coverage, otherwise it can be lower due to

the possibly abandoned test generation phases.

No heuristics have been applied during the measurements, because the use of heuris-
tic variable or value ordering could interfere with the evaluation of the pure effect of the
presented techniques, which is the main purpose of this work. In every forward step, a
variable adjacent to an already assigned variable was randomly selected. The order of
assigned values is fixed and ascending. Because of the randomness of the results, average
execution figures is presented.

In spite that BudaTest gave very good results for architectural benchmarks and
fairly good results comparable to other tools for gate-level benchmarks, the lack of
heuristic decision control also means that there are significant reserves, yet unexploited,
in BudaTest.

6.5.1 Evaluation of implication-related techniques

Table 6.4 contains performance figures measured by the BudaTest tool with and without
using implication and the presented mask and interval logic. The experiments show that
implication is an absolute necessity, since the ATPG with implication switched off is
acceptable only for the very low-end of the benchmark set.

Regarding the effect of the utilised data structures, we examine first the gate-level
benchmark results (full adder, ISCAS set). As there is no opportunity to assign intervals
and masks at the gate level, it is not surprising that the performance of the different
representations were about the same. In consequence, the results are similar to CON-
TEST’s unaccelerated results (Section 4.4), though a little worse due to the overhead of
the high-level functions.

There are, however, differences in the benchmark set characterised by wide data
and high-level data manipulation. The 4-bit adder is an interesting gate-level example
where only the constraints responsible for the distribution of the input vector and for
the collection of the output vector propagate masks, but this already brings significant

improvement. For arithmetics-dominated circuits (gcd, bubble sort) the gain of interval

72 CHAPTER 6. CSP SOLUTION
o detect. | time | no implication only bound mask and interval
cireuit ratio out time coverage time coverage time coverage
full adder 100.00% 12.33 100.00% 0.05 100.00% 0.05 100.00%
c432 5 2930 88.77% | 3011 86.43%
c499 3 16646 50.08% | 15889 51.88%
c880 3 210 99.31% 214 99.25%
c2670 1 62012 55.43% | 59902 56.11%
4-bit adder (flat) | 100.00% 1 17.77 100.00% 3.21 100.00%
4-bit adder 100.00% 1 11.73 75.48% | 28.09 100.00% 8.22 100.00%
2-bit ged (3 fr) 64.06% 5 111.5 3.21% 0.3 64.06% 0.36 64.06%
2-bit ged (4 fr) 77.20% 20.57 77.2% | 14.66 77.20%
4-bit ged (3 fr) 66.34% 3.79 66.34% 3.04 66.34%
4-bit ged (4 fr) 97.11% 5 247.8 76.93% | 237.4 79.20%
8-bit ged (3 fr) 67.93% 10 2110 40.21% 1577 61.35%
2-bit bubble (3 fr) | 52.94% 2.98 52.94% 2.21 52.94%
2-bit bubble (4 fr) | 77.20% 1 46.49 61.02% | 37.83 68.38%
4-bit bubble (3 fr) | 54.38% 5 1147 45.35% | 695.5 54.38%
8-bit bubble (3 fr) | 55.33% 3 17122 17.19% | 9940 42.14%
2-bit multiplier 96.15% 8.87 96.15% 0.34 96.15% 0.08 96.15%
3-bit multiplier 94.82% 3 52.62 517% | 43.75 32.75% | 30.78 94.82%
4-bit multiplier 94.11% 10 711 46.02% 442 73.71%

Table 6.4: Implication performance for different techniques

logic is about 20-30% in time and 5-35% in coverage, and the difference in the coverage
increases as the word length grows. In the circuits where partial array access is used, the
acceleration due to the mask representation is also significant, and the increased fault

coverage of the proposed representation is even more important.*

6.5.2 Backjumping performance

The performance results for backjumping are reported in Table 6.5. The results suggest
that backjumping efficiency is related to the structural complexity of the circuits. In
gate-level circuits the gain due to backjumping is indeed significant, although our results
are still somewhat worse than those measured by CONTEST (Section 4.4). At the

architectural level, however, components tend to be much fewer, and backjumping does

4An interesting experiment could be the use of various kinds of set logic not only in implication but
in decisions as well. As the example of the brute force CSP solver algorithm shows, an abruptly swelling
decision tree may entail too many dead-ends, because inconsistencies cannot be detected in internal DT
nodes. When applied for variables of large domains, set (or interval or mask decisions could prevent the
CSP solver from making too detailed decisions. Such a decision would not necessarily assign a specific
value to a variable, but would merely restrict its domain. Of course, the strategy of these decisions could

make up the subject of an entire dissertation.

6.5. RESULT EVALUATION 73

o detect. | time | without backjumping | with backjumping
cireuit ratio out time coverage | time coverage

full adder 100.00% 0.05 100.00% | 0.05 100.00%
c432 5 2930 88.77% | 1028 96.34%

c499 3 16646 50.08% 290 97.20%

c880 3 210 99.31% 14 100.00%

c1355 1 40711 21.32% | 3558 95.80%
c1908 1 52932 47.44% | 3100 90.20%
€2670 1 62012 55.43% | 5310 88.20%

4-bit adder 100.00% 8.22 100.00% | 7.14 100.00%
4-bit ged (3 fr) 66.34% 3.04 66.34% | 5.12 66.34%
4-bit ged (4 fr) 97.11% 5 237 79.20% 221 82.10%
8-bit ged (3 fr) 67.93% 10 1577 61.35% | 2045 55.70%
4-bit bubble (3 fr) | 54.38% 5 695 54.38% | 88.3 54.38%
8-bit bubble (3 fr) | 55.33% 3 9940 42.14% | 6622 45.10%
3-bit multiplier 94.82% 30.78 94.82% | 26.71 94.82%

Table 6.5: Backjumping performance

not bring orders of magnitude of improvement. There are even examples when the use
of backjumping slows down the search.

We note that architectural backjumping seems to be promising when used with
cutset-like heuristics (Section 4.3.2, [53]), because they create many independent decision
sites in the CSP.

6.5.3 Evaluation of the type-uninterpreted search technique

We claim that many small searches can be better than one big search. Why do we expect
better results with colouring?

Assume for simplicity’s sake that the CSP without colouring has N variables and
each variable has a uniform domain size d. The state space consists therefore of dV
elements. What happens if we increase the domain size? A new domain size of kd will
produce a state space of kVd" elements.

Now let us make the same calculation with colouring. Assume the we find ¢ colouring
solutions, and assume they all exclude Ng and create the typed CSP with n = N — Ng
variables. Thus, the state space of the combined phases will be cd™ elements large,
which grows less dramatically if we increase d. This shows that colouring is preferable
for high-level circuits containing wide data. In addition, this reasoning applies to the full
traversal of the DT (e.g. when no test exists) but not for a best-first goal node oriented

search. Since a colouring solution is more likely to lead to a typed solution than other

74 CHAPTER 6. CSP SOLUTION

typed decisions, we expect that it finds a test pattern sooner.
Table 6.6 provides comparative results on the time demand and fault coverage of the

CSP solver with node classification and colouring.’

| detect. | time | node classification colouring
cireutt ratio out | time coverage | time coverage
full adder | 100.00% 0.05 100.00% 0.21 100.00%
4-bit adder (flat) | 100.00% 1 3.21 100.00% | 452.5 77.19%
c432 5 2930 88.77% | 12321 23.64%
4-bit adder | 100% 8.22 100.00% 3.69 100.00%
8-bit adder | 100% 5 213 87.87% 264 89.39%
3-bit multiplier | 94.82% 30.78 94.82% 3.98 94.82%

4-bit multiplier | 94.11% 5 276 51.96% 94.9 92.15%

2-bit ged (5 fr) | 93.75% 5 56.71 87.50% | 72.34 93.75%

4-bit ged (5 fr) | 97.11% 5 560.8 73.07% | 15.86 97.11%
5

2991 60.11% 632 93.12%
52.94% 2.98 52.94% | 67.61 52.94%
54.38% 5 695.5 54.38% | 126.1 54.38%
67.93% 10 3430 43.10% 811 63.49%

4-bit bubble (3 fr
8-bit bubble (3 fr

)
(5 fr)

8-bit ged (5 fr)
2-bit bubble (3 fr)
(3 fr)

(3 fr)

Table 6.6: Effect of node classification and colouring

The results can be interpreted as follows. Related to node classification, the per-
formance of the two-phase search with colouring is significantly worse for the gate-level
benchmarks, and is significantly better for the high-level benchmark circuits. The ac-
celeration due to colouring correlates with the degree of abstraction.

