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Abstract The design process of complex, dependable systems requires
a precise veri�cation of design decisions during the system modelling
phase using formal methods. For that reason, the mathematical models
of various formal veri�cation tools are planned to be automatically de-
rived from the systemmodel usually constructed from UML{diagrams. In
the paper, a general framework for an automated model transformation
system is introduced providing a uniform formal description method of
such transformations by applying the powerful computational paradigm
of graph transformation.
Keywords: system veri�cation, model transformation, graph transfor-
mation, UML.

1 Introduction

1.1 Integrating System and Mathematical Models

For most computer controlled systems, especially dependable, real{time systems
with critical applications, an e�ective design process requires an early validation
of design concepts and architectural choices (without wasting time and resources)
in order to assess whether the system ful�ls its speci�cation or still needs some
re-design. This process is called system veri�cation.

The increasing need for e�ective design has contributed to push for the devel-
opment of standardized and well-speci�ed design methods and languages, which
allow system developers to work on a common platform of design tools.

The Uni�ed Modeling Language (UML) [9] is a general{purpose visual mod-
elling language designed to specify, visualize, construct and document artifacts of
a software system. It provides a series of diagrams with the �ne level of abstrac-
tion to specify object models and has been widely accepted as an object-oriented
software design language in the software engineering community.

Formal methods o�er a rigorous and e�ective way to model, design and ana-
lyze computer systems. They have been a topic of research for many years with



valuable results, their necessity is vital due to the complexity of IT products and
increasing requirements for dependability and Quality of Service (QoS).

During the design phase, a UML designer compares di�erent architectural
and structural solutions to select the most suitable one. A mathematical anal-
ysis, carried out after modelling (and using formal methods), allows to identify
dependability bottlenecks and critical parameters to which the system is highly
sensitive.

However, such an integration of system and mathematical modelling (using
UML and formal methods) might raise several obstacles:

{ At �rst, mathematical skills are required (at least the basic knowledge of
underlying mathematics of a speci�c method)

{ The resources spent on re-modelling are expensive (in time and workload).
{ How can the faithfulness of the model be guaranteed?
{ How can the consistency of the model and the original problem can be
checked?

{ How can the results of the veri�cation be back-annotated to the system
model?

1.2 Mathematical Model Transformation and its Problems

Several sophisticated tools based on formal methods (such as [6]) are available for
analyzing mathematical models constructed from a UML-based system model.
The step when the input language of these mathematical tools are generated from
the UML model of the system is calledmathematical model transformation.

The inverse direction of model transformation (referred as back{
annotation) is of immense importance as well when some sort of problems
(e.g. a deadlock) arise during the mathematical analysis. After an automated
back{annotation these problems may appear in the UML system model level
allowing the designer to �x these conceptual bugs.

Several semi{formal approaches have been designed and implemented per-
forming mathematical model transformation in our sense.

{ A transformation has been de�ned which maps a subset of UML Statechart
Diagrams to Kripke structures for formal veri�cation of functional properties
[7] using SPIN model checker [6]

{ A projection from UML subsets to timed and generalized stochastic Petri
Nets ([4, 3]) have been de�ned for providing quantitative analysis of depend-
ability attributes.

However, these semi{formally/informally de�ned transformation algorithms
raised several problems due to the lack of a uniform formal description method
and a straightforward strategy for implementation.

{ There was a gap between theory and practice as the strategies of imple-
mentation were rather ad-hoc, thus requiring months of related work on
implementational issues.



{ Moreover, the transformation scripts were written in PL/SQL, which is
highly data-dependent, hence their formal veri�cation (aiming to prove cor-
rectness and completeness) was almost impossible.

{ Each model and model transformation had to be veri�ed individually al-
though the transformation algorithms have similar underlying algorithmic
skeletons.

1.3 Research Objectives

The aim of our research is to provide a framework for a general mathematical
model transformation system supporting the automated generation of transfor-
mation code of a proven quality [11].

Such an automated model transformation system has to support at
least the following features:

1. The description of source and target models (input and output);
2. Th description of the transformation
3. An eÆcient back-annotation of mathematical analysis results;
4. A database for storing models and rules;
5. A transformation engine built upon this database providing automatically
generated transformation code;

6. An engine for proving correctness and completeness;

In the current paper, we basicly focus on Requirement 2, and 3, although,
an overview of the entire architecture and concept is provided as well in the
following.

