
UML Speci�cation of Mathematical

Model Transformation ?

D�aniel Varr�o, P�eter Domokos, and Andr�as Pataricza

Budapest University of Technology and Economics
Department of Measurement and Information Systems

1111 Budapest, Hungary,
P�azm�any P. st. 1/D. IT building B.420.

Contact person: Andr�as Pataricza
Phone: +36-1-463-3595
Fax:+36-1-463-4112
pataric@mit.bme.hu

Abstract The design of complex, dependable systems requires a precise
formal veri�cation of design decisions during the systemmodelling phase.
For that reason, the mathematical models of various formal veri�cation
tools are planned to be automatically derived from the system model
usually described by UML{diagrams. In the current paper, a general
framework for an automated model transformation system is introduced
providing a uniform formal description method of such transformations
by applying the powerful computational paradigm of graph transforma-
tion. Model transformation rules are constructed in a modular way using
a visual UML notation as representation in order to provide a closer cor-
respondence with industrial techniques.

Keywords: system veri�cation, model transformation, graph transfor-
mation, transformation unit, UML.

1 Introduction

1.1 Formal Methods in System Veri�cation

Due to the immense complexity of dependable, real{time systems, an early con-
ceptual and architectural validation based on precise formal veri�cation tech-
niques is essential aiming to identify critical bottlenecks to which the system
is highly sensitive for obtaining a guaranteed design quality. In order to avoid
costly re{design cycles such a system veri�cation must preceed the implementa-
tion phase.

The increasing need for e�ective design has necessitated the development of
standardized design languages and methods allowing system developers to work
on a common platform of design tools.

? This work was supported by the Hungarian National Scienti�c Foundation Grant
OTKA T030804

The Uni�ed Modelling Language (UML) is a visual speci�cation language
(providing a collection of best engineering practises of the several decades) that
has been adopted as the standard object{oriented modelling language for a large
scale of IT systems ranging from pure software systems to embedded systems
(systems reactively interacting with their environment) recently.

Formal methods provide a rigorous and e�ective way to model, design and
analyze computer systems on a strict mathematical platform. For many years,
they have been a topic of research with valuable academic results. However,
their industrial utilization is still limited to specialized development sites, despite
their vital necessity originating in the complexity of IT products and increasing
requirements for dependability and Quality of Service (QoS).

The use of formal veri�cation tools (like model checkers SPIN [7] or PVS
[14]) in IT system design is hindered by a gap between practice{oriented CASE
tools and sophisticated mathematical tools.

{ On the one hand, system engineers usually show no proper mathematical
skills required for applying formal veri�cation techniques in the software
design process.

{ On the other hand, even if a formal analysis is carried out, the consistency of
the manually created mathematical model and the original system is not as-
sured, moreover, the interpretation of analysis results, thus, the re{projection
of the mathematical analysis results to the designated system is problemat-
ical.

Moreover, from the engineering point of view, a dependability analysis is a
composite one necessitating the assessment of multiple mathematical properties
by using di�erent veri�cation tools.

1.2 Mathematical Model Transformation

The step generating the description of the target design on the input language
of mathematical tools from the UML model of the system is called mathematical
model transformation.

The inverse direction of model transformation (referred as back{annotation)
is of immense practical importance as well when some problems (e.g. a dead-
lock) are detected during the mathematical analysis. After an automated back{
annotation these problems can be visualized in the the same UML system model
allowing the designer to �x conceptual bugs within his well{known UML envi-
ronment.

Several semi-formal transformation algorithms have already been designed
and implemented for di�erent purposes.

{ formal veri�cation of functional properties [10]

{ quantitative analysis of dependability attributes [3, 4]).

Unfortunately, this conventional way of model transformation lacked a uni-
form and precise description of transformation algorithms resulting in hand{
written and rather ad hoc implementations (inconvenient for implementing com-
plex transformations).

Moreover, any formal proof of correctness and completeness aiming to verify
these transformation scripts is almost impossible, thus their uncertain quality
remains a quality bottleneck of the entire transformation based veri�cation ap-
proach.

The aim of our ongoing research is to provide a general framework of a visual,
automated model transformation system with the facilities of an automatically
generated transformation algorithm of a proven quality (derived from a visual
description of the transformation).

Such a model transformation system must ful�l at least the following user
requirements.

{ A large number of model transformations are planned to be designed to
perform dependability analysis in various application domains ranging from
early evaluation methods based on Petri nets to model checking techniques
using temporal logic as underlying mathematical model.

{ \Mathematical" model transformations are not only designed by mathe-
maticians but system designers as well. Thus, these transformations must be
de�ned by a visual, easy to understood formalism.

{ The speci�cation of a model transformation should be given in mathemati-
cally precise, unambiguous form.

The current paper extends our basic concepts introduced in [19, 20] by a
UML based speci�cation method of model transformation systems, providing
a general introduction to our designated system at �rst in Sec. 2. Section 3.
summarizes the basic theoretical concepts of model transformation. In Sec. 4,
a visual speci�cation of model transformation (serving as a general description
language for various type of model transformations) is given using UML as a
visual modelling language. Finally, Section 5 concludes our paper.