This is exactly what we expected. Colouring slows down CSP solving in gate-level
benchmarks because variable domains do not become smaller (they even become larger),
there are no structured propagation paths to explore, and that repetitive CSP duplica-
tion/disposal involves much overhead.

The situation changes rapidly as we advance upward in the abstraction level, that is,
as control and data signals become separated, clusters of gates are specified as a single
component, and signals become increasingly wider. The examples of the bubble sort and
greatest common divisor circuits clearly show that the performance of the two methods is
comparable for small word lengths, but colouring brings much more improvement when
we increase the data width. This is due to the state space size of the type-uninterpreted
phase which remains constant even if the data width grows.

Because of the current trends in the scale and methodologies of circuit design (see

®Backjumping support was removed from the BudaTest version which was used to measure the
colouring efficiency, because it did not provide sufficiently good results for architectural circuits, and
because the continuous maintenance of variable lists made the program very error-prone.

6.5. RESULT EVALUATION 75

Section 2), I am convinced that the second group of the benchmark set represents today’s
practical ATPG environment. Although the NP-completeness and the overall exponen-
tiality of the ATPG problem is unquestionable, the size of circuits tackled successfully
by intelligent problem solvers can be still significantly larger than one could expect

considering simply the number of gates in a design.

Chapter 7
Manufacturing test on the wafer

Besides ATPG, the other time demanding procedure is the execution of precalculated
tests after manufacture in the VLSI industry. The current automatic test equipment

(ATE) based technology follows the procedure below:
1. If there are no more untested chips on the wafer, READY.
2. Position on the next untested chip.

3. Drive the chip input pins with the test patterns and measure the outputs produced
by the chip. Compare the results with the reference results, and classify the chip

as fault-free or faulty accordingly.
4. Go to Step 1.

Unlike the time needed for ATPG, the time consumption of this sequential test
execution is proportional to the number of produced chips.

A recent idea coming from the field of self-diagnosis [63] is to regard the chips on the
wafer as a single system, to compare the test results by comparators built in between
the chips, and to evaluate the syndrome downloaded from the comparators. If the total
number of faulty chips does not exceed an algorithm-dependent limit, then the diagnosis
algorithm correctly identifies the state of the ”components” of the system, i.e. the chips
themselves. This method would transform sequential testing into parallel and would
reduce the time required for test execution into its fragment. In addition, the costly
ATE could be avoided.

A major obstacle in the application of this method is its high sensitivity to the
manufacturing faults possibly occurring in the additional circuitry. A faulty comparator
could invalidate not only the classification of the immediately adjacent chips, but in
unlucky cases that of all the chips.

Our goal in this work is to implement a dedicated test technique that eliminates
the risk of test invalidation caused by the faulty diagnosis-purpose circuitry. We will
show that the technique tolerates multiple stuck-at faults of the comparator and of the

syndrome collection circuitry.

7.1. DIAGNOSIS TERMS AND WAFER-SCALE TESTING 7

7.1 Diagnosis terms and wafer-scale testing

System-level diagnosis, also called self-diagnosis, has been introduced by Preparata et
al. in 1967 [64]. In self-diagnosis a system, composed of several units connected by bi-
directional links, can be diagnosed using tests performed by the units themselves. Each

test involves two units, called the testing and the tested units, and proceeds as follows:

e the testing unit requests the tested unit to run a test;
e the tested unit returns a result to the testing unit;

e the testing unit compares the actual and the expected results, and generates a
binary test outcome. The outcome is 0 if the actual and the expected results

match (the test passes), 1 otherwise (the test fails).

The collection of the test results is called the syndrome.

The test results are not necessarily reliable, since testing units themselves may be
faulty. Different hypotheses upon the test outcome generated by faulty units lead to
different inwvalidation rules, and consequently to different diagnostic models. The most
widely used diagnostic model is the Preparata-Metze-Chien (PMC) model introduced
in [64], which assumes arbitrary test outcomes for tests performed by faulty units. The
invalidation rule of the PMC model is shown in Table 7.1.

testing unit | tested unit | test outcome ‘

fault-free fault-free 0

fault-free faulty 1
faulty fault-free Oor1
faulty faulty Oorl

Table 7.1: Invalidation rule in the PMC model

A less general diagnostic invalidation rule is the BGM model [65]. When this model
is valid, the faulty testing units cannot produce 0 outcomes.

Comparison models have also been introduced in the literature for systems composed
of identical units. In comparison models test results are gained from built-in comparators
which compare the outputs of adjacent units that run the same test. Again, different
assumptions on the behaviour of the faulty units and comparators lead to different
diagnostic models. In Malek’s model [66] the comparators are implicitly assumed to be
fault-free and the comparison outcome is 0 only if both the compared units are fault-
free. This can be considered as the comparison-based equivalent of the BGM model. The
model introduced by Chwa and Hakimi [67], which also assumes reliable comparators,
allows arbitrary comparison outcomes when both the compared units are faulty, like the

PMC model for bidirectional tests. In [68], Maeng and Malek proposed a modification

78 CHAPTER 7. MANUFACTURING TEST ON THE WAFER

of Malek’s model, in which comparisons are performed by the system units themselves:
if unit ¢ is adjacent to units j and k, then ¢ may be utilised to compare the outputs
of 7 and k. This requires the system units to be homogeneous and able to perform
comparisons, which condition is satisfied when the units are processors.

Rangajaran, Fussel and Malek [63] suggested that system level diagnosis may find
application in the testing of VLSI chips on the wafer during manufacture (wafer-scale
testing). In this case the main goal of the diagnosis is the identification of good integrated
circuits (ICs) within the wafer, which will be packaged, while the faulty circuits will be
discarded. This approach reduces the time needed to test the chips as well as the cost
of ATE-based testing (see Section 1.2.3).

If the nature of the manufactured chips is unrestricted, the comparison model is
the best choice for this application. In order to implement self-diagnosis on the wafer,
hardware support is necessary. First, interconnection links need to be introduced and
comparators be wired on each link. To keep the number of comparators relatively
small, the interconnection structure should be regular and the degree of nodes small.
Furthermore, hardware support is required to provide the test sequence for the chip
inputs and to collect the outcomes of the comparators. The latter task may be executed
by the probing unit, which reads the outputs of the comparators and transmits them to

a reliable external computer.