1.4 Visual Automated Graph Transformation System

Our alternate solution for mathematical model transformation (depicted in Fig-
ure 1 and 2) is an integration of di�erent disciplines of computer science, com-
puter engineering and arti�cial intelligence. Based on formal mathematical back-
ground, it provides a general transformation description method and a proposed
way of designing such transformations, additionally.

User{created system models are de�ned by the Uni�ed Modeling Lan-
guage, which is the front{end of most model transformations. UML conceptu-
ally follows the four{layer MOF meta-modelling architecture [8], which allows
the de�nition of meta{objects for similarly behaving instances.

The front{end and back{end of a transformation (UML as the source model
and a formal veri�cation tool as the target model) is de�ned by a uniform,
standardized description language of system modelling, that is, XMI (XML
Metadata Interchange). XMI documents are also used for storing the trans-
formation rules.

The formal description of these transformations are supported by graph
transformation, which combines the advantages of graphs and rules into an in-
dividual computational paradigm. Both transformation rules (denoted as trans-
formation rule description (TRD) in Figure 1) and source and target side
grammar rules are given in a special form of graph transformation rules.
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Figure 1. Our proposed model transformation architecture

A graph transformation rule is a special pair of pattern graphs where the
instance de�ned by the left hand side is substituted with the instance de�ned
by the right hand side when applying such a rule (similarly to the well{known
grammar rules of Chomsky in computational linguistics). A collection of such
rules forms a graph grammar for describing system and mathematical models
as visual languages. An eÆcient back{annotation of analysis results is also
supported by a special relation between source and target graph objects.

After having speci�ed a set of transformation rules, typically, two main prob-
lems arise for obtaining a higher quality of transformation code:

{ Correctness (soundness) problem: Whether this set of rules is (syn-
tactically) correct, i.e. the output is a well{formed sentence of the target
language.

{ Completeness problem Whether this set of rules is complete, i.e., each
situation allowed by the source language is covered by a corresponding rule
[11].

With the supervision of planner algorithms of arti�cial intelligence, both
problems can be veri�ed constructively (i.e. pointing out those parts of the sys-
tem where correctness or completeness do not hold). As a result, there is an inten-
sive increase in the reliability of transformation as only the design of elementary
rules needs intuition and the deep relationship between them is automatically
generated.

Source and target models are stored in a central repository, which is a re-
lational database. However, such complex transformations necessitate more in-
telligent query processing algorithms than original SQL queries. Therefore a
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Figure 2. An overview of model transformation

deductive database was carried out in Prolog to provide a higher level query
language for describing complex database operations in our transformation en-
gine.

Even if the description of the transformation is theoretically correct and com-
plete, additionally, the source and target models are also mathematically precise,
the implementation of these transformations has a high risk in the overall quality
of a transformation system. As a possible solution, automatic transformation
code and database generation is aimed based on XMI documents and visual
transformation rules.

Our design concepts are demonstrated on a benchmark transformation
projecting structural UML diagrams into timed Petri Nets [4, 3]. The speci�ca-
tion of the transformation, which form the rest of the current paper, is de�ned
by the precise formalism of transformation units (of graph transformation).

The rest of the paper is structured as follows. In Section 2, some basic nota-
tions of graph transformation will be given. Section

2 Concepts of Graph Transformation

Graphs are well{known and frequently used means to represent complex ob-
jects, diagrams and networks, like 
owcharts, entity-relationship diagrams, Petri
Nets, and many more. Rules have proved to be extremely useful for describing
local transformations; areas like e.g. language de�nition, logic and functional
programming, theorem proving.

Graph transformation combines the advantages of both graphs and rules
into a single computational paradigm, used for generation, manipulation, recog-
nition, and evaluation of graphs [1].



In the sequel, some basic de�nitions of graph transformation systems are
given. Section 3 contains a short introduction of our benchmark transformation
from UML diagrams to timed Petri Nets. In Section 4, a subtransformation of
the previous will be discussed in details on a running example, �nally, Section 5
concludes our paper.