7.2 Evaluation of the syndrome

Once the external computer receives the syndrome, it executes the diagnosis algorithm.
The output of this algorithm is the diagnosis of the wafer, i.e. the classification of each
individual chip as fault-free or faulty. The correctness of the diagnosis depends on the
validity of the applied comparison model.

The algorithm is complete if every component is identified as fault-free or faulty, and
is correct if no faulty chip is diagnosed as fault-free and no fault-free chip is diagnosed
as faulty. It is known that a correct and complete diagnosis is granted only when the
number of faults in the system is fewer than the so-called diagnosability, which is bounded
above by the minimum degree of the nodes in the diagnostic structure [69]. Since in
practical applications like wafer-scale testing this is not true, some algorithms target only
completeness [70, 71, 72, 73], but may contain errors with low probability. Maestrini et
al. [74] aim at the proven correct diagnosis with a non-guaranteed completeness.

Although the fault-tolerant issues discussed here are not specific to any particular
diagnosis algorithm, we cite Maestrini’s algorithm (tailored to the Chwa-Hakimi com-
parison model) to give an example how the syndrome can be decoded. We call those
adjacent chips 0 (1)-connected whose built-in comparator shows that the test output

sequence equals (differs).

o First, surely faulty units are identified. This is performed by finding chains of 0-

7.3. IMPACT OF COMPARATOR FAULTS 79

connected chips where a 1-comparison exist between any two elements. The chips
in a chain are faulty, since they are all in the same state due to the 0-connections,
and this state cannot be fault-free due to the 1-connection (Figure 7.1). The

remaining chips are classified as zero chips.

Figure 7.1: Faulty chips

e Then, disjoint pairs of 1-connected zero chips are searched and labelled as dual
units. The goal of this step is to trade a faulty unit for an unknown one, as one of
them is surely faulty. This way more reliable assumptions can be made about the

number of faults in the remaining part.

e The remaining zero units are aggregated following 0-connections, and the largest
aggregate is selected as fault-free core (FFC). If several largest aggregates exist,
the FFC is the union of them.

o In the last step of the algorithm, the fault-free core is extended recursively, relying
on the test results made by the units in the FFC.

Apart from the validity of the diagnostic model, the correctness of every diagnosis
algorithms requires that the number of faulty components do not exceed a certain limit.
In the case of Maestrini’s algorithm, this limit is asserted by the algorithm itself based
on the cardinality of the sets composed during the steps of the procedure. His gen-
eral diagnostic algorithm, developed for toroidal grid structures and bidirectional (not
comparison-based) tests, has the favourable property that the fault limit is bounded from
below by the syndrome-independent bound, which is O(N 2/ 3), where N is the number
of the chips on the wafer [75].

7.3 Impact of comparator faults

Like the presented algorithm, comparison-based algorithms highly depend on the validity

of the following statements, which are consequences of the Chwa-Hakimi model [67]:
e Two (-connected chips are in the same state.
e Among two 1-connected chips there is a faulty chip.

Consequently, it leads to invalid diagnosis if the comparators, containing physical
faults, produce incorrect results. Table 7.2 describes how the Chwa-Hakimi model is

violated in the presence of comparator faults.

80 CHAPTER 7. MANUFACTURING TEST ON THE WAFER

chip 1 | chip 2 | comparator | comparison
case violated

state state state result

a good | good any 0 no

b good | good faulty 1 yes

c good | faulty any 1 no

d good | faulty faulty 0 yes
faulty | faulty any any no

Table 7.2: Violations of the Chwa-Hakimi model

Note that masked comparator faults, i.e. when faulty comparators produce model-
conform results, do not present a problem in the wafer-scale testing application, because
the comparators will never be used again after the diagnosis is performed. On the other
hand, active faults (cases b and d) may invalidate the diagnosis.

Case b is not critical in itself, because a correct diagnosis can still be obtained by
means of a certain degradation of the diagnosis algorithm. The degradation consists in
disregarding the second assumption about 1-connections, which prevents the algorithm
from falsely diagnosing a cycle of good units and one faulty comparator (e.g. in Figure 7.1
if the 1-connection is caused by a faulty comparator). Since there is no way to prove
that a unit is faulty without this assumption, the diagnosis result is a set of fault-free
chips and a set of suspicious chips.

Case d poses a much more serious problem. The correctness of every diagnosis algo-
rithm depends on the validity of the aggregation step, which is based on the assumption
about 0-connections. The possible occurrence of case d could entirely invalidate the
diagnosis, since an erroneous 0 comparison may lead to the aggregation of fault-free and

faulty parts.

7.4 Pre-diagnosis comparator test session

In this section a preliminary test session is proposed in order to detect the situation
described by case d. This session is different from the normal diagnostic test in the
sense that adjacent units are fed by different input values. We assume that a faulty
unit always produces the same response for the same input vector, even if the design is
sequential, and that arbitrary patterns can be propagated to the output of a fault-free
unit. These requirements can be fulfilled by a special wafer design shown in Section 7.7.

Our goal is to test the comparator between a fault-free and a possibly faulty unit
exhaustively. If both units are good, this can be carried out without any difficulty.
Faulty units, however, may fail to feed the comparator with the required test patterns,
thus the fault of a unit may mask the fault of the comparator.

We examine a single-bit slice of the comparison first. Figure 7.2 illustrates the

7.4. PRE-DIAGNOSIS COMPARATOR TEST SESSION 81

behaviour of the adjacent units during this session when every component is fault-free
(Fig. 7.2/a) and when one of the units, say B, and the comparator are perhaps faulty
(Fig. 7.2/b). The possibly faulty B produces an zyzy output sequence for the four test
vectors.

Table 7.3 shows the effect a faulty B unit may have on the comparator test. If B
does not alter the comparator test patterns (line 1), then the comparator will undergo
an exhaustive test. If B produces the same responses for ing and in; (lines 2 and 3),
then the combinational comparator will produce some aabb sequence but surely not the
expected 0110. Line 4 is, however, problematic, because the faulty unit B negates its
responses for ing and ini, and the faulty comparator might invert them again, thus
passing the test in spite of faults, which could violate the diagnostic model assumed
by the diagnosis algorithm. Fortunately, it can be easily seen that in most practical
single-bit comparator designs, e.g. in the one shown in Figure 7.3, no combination of

stuck-at faults produces such a behaviour.

0
1
1
0
0 cm 0 0 cm x
0 P 1 0 P y
1 A A 0 1 A A X
1 1 1 y
A B A B
in0 in0 in0 in0
in0 inl in0 inl
inl in0 inl in0
inl inl inl inl
a. fault-free case b. A fault-free, B and cmp

may be faulty

Figure 7.2: Comparator slice test session

‘ effect

full comparator test

no 0110 output sequence

no 0110 output sequence

el Ll = =]
olr|lo| |«

problematic

Table 7.3: Impact of the behaviour of B

Lemma 1 In the 1-bit comparator in Figure 7.3, the inverting behaviour of the com-

parator cannot occur for any multiplicity of gate-level stuck-at faults.

82 CHAPTER 7. MANUFACTURING TEST ON THE WAFER

sl
A

s2

Figure 7.3: A simple 1-bit comparator

Proof: Table 7.4 lists all stuck-at fault combinations and shows their corresponding
detection patterns.! Some fault combinations (deriving from don’t care entries) require
two input patterns to be detected. Although the faulty B may fail to drive the expected
values to line b, this case will still produce discrepant outputs. Since in every row the
value of b is constant, the erroneous behaviour of B is detected by detecting an equivalent
additional stuck-at fault of line b. For example, in row 3 the pattern 11 detects the case
of line s; stuck at 0 combined with any assignment of faults to don’t care entries, except
so stuck at 1 or, equivalently, both a and b stuck at 0. The input pattern 01 is needed
to handle such exceptions. The erroneous behaviour of B is equivalent in this row with

the fault of b s-a-0, which is covered by assigning s-a-0 to the don’t care entry of column

b.

‘ out ‘ s1 ‘ S9 ‘ a ‘ b ‘ pattern (ab) ‘
0 01
00
11 and 01
01
00 and 10
01
10 and 00
01 and 11
0 01
ff|1 00

FRIFR|AB|FRIR|IR|AR|-

=l e e

SR = o Y) R Y
B m|B|=|o

=

Table 7.4: Single-bit comparator faults and detecting patterns

The slice test can be easily extended to an arbitrary comparator width while the test

length is only a linear function of the number of slices.

!The table entries have the following meaning: 0 (1): s-a-0 (s-a-1) fault; ff: fault-free state; empty
box: any state (don’t care).

7.4. PRE-DIAGNOSIS COMPARATOR TEST SESSION 83

out

Figure 7.4: A simple n-bit comparator

Theorem 4 Consider the n-bit comparator of Figure 7.4. Assume that A is fault-free
and the possibly faulty B produces identical responses for identical inputs. Then, the
test patterns in Table 7.5 will detect any multiplicity of stuck-at faults in the comparator

combined with any faulty behaviour of unit B.

‘ ag bg ‘ ‘ a; b; ‘ . ‘ an—1 bp_1 ‘
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 1

Table 7.5: Test patterns for n slice

Proof: The table contains a 4-vector long test sequence for each comparator bit
slice, line 0 (a shared vector for each slice), and lines 3i + 1 to 3¢ + 3 for the ith slice
(1=0,...,n—1). They trivially detect any fault combination involving a stuck-at fault on
line out. For the remaining faults, we will show that the test of slice ¢ can be performed

in spite of the effect of faults in other slices. Two cases may occur during the slice test:

84 CHAPTER 7. MANUFACTURING TEST ON THE WAFER

e As an effect of a fault in B or in the comparator, a faulty 1 value appears on some
OR-gate input line belonging to a slice other than ¢. Call the vector producing
it v. The four vectors contain another one (w) where only a; differs from v. The
slices other than ¢ will receive the same actual input values (even if modified by
B) when we apply v and w, therefore the comparator output will be 1 for both
patterns. On the other hand, the fault-free outputs should be different for v and

w, i.e. the fault is detected.

e The OR-gate input lines belonging to slices other than ¢ always hold the value
0. In this case, the presence of faults in unit B or in the other comparator slices
does not disturb the test of slice ¢, which detects any stuck-at fault in the slice

according to the previous lemma.

Repeating the test for all slices, every combination of stuck-at faults in the compara-
tor will produce at least once an output different from the expected one. O

From the point of view of the diagnosis algorithm, we can summarise these results the
following way: A comparator passing the proposed test does not contain stuck-at faults,
therefore the aggregation step can be done safely. Case d of Table 7.2 is eliminated.

It is also true that the comparator test session excludes the undetected occurrence
of case b, thus the algorithm can rely on the 1 results of the comparators that passed
the test. However, few reliable 1 results will be generated without additional techniques,
because a fault-free comparator is unlikely to pass the test if one driving chip is faulty
and it fails to provide the expected test vectors for the comparator. On the other hand,
if the comparator is fault-free and the fault in the chip does not modify the comparator
test patterns, then the comparator test will pass, and the comparison result will be
a reliable 1. The wafer implementation suggested in Section 7.7 highly exploits this

feature.

7.5 Fault-tolerant result observation

The bottleneck in the performance of comparison-based testing is the observation of
comparison results. Since the diagnostic test can be very long, the diagnoser should not
be required to read the entire sequence of comparator outputs; instead, a syndrome col-
lection circuitry should be wired to every comparator. If we disregard possible faults in
the diagnostic circuitry, this could be a 1-bit RS flip-flop, which is reset before executing
the diagnostic test, and set by any mismatch the compared chips produce.

This technique can also be used in the approach extended with a comparator test
session, but some problems must be solved. First, a simple 1-triggered flip-flop is not
sufficient, because the comparator produces 1 results during the comparator test session
even if everything is fault-free. Furthermore, potential faults in the flip-flop must be

taken into account, therefore the comparator test must be extended to cover faults in

7.5. FAULT-TOLERANT RESULT OBSERVATION 85

the collection circuitry as well. Finally, the number of read-out operations should be
minimised, because they are performed sequentially.

I will present a syndrome collection strategy and a general overview of the supporting
hardware which handles all these problems. An RS flip-flop (Figure 7.5) can still be used

for syndrome collection, with the following additional features:

e It contains a guard signal, controllable by the external diagnoser, which masks the

transients that occur on the set input of the flip-flop.

e An auxiliary signal auz, also controllable, is used to control the set line. During
the comparator and diagnostic test sessions, this line always holds the same value
as the expected output of the comparator, so that one flip-flop is sufficient for
collecting both 1s and 0s. Furthermore, during the flip-flop test (see later), the

signal improves controllability.

diagnostic
input bus

T30

_\jE set

guarded q
RS

aux

guard

reset

Figure 7.5: Syndrome collection circuitry

We extend the comparator test session to include a flip-flop test, which, if passes,
ensures that the collection circuitry is also free from faults. We will prove that the
flip-flop test detects all combinations of stuck-at faults in the collection circuitry as well.

The complete test session, including the extended comparator test session and the
comparison-based diagnostic test session, requires only 3 read-out operations (Figure 7.6,

and proceeds as follows.

e Initially, we apply the first vector of Table 7.5, we set auz to 1, and disable guard.
This should make line set hold value 1 in the fault-free case. We issue a reset
command, then enable guard (which should set the output, since set still holds 1),
and check if the FF has been indeed set.

e Next, we disable the guard, issue a reset again, and perform the comparator test,
taking care that aux always holds the same value as what is expected from the
comparator, and that guard is only active when the comparator output settles
down. After the comparator test, we give an impulse to auz without enabling the

guard, and read out the comparator test result, which is expected to be 0.

86 CHAPTER 7. MANUFACTURING TEST ON THE WAFER
e Finally, we perform the diagnostic test, keeping auz 0 and enabling guard after
each vector, and read out its result.

The next theorem says that the result of the diagnostic test is reliable if we receive

a 10 sequence for the first two read-outs.

cmp test 1 cmp test 0 diagnostic
time - 2n vectors n+1 vectors . . test
expected cmp |—| |>< ><|
reset M [: : :
aux . | il

ot LU JUUUU MU L

1st read T ' 2nd read T 3rd read T
expect 1 expect 0

Figure 7.6: Complete test

Theorem 5 For the gate level model shown in Figure 7.7, all combinations of gate-level
stuck-at faults in the syndrome collection circuitry will cause the combined flip-flop—

comparator test to fail.

cmp

aux

guard

reset

Figure 7.7: Syndrome collection at the gate level

Proof: We show in particular that every combination of stuck-at faults entails a
test result other than 10. Table 7.6 lists all stuck-at fault combinations along with the
possible read-out results for the first two read operations. The meaning of the table
entries is the same as in Table 7.4.