2.1 Basic Notation

De�nition 1. A graph transformation rule r = (L;R;App consists of a
left{hand side (LHS) graph L, a right{hand side (RHS) graph R, and application
conditions App.

A graph transformation rule p can be applied to a given host graph G by the
following procedure: [5]

1. Find an occurrence of the left{hand side L in G (satisfying application con-
ditions App).

2. Remove a part of graph G determined by the occurrence of L, yielding the
context graph D.

3. Embed the right{hand side R into D, obtaining the derived graph H .

De�nition 2. A model transformation rule mtr = (LS;LT;RS;RT;App)
is a special graph transformation rule, where both L and R graphs can be divided
into a source and a target graph (LS;LT;RS;RT respectively) connected by
reference relations.

De�nition 3. A transformation unit tu = (I; U;R;C; T ) encapsulates a
speci�cation of initial graphs I, a set of imported transformation units U , a
set of graph transformation rules R, a control condition C, and a speci�cation
of terminal graphs T .

The operational semantics of transformation unit is a binary relation on
graphs, which relation contains a pair (G;G0) of graphs [1], if

{ G is an initial graph and G0 is a terminal graph,
{ G0 can be obtained from G by derivations of own rules and imported trans-
formation units.

{ The pair and the derivation process is allowed by the control condition.

Although a graph transformation rule is non{deterministic in general, our
model transformation mechanism is restricted by control conditions prescribing
a speci�c (deterministic) order of applying rules.

In the current paper (when examples are presented later in Section 4), graph
(model) transformation rules will be displayed in a pictorial form, while trans-
formation units will be de�ned textually. As a graph transformation rule may
consist of several layers such as a graphical and a logical layer (e.g. in [2]), using
only the graphical notation is still suÆcient for specifying transformations.



3 From Structural UML Diagrams to Timed Petri Nets

In Section 3, a benchmark transformation of our model transformation system
will be discussed. The transformation itself (projecting structural UML diagrams
into Timed Petri Nets) was introduced in [3, 4] for assessing and evaluating
dependability parameters of the system in an early phase of the design process.

Such an automated transformation from UML structural diagrams to timed
Petri Nets serves as (the informal speci�cation and purpose of the transformation
basicly follows [3, 4]):

{ to provide means to analyse dependability attributes of a system still under
design.

{ to allow a less detailed, but system{wide representation of the dependability
characteristics of the analysed system.

{ to deal with various level of details, ranging from preliminary abstract UML
descriptions, up to the re�ned speci�cations of the last design phase.

3.1 Outline of the Transformation

The main approach when preparing a formal analysis of UML models is to enrich
the basic UML models by di�erent attributes needed for analysis. Obviously,
these extensions, which have to �t into the syntax of UML descriptions, are
only partially relevant in a particular analysis method. In our case, performance
parameters associated with each class or instance have to be transformed into
a stochastic Petri Net model built up from the basic model by an automatic
transformation in order to analyze the performance issues.

The entire transformation from structural UML diagrams to timed Petri Nets
is performed in two steps as depicted in Figure 3.

Petri Net Model

Class2Class1
1 *

UML Model

SYS
C SW

U U

HW

U

U
SW

C

Intermediate Model

Figure 3. The outline of the UML|Petri Net transformation



1. The �rst task is to extract the relevant dependability information from the
mass of information available in the UML description, resulting in the In-
termediate Model (IM) of the system. In this step, a dependability model
of the system is constructed focusing on the basic events, error propagation
paths, etc.

2. The next step allows to de�ne a timed Petri Net description general enough
to postpone the choice of a speci�c tool used for the analysis to a later stage.

Modelling redundancy structures in the UML{based system model is
de�ned as instances of specially stereotyped classes. These stereotyped classes
allow the designer to attach tagged values required for calculating dependability
measures. Di�erent levels of abstraction are expressed by the use of use cases,
classes, components and objects.

The Intermediate Model of the system is a special hypergraph with
various types of attributed nodes and edges. Both node and edge types are
mainly based on the UML stereotypes of their corresponding instances. Once
having constructed the IM from the UML system model, we need not use the
original system for the rest of the transformation process any more.

The generated Petri Net (PN) model is hierarchically constructed from
partially connected PN subnets (for each type of IM nodes). These subnets are
linked via propagation subnets (the transformed equivalents of hyperedges). In
such a way, a structural decomposition of Petri Nets can be obtained.

Although the entire transformation is divided into two subtransformations
(UML to IM and IM to Petri Net), only the �rst part of the transformation
is discussed in the current paper on a running example due to the following
reasons:

{ The complexity of transformation rules originates in the complexity of the
source language. Hence, the more complex UML as the source language
has been chosen for demonstration purposes rather than the more simple
hypergraph structure of the IM.

{ Dealing with the structural problems of UML is reusable in the implemen-
tation of further model transformation.

{ As a single IM graph node is often transformed into a Petri subnet of con-
nected places and transition, the RHSs of the translation rules are often two
large to be easily depicted.

In the current paper, dependability parameters are omitted , since the com-
plexity of model transformations originates in the structure of the models. As
typed and attributed graphs are usually used for graph transformation, these
parameters can easily be handled as described e.g. in [10].

3.2 Our Running Example: the Production Cell

Our running example (taken from [4] and depicted in Figure 4) models a produc-
tion cell, which has been adopted in the literature as a benchmark for modelling
reactive systems.
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A production cell processes metal plates taken to the cell by a worker. A
plate is conveyed to a rotary table on a feed belt. The rotary table is used to
move the plate to a position that is proper for a robot to take the plate, and
place it into a press. The press forges the plate, which is then removed by the
robot and given back to the worker. The various elements of the production cell
are controlled by software modules running on a single PC. In order to tolerate
the failure of a press, two redundant presses are used.

3.3 UML Design of the Production Cell

Use case diagrams are used to collect high{level system functionalities (use
cases), and participants (actors) interacting with the system by using these func-
tions. In the sense of dependability, use cases represent the top level service of
the system this way also de�ning the system level failure.

Figure 5(a) shows us a simple use case diagram for the production cell. The
actor Worker uses the ProducePlate functionality of the production cell system
(depicted without stereotypes).

The production cell is modelled by a set of objects (depicted in the ob-
ject diagram of Figure 5(c)), each representing either a hardware unit (e.g
RotaryTableHW is the rotary table, including its sensors and actuators) or part
of the controller system (e.g. FeedBeltC is a piece of the controller software
responsible for the feed belt). Object Worker is also included to show the inter-
action with the environment.

Links between the objects have the following meaning:

{ the machines have states and operations, which are set and sensed by the
control software

{ the software components cooperate to control the safe and eÆcient operation
of the cell and
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Figure 5. UML design of the production cell

{ the machines interact by performing operations on a plate.

In order to tolerate the failure of a press, two redundant presses are used in
the cell. A separate class of objects (RedundancyManager) is used to perform the
task of selecting the available press (indicated by variant stereotypes) and for-
warding the control to it, this way the pure functional control can be performed
by the same object PressC.

The control software classes are deployed on a single PC as de�ned by the
deployment diagram of Figure 5(b) (naturally, further hardware objects are
also deployed on various nodes).

3.4 The Intermediate Model of the Production Cell

The Intermediate Model of the system collects the relevant entities, and relations
projected from the UML system model.

The Intermediate Model (a well{formed hypergraph) of the basic production
cell is depicted in Figure 6.

The following nodes and relations (hyperedges) are used.
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{ The main service of the system is represented by a SYS node (drawn using
dashed lines). The relations (hyperedges) of type C (composed of) identify
the nodes that represent objects used directly by the worker. The failure
of the system can be recognized when the feed belt or the robot provides
improper service (the plate is not taken or no plate is returned).

{ The components of the system are represented either by stateful hardware
(SFEHW, drawn using thick lines) or stateful software nodes (SFESW, drawn
by thin lines).

{ The links among objects are represented by hyperedges of type U (uses the
service of).

{ The deployment of the software is projected to a set of unidirectional U edges.
{ The redundancy structure is identi�ed on the basis of the stereotypes. In
the IM, this structure is represented by using FTS type nodes (using dashed
lines again) and C relations.

4 The UML|Intermediate Model Transformation

The speci�cation of the transformation will be presented at two layers of ab-
straction.