Some faults may produce several output sequences, depending on the actual be-
haviour of the driving circuitry (A, B, and the comparator), and on the signals of which
the state is listed as don’t care in the given line. For example, the line where signals ¢,

reset, ng, gs, and set are fault-free but aux is s-a-0 summarises the following:

7.6. FAULT TOLERANT COMPARISON MODEL 87

q ‘ reset ‘ ngq ‘ gs ‘ set ‘ aux ‘ guard ‘ eq. fault | read out
1 11

0 00

i 1 q s-a-0

ff 0 0X or 11
i i 1 q s-a-0

ff| ff 0 00

i i f |1 nq s-a-0

ff| ff ff |0 00

ff| ff fft | £ 0 gs s-a-0

ff | ff ff |f£] 1 00 or 11
ff| ff ff | ff| ff 0 0X or 11
ff| ff ft |ff| ff 1 0X or 11
ff| ff ff | ff| ff ff 0 gs s-a-(

ft| ff ft | &£ | ff 1 11

Table 7.6: Gate level fault coverage of the test

o If the guard is s-a-0, the read-out sequence will be 00.

e If the guard is s-a-1 or fault-free, and the comparator correctly produces 0 for the
initial pattern, then the first bit read out will be 0.

e If the guard is s-a-1 or fault-free, and the comparator incorrectly produces 1 for
the first vector of Table 7.5, then the read-out sequence will be 11, since the first

vector pattern is part of the comparator test, which will therefore fail.

Note that we exploit again the fact that the circuitry comprising the comparator and
the two units behave combinationally during the comparator test (see the implementa-
tion granting this feature in Section 7.7). Since no fault set listed in the table allows
for a 10 read-out sequence, a passed FF-comparator test guarantees that the circuitry

is free from stuck-at faults. O

7.6 Fault tolerant comparison model

The introduction of the comparator test phase allows for a refinement in the comparison
model. The ternary outcome of the complete test is determined according to Table 7.7.

In practice, diagnosis algorithms are easily modified to handle unreliable outcomes.
Maestrini’s algorithm, for instance, works correctly if it does not declare chips faulty

based on unreliable 1-connections and does not aggregate along unreliable O-connections.

88 CHAPTER 7. MANUFACTURING TEST ON THE WAFER

test outcome | interpretation

100 0-connection
101 1-connection
other unreliable

Table 7.7: Refined comparison model

7.7 Wafer implementation

To carry out the proposed additional test sessions, the wafer diagnosis circuitry should

meet the following requirements.

e The fault-free circuits should be able to provide the comparator with every com-

parator test pattern of Table 7.5.

e A circuit containing permanent faults should produce identical responses for iden-

tical inputs.

e Although the units are fed by the same input during the diagnostic test session,
during the comparator test phase two adjacent units should be driven with different

input values.

The first two conditions, if not already fulfilled by the actual unit design, can be
easily satisfied by a simple modification in the circuit design, e.g. by multiplexing the
output of the unit.

The third condition requires either the input bus in the wafer diagnosis circuitry to be
duplicated, or the chips on the wafer to be non-identical. For instance, in a rectangular
grid diagnosis structure there must be two kinds of chips.

A comprehensive solution to these problems could be the addition of some simple
combinational logic that generates the comparator test patterns for the comparator test
session (Figure 7.8). Onme bit, encoding the position of the chip (A/B), is introduced
only in the final stage of the design of the wafer masks. During the comparator test
session the diagnosis circuitry receives a wafer-wide signal which orders it to use the
output of the test pattern generator (TPG) instead of that of the unit.

The function of the TPG can be implemented with a small ROM module indexed by
the common input, or with a more concise combinational logic, as the test patterns are
easily compressible. It is important that a sequential design for the TPG logic would
contradict the assumption that a repeated test pattern is always altered the same way
by permanent faults.

This solution has a number of favourable features:

e The chips can play the role of either unit A or B without the intervention of the

diagnosis algorithm and without requiring the duplication of the input bus. The

7.7. WAFER IMPLEMENTATION 89

U |

cmp cmp
I AB[¢ AB[¢
cmp p ' p ' cmp
| g cmp test mode g cmp test mode
N N
| _ | _
from global unit to output from global unit to output
I inputbus pins I inputbus pins
| |
cmp cmp
| |

Figure 7.8: Non-identical chips on the wafer

additional cost (the extra surface) is small, especially in the case of complex chips.

e The wafer-based testing implementation remains hidden to the circuit designer,
because the TPG and comparator subcircuitry can be added by the silicon factory,
and the circuit user, because during packaging diagnostic links are not connected

to pins.

e The design of the TPG and the comparator is independent of the nature of the IC to
be manufactured, since including this additional logic does not require information
other than the output width.

An even more desirable property of the TPG implementation is the satisfactory
treatment of case b in Table 7.2. A fault-free comparator will pass the comparator test
and will produce a reliable 1 outcome if one driving IC is faulty but the TPG logic is
intact, which has relatively high probability.

Bibliography

[1]

[10]

[11]

[12]

[13]

H. Fujiwara: Logic Testing and Design for Testability, MIT Press, Cambridge,
Massachusetts, 1985

FUTEG: Functional Test Generation and Diagnosis. Copernicus project CP94 -
9624.

E.B. Eichelberger and T.W. Williams: A Logic Design Structure for LSI Testability,
Proc. of the 1th Design Automation Conf., New Orleans, 1977, pp 462-468.

K.P. Parker: The Boundary-Scan Handbook: Analog and Digital, Kluwer, 1998

P. Malinverni: Long-term Research Aspects of Circuit Design and Tests, Invited
Keynote Speech, IEEE European Test Workshop, Cagliari, May 1997

Cadence Design Systems. http://www.cadence.com
Synopsys Design Tools. http://www.synopsys.com
Mentor Graphics Products. http://www.mentor.com

1. Park, K. O’Brien and A.A. Jerraya: AMICAL: Architectural Synthesis Based on
VHDL, Synthesis for Control Dominated Circuits (A-22), ed. Saucier and Trilhe,
Elsevier Science Publishers (North-Holland), 1993, pp 219-234

IEEE Standard VHDL Language Reference Manual, IEEE Standard 1076, 1988

F.H. Brglez and H. Fujiwara: A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran, Proc. Int. Symp. on Circuits and
Systems, 1985, pp 663-698

A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C. Metzger, M.
Molcho and G. Shurek: Test Program Generation for Functional Verification of
PowerPC Processors in IBM, Design Automation Conf., 1995

S. Mourad and E.J. McCluskey: Fault Models, in: F. Lombardi, M. Sami (ed):
Testing and Diagnosis of VLSI and ULSI, Kluwer, 1988, pp 49-69

BIBLIOGRAPHY 91

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

H.K. Lee and D.S. Ha: SOPRANO: An Efficient Automatic Test Pattern Gener-
ator for Stuck-Open Faults in CMOS Combinational Circuits, ACM/IEEE Design
Automation Conf., 1990, pp 660-666

A. Lioy: Mixed Level Test Generation for MOS Circuits, European Test Conf.,
1989, pp 208-211

J. Jacob and N.N. Biswas: GTDB Faults and Lower Bounds on Multiple Fault
Coverage of Single Fault Test Sets, Int. Test Conf., 1987, pp 849-855

J.P. Roth: Diagnosis of Automata Failures: A Calculus and a Method, IBM Journal
of Research and Development, 10, 1966, pp 278-291

P. Goel: An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits, IEEE Trans. on Computers, C-30 (3), 1981, pp 215-222

L. H. Goldstein: Controllability/Observability Analysis of Digital Circuits, IEEE
Trans. Circuits and Systems, CAS-26, 1979, pp 685-693

J. Sziray: Test Calculation for Logic Networks by Composite Justification, Digital
Processes, 5, 1979, pp 3-15

7. Hegediis: A Comparative Study about the Efficiency of Digital Test Generation
Algorithms, Ph.D. Thesis, Technical University of Budapest, 1992 (in Hungarian)

Y. Takamatsu, K. Kinoshita: An Efficient Test Generation Method by 10-V Algo-
rithm, Int. Symp. on Circuits and Systems, 1985, pp 679-682

C.W. Cha, W.E. Donath and F. Ozguner: 9-V Algorithm for Test Pattern Gener-
ation of Combinational Digital Circuits, IEEE Trans. Computers, C-27 (3), 1978,
pp 193-200

Y.H. Levendel and P.R. Menon: Test Generation Algorithms for Computer Hard-
ware Description Languages, IEEE Trans. Computers, C-31, 1982, pp 577-588

K. Tilly: CONTEST: An Automatic Test Pattern Generation System Based on
Constraints, Technical Report, Technical University of Budapest, TUB-TR-94-
EE11, 1994

K. Tilly: Constraint-Based Automatic Test Pattern Generation, Ph.D. Thesis, Hun-
garian Academy of Sciences, 1995

K. Tilly: A Comparative Study of Automatic Test Pattern Generation and Con-
straint Satisfaction Methods, Technical Report, Technical University of Budapest,
TUB-TR-94-EE10, 1994

Steingart, Nagle and Grason: RT'G: Automatic Register Level Test Generator, Proc.
IEEFE 22nd Design Automation Conference, 1995, pp 803-807

92

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

BIBLIOGRAPHY

J. Sziray: The Test-Design Program System DIAS, Proc. 1st Hungarian Custom
Design Conference, Gyongyos, May 1987, pp 303-309

J. Sziray and Zs. Nagy: OPART: A Hardware Description Language for Test Gener-
ation, Microprocessing and Microprogramming 32, North Holland Publishing Com-
pany, Amsterdam, 1991, pp 525-530

S.M. Thatte and J.A. Abraham: Test Generation for Microprocessors, IEEFE Trans.
on Computers, C-29 (6), 1980, pp 429-441

D. Brahme and J.A. Abraham: Functional Testing of Microprocessors, IEEE Trans.
on Computers, C-33 (6), 1984, pp 475-485

S.Y.H. Suand Y. Hsieh: Testing Functional Faults in Digital Systems Described by
Register Transfer Language, Proc. IEEE International Test Conf., October 1981,
pp 447-457

T. Lin and S.Y.H. Su: The S-Algorithm: A Promising Approach for Systematic
Functional Test Generation, IEEE Trans. on Computer-Aided Design, CAD-4,
1985, pp 250-263

S.B. Akers: Functional Testing with Binary Decision Diagrams, Proc. 8th Int. Symp.
on Fault Tolerant Computing, 1978, pp 82-92

R. Ubar: Test Synthesis with Alternative Graphs, IEEE Design and Test of Com-
puters, Spring, 1996, pp 48-59.

R.Ubar and M.Brik: Multi-Level Test Generation and Fault Diagnosis for Finite
State Machines. European Dependable Computing Conf. EDCC-2, Springer-Verlag,
1996, pp 264-281.

M.D. O’Neill, D.D. Jani, C.H. Cho and J.R. Armstrong: BTG: A Behavioral
Test Generator, Computer Hardware Description Languages and their Applications,
North Holland, 1990, pp 247-361

C.H. Cho and J.R. Armstrong: VHDL Semantics for Behavioral Test Genera-
tion, Proc. 10th Int. Symp. on Computer HDLs and Their Application, April 1991,
pp 395-412

C.H. Cho and J.R. Armstrong: B-Algorithm: A Behavioral Test Generation Algo-
rithm, Proc. Int. Test Conf., 1994, pp 968-979

B. Beny6: Test Pattern Generation Based on High-Level Hardware Descriptions,
Ph.D. Thesis, Dept. Measurement and Information Systems, Technical University
of Budapest, 1997

BIBLIOGRAPHY 93

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Gy. Csertdn: A Framework for Early Testability Assessment, Ph.D. Thesis, Dept.

Measurement and Information Systems, Technical University of Budapest, 1997

M. Abramovici: Digital Sytems Testing and Testable Design, Computer Sci. Press,
1990

N. Gouders: Methoden zur deterministischen Testgenerierung fir synchrone
Schaltwerke, Ph.D. Thesis, Fachbereich Elektrotechnik der Universitiat -
GesamtHochschule - Duisburg, 1991 (in German)

Y. Zorian and M. Marzouki: Multi-Chip Modules Testing and DFT, 38th IEEE
Midwest Symposium on Circuits and Systems, Rio de Janeiro, 1995, pp 722-725.

A. Pataricza, Gy. Csertn, I. Majzik, B. Benyg’, B. Sallay and A. Petri: Verification
of ultra-reliable controllers. Internal Report, Technical University of Budapest, 1997.

A K. Mackworth: Consistency in networks or relations, Artificial Intelligence, 8
(1), 1977, pp 88-118.

U. Montanari: Fundamental properties and applications to picture processing, Inf.
Sci., 7, 1974, pp 95-132

U. Montanari: Optimization Methods in Image Processing Proc. IFIP Congress,
1974, pp 727-732

A K. Mackworth and E.C. Freuder: The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems, Artificial Intelligence
25 (1), 1984, pp 65-74

E.C. Freuder: A sufficient condition for backtrack-free search, J. ACM 29 (1), 1982,
pp 24-32

R. Dechter and J. Pearl: Network-based heuristics for constraint satisfaction prob-
lems, Artificial Intelligence, 34, 1987, pp 1-38

R. Dechter: Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition, Artificial Intelligence, 41, 1989/90, pp 273-312

D.L. Waltz: Generating semantic descripions from drawings of scenes with shadows,
Rep. MAC AI-TR-271 MIT, Cambridge, MA, 1972

J.R. Ullman: Associating parts of patterns, Information and Control, 9 (6), 1966,
pp 583-601

A. Rosenfeld, R. Hummel and S. Zucker: Scene labeling by relaxation operators,
IEEE Trans. Systems, Man and Cybernetics, SMC-6, 1976, pp 420-433

94

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

BIBLIOGRAPHY

J. Gaschnig: A general backtrack algorithm that eliminates most redundant tests,
Proc. International Conference on Artificial Intelligence, Cambridge, MA, 1977,
p 457

J. Gaschnig: Experimental case studies of backtrack vs. Waltz-type vs. new algo-
rithms for satisfying assignment problems, Proc. 2nd National Conference of the

Canadian Society for Computational Studies of Intelligence, Toronto, July 1978

R.M. Haralick and G.L. Elliott: Increasing tree search efficiency for constraint
satisfaction problems, Artifical Intelligence, 14, 1980, pp 263-313

J. Gaschnig: Performance measurement and analysis of certain search algorithms,
Technical Report CMU-CS-79-124, Carnegie-Mellon University, Pittsburgh, PA,
1979

R.M. Stallman and G.J. Sussman: Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis, Artificial Intelligence
9, 1977, pp 135-196

M. Bruynooghe: Solving combinatorial search problems by intelligent backtracking,
Inf. Process. Lett. 12, 1981, pp 36-39

S. Rangajaran, D. Fussell, and M. Malek: Built-in testing of integrated circuit
wafers, IEEE Trans. Comput., 39, 1990, pp 195-205

F.P. Preparata, G. Metze, and R.T. Chien: On the connection assignment problem
of diagnosable systems, IEEE Trans. Electron. Comput., EC-16, 1967, pp 848-854