1. Starting from a semi{formal description (as de�ned in [3]), the basic
concepts of a local transformation (e.g. transforming use cases) will be in-
troduced.

2. A formal semantics of the UML{IM transformation will be given by means
of transformation units (see Section 2) composed of model transformation
rules. Transformation units are listed in a top{down order, starting from the
most general one.

The main transformation unit transform UML2IM is responsible for the en-
tire model transformation. A transformation unit is listed in a framebox with
its name and arguments on the top of the box. Its components (initial and ter-
minal graph, rules, imported units and control condition) are printed in italics



(however, empty components will be omitted later). All the imported units and
graph transformation rules are de�ned sooner or later in the paper, however,
only non{empty components will be explicitly printed.

transform UML2IM(SG,TG):

initial: TG = ;

rules:

import:

transform elementTU(SG;TG); redundancy structureTU(SG;TG);
transform relationTU(SG;TG);

condition:

transform elementTU(SG;TG); redundancy structureTU(SG;TG);
transform relationTU(SG;TG);

terminal: once all occurrences in the given order

According to the basic transformation unit (transform UML2IM with two
attributes SG and TG), three local subtransformations have to be performed in
the given order, namely,

{ projecting hardware and software element (transform elementTU),
{ transforming redundancy structures (redundancy structureTU)
{ projecting relations (transform relationTU), and

At this point, no "own" (owned by unit transform UML2IM) transformation
rules are available (rule: section is empty), all operations are imported.

The initial condition of transformation unit (transform UML2IM) prescribes
that the target graph TG should be empty while no restrictions are required for
the source graph SG. A terminal graph is obtained if all matching occurrences
are transformed once in the speci�ed order.

In our transformation units, control conditions (composed of transformation
rules and units and sequence operators in our case) always determine the prior-
ities (by prescribing the entire sequence, separated by semi{colons as sequence
operators) of transformation units, therefore the units have to be applied in the
given, deterministic order. Due to the deterministic completion and the guaran-
teed termination, the de�nition of terminal graphs is not required.

4.1 Projecting Hardware and Software Elements

transform elementTU(SG,TG):

import: usecaseTU(SG;TG); nodeTU(SG; TG); objectTU(SG; TG):
condition: usecaseTU(SG;TG);nodeTU(SG; TG); objectTU(SG; TG):
terminal: once all occurrences in the given order

The projection of hardware and software elements includes the) handling of
the following UML diagrams in a similar way:

{ use case diagrams
{ deployment diagrams.



{ object diagrams

At this point, rule ordering could have been arbitrary (e.g. transforming
nodes before objects could also be a suitable order) due to the lack of casual
links between these transformation units. Therefore, considering parallel com-
pletion (independent threads for rules/units of same priority) instead of strict
serialization is worthwhile for future works.

The role of use case diagrams is to identify system level relations by rela-
tions between actors and use case.

{ A use case without a stereotype represents a re�ned use case (relevant for
the current analysis), which is projected into a system node of the IM.

{ Actors represent users, or external entities which interact directly with the
system, hence not projected in this transformation.

usecaseTU(SG,TG):

initial: usecase(UC);:transformed(UC;UCT )
rules: usecaseR(UC;SG; TG) (Figure 7(a))
condition: usecaseR(UC;SG; TG)
terminal: once all occurrences in the given order

UseCase: UC UseCase: UC ID1

SYS

usecaseR

(a) Transformation rule of use cases

ID1

SF/LEHW

<<stateful/lessHW>>
Node: N

<<stateful/lessHW>>
Node: N

nodeR

(b) Transformation rule of HW nodes

<<stateful/lessSW>>
Object:Obj

<<stateful/lessSW>>
Object: Obj

ID1

SF/LESW

objectR

(c) Transformation rule of objects

Figure 7. Transformation rules of use cases, HW and SW elements



For graph transformation rules in the paper, the following graphical notation
is used. Graph nodes of the source model (UML) are depicted as their corre-
sponding UML concept, while the hypergraph of the targe IM model is drawn
like an ordinary graph with labelled circles (as nodes) and directed arrows (as
edges). Reference relations (supporting an eÆcient back{annotation) are dashed
lines, and negative reference condition (i.e. a missing reference relations) is de-
picted by a crossed dashed line.