F. Barsi, F. Grandoni, and P. Maestrini: A Theory of Diagnosability of Digital
Systems, IEEE Trans. Computers, C-25, 1976, pp 585-593

M. Malek: A comparison connection assignment for diagnosis of multiprocessor
systems, 7th Symposium on Computer Architecture, La Baule, France, May 1980,
pp 31-35

K.Y. Chwa and S.L. Hakimi: Schemes for fault-tolerant computing: a comparison
of modulary redundant and t-diagnosable systems, Information and Controls, 45,
1981 (3), pp 212-238

J. Maeng and M. Malek: A comparison assignment for self-diagnosis of multicom-
puter systems, Proc. 11th FTCS, pp 173-175, 1981

S.L. Hakimi and A.T. Amin: Characterization of connection assignment of diag-
nosable systems, IEEE Trans. Computers, C-23, 1974, pp 86-87

E.R. Scheinerman: Almost sure fault tolerance in random graphs, SIAM J. Com-
put., 16, 1987, pp 1124-1134

BIBLIOGRAPHY 95

[71]

[72]

[73]

[74]

[75]

K. Huang, V.K. Agarwal, L. LaForge, and K. Thulasiraman: A diagnosis algorithm
for constant degree structures and its application to VLSI circuit testing,” IFEE
Trans. Parallel and Distr. Systems, 1995, pp 363-372

A K. Somani and V.K. Agarwal: Distributed diagnosis algorithms for regular in-
terconnected structures, IEEE Trans. Computers, C-41, 1992, pp 899-906

L.E. LaForge, K. Huang, and V.K. Agarwal: Almost sure diagnosis of almost every
good element IEEE Trans. Computers, C-43, 1994, pp 295-305

P. Maestrini and P. Santi: Self Diagnosis of Processor Arrays Using a Compar-
ison Model, Proc. 14th Symposium on Reliable Distributed Systems, pp 218-228,
Sept. 1995

S. Chessa: Self-Diagnosis of Grid-Interconnected Systems, with Application to Self-
Test of VLSI Wafers, Ph.D. Thesis, TD-2/99, Dipartimento di Informatica, Uni-
versitd degli Studi di Pisa, 1999

Publications

[1]

B. Sallay, P. Maestrini and P. Santi: Comparison-Based Wafer-Scale Diagnosis
Tolerating Comparator Faults, IEE Journal on Computers and Digital Techniques,
146 (4), 1999, pp 211-215

S. Chessa, B. Sallay and P. Maestrini: Diagnostic Model and Diagnosis Algorithm
of a SIMD Computer, Proc. 3rd European Dependable Computing Conf., Prague,
September 1999

B. Sallay: Heuristic Control in the Type-Uninterpreted Dynamic Analysis Phase of
Architectural Test Pattern Generation, Proc. 9th European Workshop on Depend-
able Computing, Gdansk, May 1998

B. Sallay: Heuristic Type-Uninterpreted Acceleration of High Level Systematic Test
Pattern Generation, Proc. IEEE Furopean Test Workshop, Cagliari, May 1997

B. Sallay, A. Petri, K. Tilly and A. Pataricza: Constraint Based High Level Test
Pattern Generation for VHDL Circuits, Proc. IEEE FEuropean Test Workshop,
Montpellier, June 1996

K.Tilly, A. Pataricza and B.Sallay: High Level Functional Test Generation Based
on Constraint Satisfaction Methods and Heuristic Cost Functions, 2nd Workshop
on Hierarchical Test Generation, Duisburg, September 1995

V. Sieh, A. Pataricza, B. Sallay, W. Hohl, J. Honig, and B. Benyé: Fault Injection
Based Validation of Fault Tolerant Multiprocessors, 8th Symp. on Microcomputer
and Microprocessor Applications, Budapest, 1994, pp. 85-94

B. Sallay and A. Petri: On the Heuristic Acceleration of VHDL Based Test Genera-
tion Algorithms, Conf. on the Latest Results of Information Technology, Budapest,
May 1997

A. Petri and B. Sallay: Constraint Based Functional Test Pattern Generation for
VHDL Circuit Descriptions, Int. Conf. of Ph.D. Students, Miskolc, 11-17 August
1997

PUBLICATIONS 97

[10]

[11]

[12]

[13]

[14]

[15]

B. Sallay, P. Maestrini and P. Santi: A Comparison-Based Diagnosis Algorithm
Tolerating Comparator Faults, Technical Report, IE1:B4-26-10-98, Istituto di Elab-

orazione della Informazione, Pisa, Italy,

B. Sallay, B. Benyd, Z. Hegediis, A. Pataricza, A. Petri, J. Sziray, K. Tilly: A
Proposed VHDL Subset for Test Generation Purposes, Technical Report, FUTEG-
1/1994

B. Sallay, K. Tilly, A. Pataricza, Z. Hegediis, A. Petri, L. Surjan and J. Sziray: An
Artificial Intelligence Based Approach to VHDL Level Test Pattern Generation,
Technical Report, FUTEG-2/1994

B. Sallay, K. Tilly, A. Pataricza, Gy. Csertdn, Z. Hegediis, A. Petri, L. Surjdn and
J. Sziray: Application of Al Methods in High Level Test Generation, Technical
Report, FUTEG-3/1995

B. Sallay, K. Tilly, A. Petri, A. Pataricza and J. Sziray: AI Methods in High Level
Test Generation - A Feasibility Study, Technical Report, FUTEG-4/1995

A. Pataricza, Gy. Csertn, . Majzik, B. Benyg’, B. Sallay and A. Petri: Verification
of Ultra-Reliable Controllers. Internal Report, Technical University of Budapest,
1997.

Appendix A

Benchmark circuits

A.1 Gate-level circuits

A.1.1 Adder family

This is the classical scalable carry-chain architecture of an adder unit. It contains a
chain of full adder components (Figure A.1) which implement 1-bit addition. The full
adder component are cascaded to perform multiple-bit addition, as shown in Figure A.2.
Characteristic data of the family are given in Table A.1.

sumT Tc_out
sum <= a xor b xor c_in;

c_out <= (a and b) or
(aand c_in) or (b and c_in);
Ta Tb Tc_in
Figure A.1: Full adder

sum(n downto 1) c_out

n

1 FAL > FA2 — ... —FAn

n n

c_in a(n downto 1) b(n downto 1)

Figure A.2: n-bit adder

A-2 APPENDIX A. BENCHMARK CIRCUITS

circuit ‘ signals ‘ inputs ‘ outputs ‘ components | detectable ratio
full adder 15 3 2 12 100%
4-bit adder (hierarchical) 15 3 2 4 100%
4-bit adder (flattened) 57 3 2 48 100%
8-bit adder (hierarchical) 33 3 2 8 100%
8-bit adder (flattened) 113 3 2 96 100%

Table A.1: The adder family

A.1.2 ISCAS’85 family

The ISCAS’85 benchmark set [11] contains ten large gate-level structures. The quanti-
tative features of this set is reported in Table A.2. Since it is a gate-level benchmark, the

used component set is the fix {inverter, and-gate, or-gate, nand-gate, nor-gate, ror-gate,

buffer}.

circuit ‘ signals ‘ inputs ‘ outputs ‘ gates ‘

c432 196 36 7 160
c499 243 41 32 202
c880 443 60 26 383
c1355 587 41 32 546
c1908 913 33 25 80
c2670 1426 233 140 1193
¢3540 1719 50 22 1669
cb315 | 2485 178 123 2307
c6228 | 2448 32 32 2416
c7552 | 3719 207 108 3512

Table A.2: The ISCAS’85 family

A.2 High-level benchmarks

The benchmark circuits are considered as architectural if the following features appear

in their description:

e They contain high-level components.
e Multiple-bit data are handled together by components.

e There is some separation between data and control.

A.2. HIGH-LEVEL BENCHMARKS A-3

Since we deal with abstract elements, we also give the number of bit-wide signals

and gates a surface-optimised synthesizer tool would generate.

A.2.1 Combinational multiplier

This example is taken from the Mentor tool [8] tutorial library. The architecture imple-
ments the well-known shift-and-add multiplication technique. Figure A.3 shows the 4-bit
implementation of this circuit. Constant-offset shifters are implemented as the addition
of grounded wires. A good high-level synthesizer tool (see Section 2.2.2) can be directed
to generate the architecture of Figure A.3 by the VHDL code below. Of course, the
7*” and ”+” operators must be properly overloaded to implement 1-bit multiplication

between vector and bit, and addition between two vectors, respectively.

4
mull
1 4 L
J adder r7g
- mull =77 Ishiftl == .
_| adder ——
- mull 5= Ishift2 ﬂ
J adder 5
4 .
- mull =77 Ishift3 ==
Figure A.3: 4-bit combinational multiplier
res <= (in1*in2(0) + (in1*in2(1))&’0’) +
((in1*in2(2))+"00" + (in1*in2(3))&"000");
Multiplier circuit data are summarised in Table A.3.
circuit signals | domain | inputs | outputs | components gate detectable
size equivalent ratio
2-bit multiplier 5 13 1 40 96.15%
4-bit multiplier 9 51 1 7 256 94.11%
&-bit multiplier 17 199 1 15 1168 92.96%

Table A.3: The multiplier family

A.2.2 Greatest common divisor

The GCD circuit is a high-level synthesis benchmark circuit because it provides oppor-
tunity for optimisations. The design uses Euler’s algorithm to find the largest number
which divides both the operands:

A-4 APPENDIX A. BENCHMARK CIRCUITS

while opl /= op2 loop
if opl < op2 then
op2 := op2 - opl;
else
opl := opl - op2;
end if;

end loop;

We have chosen one of the many possibilities this circuit can be synthesized (Fig-
ure A.4).

y_in x_in result res_flag
0
0]
= x]
_> — —
i
g A
I SUB
-
- -
Yo T L
H—
1 Sl
-
CMP
L
Y

r control part —I

Figure A.4: Greatest common divisor

GCD is a highly data-intensive circuit where control is also signifant, although the
control part has a small number of states. The control part has been synthesized to the
gate-level. The benchmark is present in the subset with different word sizes for the data
signals. Table A.4 shows a summary on the characteristics of different gcd instances.
GCD is a true high-level benchmark because the number of signals does not grow with
the word length and because there are abstract integer operations. Since many physical
faults require 3, 4, or 5 time frame long test sequences, the total domain size which must
be explored is multiplied accordingly. The ratio of detectable faults is given for at most
3-long test sequences.

It is obviously not worth choosing this implementation for a 2-bit word length where
a two-level combinational circuit would be much faster and smaller, but our purpose is

the evaluation of the ATPG algorithm for different versions of the same circuit.

A.2. HIGH-LEVEL BENCHMARKS A-5
circuit signals | domain | inputs | outputs | components gate detectable
size equivalent ratio
2-bit ged 21 32 1 17 107 64.06%
4-bit ged 21 52 1 17 203 66.34%
8-bit ged 21 92 1 17 395 67.93%

A.2.3 Bubble sort

Table A.4: The GCD family

The bubble sort circuit implements the well-known sorting algorithm where adjacent

containers exchange values in case their order does not correspond to the desired one.

Although there are many control signals again, the gate-level control part has few states:

in addition to the initial register load state, it contains an even phase when even-indexed

registers exchange values with their right neighbours, and an odd state when odd-indexed

registers do the same. The architectural model implementing this algorithm is shown

in Figure A.5. Although the exact structure is not important, it can be seen that a lot

of multiplexers organize the feedback paths. The control part is fed by comparators.

(Multiplexer control signals are not shown.) The bubble sort circuit exists again in

several intances of different word sizes (Table A.5). The detectable coverage is given for

3-time frame long tests.

NN

cmp

cmp

CP

cmp

Figure A.5: Bubble sort

A-6 APPENDIX A. BENCHMARK CIRCUITS

circuit | signals | domain | inputs | outputs | components gate detectable
size equivalent ratio
2-bit BS 42 68 4 1 32 194 52.94%
4-bit BS 42 114 4 1 32 364 54.38%
8-bit BS 42 206 4 1 32 704 55.34%

Table A.5: The bubble sort family

Appendix B

The BudaTest program

BudaTest is a library-based architectural TPG program written in C++. The source
code of the program is about 5000 lines of which about 1300 belongs to the experimental
but extendable constraint library. BudaTest is a portable command line-driven tool and
compiles well under UNIX and Windows platforms. There exists an X-windowing front-
end, developed by Andris Petri, for the UNIX-based BudaTest version.

The block diagram of the tool is shown in Figure B.1. The tool contains three parsers:
a VHDL and an ISCAS input description parsers, and a component test description
parser for hierarchical test generation. The supported VHDL subset is structural VHDL.
The parsers have been created using the lex and yacc compiler development tools.

The circuit model contains signal type information and signal-component intercon-
nection information. The default fault list contains the two sa-faults for every signal bit,
with or without the use of component test files. For every fault, the program creates the
CSP by mapping the VHDL signals into constraint variable pairs and the components
into constraint library elements. Since sequential input circuits are allowed, many CSP
elements may belong to the same VHDL object. The CSP engine implements all the
techniques dexcribed in Section 6. Since BudaTest does not contain yet well-adjusted
heuristics, the heuristic engine currently contains only a few heuristic order definitions
that prevent the solver from the totally random selection of assigned variables and values.

BudaTest is invoked the following way:

> budatest
BudaTest architectural test pattern generator
by Balazs Sallay, Technical University of Budapest

version 3.07

Usage:
budatest <switches> -input <ifile> [-output <ofile>] [-max <framenr>]
[-timeout <tnr>] [-fault <fsignal> <fvalue> [<fpos>]]

B-2 APPENDIX B. THE BUDATEST PROGRAM

input. HDL parser BudaTest
description (VHDL, ISCAS)
it

heuristic

p— engine
. constrain
circuit model \ library
¢ / constraint
[fault list } [CSP]_, csp solving
genjrator generatgr\ engine
/ test scenario

fault list

library

test patterns

Figure B.1: BudaTest block diagram

ifile: file name of the VHDL description of the circuit
ofile: output component test file name

framenr: number of sequential frames for sequential circuits
tnr: limit decision tree to <tnr>*27°16 nodes, then give up
fsignal: VHDL identifier of the faulty signal

fvalue: stuck-at value of the fault

fpos: bit position of the stuck-at fault

-iscas: use ISCAS parser instead of VHDL

-parsedebug: debug VHDL or ISCAS parser

-all: generate and test all faults

—-component: look for component test files

-random: random order of constraint assignments

-nologic: disable mask and interval logic

-noimpl: disable implication enhancement

-nonode: disable node classificatiopn enhancement (implies -nocolour)

-nocolour: disable colouring enhancement

The program options reflect our discussion of the modelling and evaluation tech-

niques in Sections 5 and 6.