The transformation rule usecaseR indicates that a use case that is not trans-
formed yet, indicated by a negative condition (the crossed reference line) without
a stereotype should be transformed into an IM node with type SYS and a ref-
erence relation is also inserted between the source and target elements (namely,
the use case and the IM node). The result of applying the transformation unit
is displayed later in Figure 10(a).

Nodes are run{time physical objects, usually hardware resources. They are
projected into hardware elements in the IM.

nodeTU(SG,TG):

initial: node(N);:transformed(N;NT )
rules: nodeR(N;SG; TG) (Figure 7(b))
condition: nodeR(N;SG; TG)
terminal: once all occurrences in the given order

The transformation rule nodeR (and objectR later on) performs a similar task
to usecaseR, creating a new IM node and linking it with a reference relation.

An object is a particular instance of a class. It has identity and its own state
therefore it is projected into a software element of the IM as depicted in Figure
7(c).

objectTU(SG,TG):

initial: object(Obj):transformed(Obj;ObjT )
rules: objectR(Obj; ST; SG; TG) (Figure 7(c))
condition: objectR(Obj; ST; SG; TG)
terminal: once all occurrences in the given order

4.2 The Projection of Relations

Although the transformation of redundancy structures preceed the projection of
relations, the latter one is discussed �rst.

In dependability modelling, these relations and links are supposed to indicate
potential error{propagation paths between model elements. These relations may
appear in di�erent UML diagrams (the list contains only those that considered
in our running example):

{ relations among use cases and actors in use case diagrams,

{ links (as instances of associations or aggregations) between objects

{ component containment in deployment diagrams



transform relationTU(SG,TG):

import: deploymentTU(SG;TG); linkTU(SG; TG); systemTU(SG;TG)
condition:

deploymentTU(SG;TG); linkTU(SG; TG); systemTU(SG;TG)
terminal: once all occurrences in the given order

Generally, uni-directional links (like e.g. aggregation) will be projected to a
single hypergraph edge in the IM, while bi{directional links (like associations
with navigability at both association end) will be projected into two edges with
opposite direction.

Deployment relations among nodes and components, and relations among
components and objects (shown by graphical nesting) indicate potential error
propagation paths with direction from the nodes to the objects.
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(a) Transformation rule of deployment

Object: 
ObjFrom

Object: 
ObjTo

link From
Node Node

To Object: 
ObjFrom

Object: 
ObjTo

link From
Node Node

ToU

associationR

(b) Transformation rule of links

Node

SYS

Sys

Node
To

UseCase: UC

Object::
Inst

Actor

Node

SYS

Sys

Node
To

UseCase: UC

Object::
Inst

Actor

not_projected_connR

(c) Transformation rule of system nodes

Figure 8. Transforming UML relations



deploymentTU(SG,TG):

rules: deploymentR(SG;TG) (Figure 8(a))
condition: deploymentR(SG;TG)
terminal: once all occurrences in the given order

The deploymentR transformation rule searches for a hardware node contain-
ing a class with an instance as source pattern, and the corresponding IM nodes
of the instance and the hardware node as target pattern, linked by reference
relations. As a result, an additional IM edge of type U (uses the service of)
is created, and linked to both the component class and the hardware node as
reference.

Links are binary relation instances (of associations) between objects. In gen-
eral, links mean that the objects instantiated from the corresponding classes
know about each other. A link indicates a potential bidirectional error propaga-
tion path between these objects, thus it is projected to the IM.

linkTU(SG,TG):

rules: linkR(SG; TG) (Figure 8(b))
condition: linkR(SG; TG)
terminal: once all occurrences in the given order

The rule linkR has a complex LHS. The speci�c objects within a link has
to be found with a navigable link end as the source pattern, and the reference
IM nodes of these objects as target patterns. The transformation results in an
additional IM edge between the corresponding target IM nodes with a reference
relation to both the corresponding link and link end.

A relation between an actor and a use case (Figure 8(c)) is not di-
rectly projected. Although each relations in the context of a use case without
stereotype, are projected from the IM SYS node to the corresponding IM node.
This case is illustrated by the IM edges inherited from the Worker{FeedBeltHW
relation (see Figure 6).

systemTU(SG,TG):

rules: UCrelR(SG; TG) (Figure 8(c))
condition: UCrelR(SG; TG)
terminal: once all occurrences in the given order

4.3 The Projection of Redundancy Structures

Redundancy structures are identi�ed by stereotyped objects: the redundancy
manager (stereotyped as red man) and the variants (with variant stereotypes).

{ Up to now, the redundancy manager (as being an ordinary object as well)
has already been transformed among other objects.

{ The variant instances have also been projected into the IM (together with
other ordinary objects).

{ Additionally, the fault tolerant structure as a whole are projected into an IM
element typed FTS. This element is connected to the elements representing



the redundancy structure, and the variants using special "is composed of"
relations to represent the components as a whole.

redundancy structureTU(SG,TG):

import: redundancy managerTU(SG;TG); joinTU(SG; TG)
condition: redundancy managerTU(SG;TG); joinTU(SG; TG)
terminal: once all occurrences in the given order
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RedMan
Object:
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(a) Transforming redundancy managers
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(b) Transforming links of redundancy managers and variants

Figure 9. Transforming redundancy structures

redundancy managerTU(SG,TG):

rules: ftsR(SG; TG) (Figure 9(a))
condition: ftsR(SG; TG)
terminal: once all occurrences in the given order

The ftsR transformation rule connects an additional FTS type IM node to
each redundancy manager, which has two reference IM nodes from this point.

joinTU(SG,TG):

rules: joinR(SG; TG) (Figure 9(b))
condition: joinR(SG; TG)
terminal: once all occurrences in the given order

Transformation rule joinR contains specially stereotyped variant objects
linked to the redundancy manager as source pattern, and FTS together with
SFEHW nodes on the target side. As a result, the FTS node representing the re-
dundancy structure as a whole is connected to the corresponding IM node of
variant objects.



4.4 Tracing the UML|IM Transformation

Finally, a sample run of the transformation algorithm will be traced to observe
the sequence in which the objects of the target language are created one by one.

A series of �gures showing the construction of the IM (of Figure 6) will be
presented with the following notation:

{ An IM node is coloured to dark grey if it has been transformed by the
application of the latest rule.

{ An IM node is painted to light grey in case it has been projected previously.
{ An IM edge appears in thick dashed lines if it has been transformed by the
last applied rule.

{ An IM edge appears in thick normal lines if it has previously been trans-
formed.

Step 1: Transforming HW and SW nodes (Figure 10(a), 10(b) and 10(c))
1. Transforming use case objects by applying transformation unit

usecaseTU.
2. Projecting hardware nodes by applying nodeTU.
3. Transforming all the objects using objectTU.

Step 2: Transforming redundancy structures (Figure 10(d) and 10(e))
1. Creating FTS nodes and connecting them to redundancy managers by

redundancy managerTU.
2. Connecting variants and FTS nodes using joinTU.

Step 3: Transforming relations (Figure 10(f), 10(g), and 10(h))
1. Transforming deployment relations by deploymentTU.
2. Using linkTU for projecting links of objects.
3. Transforming use case relations by applying systemTU.

5 Conclusion

In the current paper, our research activities towards a visual automated model
transformation system was introduced. Our proposal is supposed to integrate
UML{based system modelling and formal methods by providing a general de-
scription method based upon visual graph transformation rules.

To demonstrate the expressive power of these rules and transformation units,
a formal description of a complex transformation from structural UML models
to timed Petri Nets (introduced semi{formally in [4, 3]) was presented on an
example (which is a benchmark of modelling reactive systems). Formal speci�-
cation of further complex transformations (between UML models and di�erent
tools of formal methods) will also be aimed in future works.

Although omitted from current issue, the UML{IM transformation has al-
ready been implemented using our Prolog{based deductive database implemen-
tation. The transformation code strictly follows the control conditions and model
transformation rules of transformation units de�ned earlier in Section 4. In this
respect, our proposal is much more closer to an automatic transformation code
generation from a formal speci�cation than any previous solutions on the same
topic.
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Figure 10. Tracing the transformation step by step
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