2 A Visual Automated Model Transformation System

The process of model transformation is characterized by a model analysis
roundtrip illustrated in Fig. 1. Typically, a system designer and a transformation
designer participates in such a roundtrip with the following roles.

{ A transformation designer speci�es model transformations from UML to
various mathematical models (like e.g. Petri nets, temporal logic). From his
speci�cation, a transformation algorithm is generated at compile time.

{ A system analyst designs complex systems using UML as modelling lan-
guage. During the software life cycles, he needs several veri�cation steps to
be performed running the previously generated model transformation pro-
grams.

Theor. Prov

3

MT
rules

2 Uniform
Storage

Description
Model1

Annotation
Back-

8

Benchmark
Transform

7

Transform.
Engine

6

Aut Code
Generation

5

Complete
Correct

4

Planner

Ded. DB.

PrologXMI

MOF

GraTra

UML

(a) Architectural concepts

model

UML

graph

Source

graph

Target

GraTra

rules

GraTra
rules

in UML

XMI

document

XMI

document

XMI

document

Petri Net

tool

Model Transformation

Graph Transformation

(b) Technological sum-
mary

Figure 1. An overview of model transformation

Model description The overall aim of a transformation designer is to generate
the input language of a speci�c tool handling some mathematical models from
a generally accepted system models. (Let us take Petri nets as the target model
during this following introductory description in order to avoid speaking too
generally.)

A well{de�ned transformation necessitates a uniform and precise description
of source and target models, therefore, a formal underlying formalism is needed.
On the other hand, these models represent some aspects of IT systems with
industrial relevance, thus, model descriptions should follow the main standards
of the industry.

For this reason, the Uni�ed Modeling Language (UML) is used as the
front{end of model transformations, additionally, the user{end speci�cation lan-
guage of model transformation rules is UML as well. UML conceptually follows
the four{layerMeta Object Facility (MOF)meta-modelling architecture [11],
which allows the de�nition of meta{objects for similarly behaving instances.

Uniform storage of models The front{end and back{end of a transformation
(UML as the source model and a formal veri�cation tool as the target model)
is de�ned by a uniform, standardized description language of system modelling,
that is, XMI (XML Metadata Interchange) [13], which is a special dialect
of XML, the approving novel standard of the Web.

Due to the fact that UML models are exported in an XMI format (the ex-
port process is supported by most UML CASE tools) an open, tool{independent
architecture is obtained. In order to avoid to write separate transformation al-

gorithms for di�erent tools of Petri Nets, a model transformation algorithm
generates an XMI based description of the target model, from which the input
languages of di�erent tools can be generated by simple syntactical translators
(based on general XML parsers).

Designing model transformation rules The formal description of these trans-
formations are supported by graph transformation, which combines the ad-
vantages of graphs and rules into an powerful computational paradigm. Model
transformation rules are de�ned in a special form of graph grammar rules.

A graph transformation rule is a special pair of pattern graphs where the
instance de�ned by the left hand side is substituted with the instance de�ned
by the right hand side when applying such a rule (similarly to the well{known
grammar rules of Chomsky in computational linguistics).

The model transformation rules are aimed to be speci�ed by using the visual
notation of UML. However, for obtaining a tool{independent transformation
speci�cation, the transformation rules will also be exported in an XMI (or XML)
based format, conforming to the approving standard of graph transformation
systems [6].

Correctness and completeness of transformations After having speci�ed a set of
transformation rules, the correctness and completeness of the transformation
has to be veri�ed aiming to prove that the resulted Petri net model is semanti-
cally equivalent to the source UML model. These questions will be veri�ed by
planner algorithms and theorem proving techniques of arti�cial intelligence
operating on user de�ned basic equivalent source and target structures.

Automated code generation Even if the description of the transformation is the-
oretically correct and complete, additionally, the source and target models are
also mathematically precise, the implementation of these transformations has a
high risk in the overall quality of a transformation system. As a possible solu-
tion, automatic transformation code generation is aimed based on XMI
documents and visual transformation rules.

The transformation engine As the transformation engine is implemented in Pro-
log, the uniform, XMI based models and rules are translated into a Prolog no-
tation supplying the input and the program to be executed, respectively, for
the transformation engine. An attributed and labelled graph representation is
generated for the source model, and a similar graph is to be obtained as a result
of the transformation.

The transformation process speci�ed by visual model transformation units is
executed in the form of a Prolog program manipulating the previous graph based
models by the powerful backtracking and uni�cation method of Prolog. However,
the algorithmic skeletons extracted from the speci�cation are rather simple, thus
allowing to substitute Prolog with a more powerful but lower abstraction level
language (like C or Java) after a successful prototyping phase.

Benchmark transformations Our model transformation system is supposed to be
used in real industrial applications. A benchmark transformation (transforming
the static aspects of UML models into timed Petri Nets for dependability analysis
in an early phase of system design; see [18] for further details) has already been
designed and implemented. Further benchmarks of industrial relevance (depend-
ability evaluation with a special emphasis on the safety of an arti�cial kidney
controller; and a railway interlock system) are soon to come.

Back{annotation of analysis results As the results of the mathematical are auto-
matically back{annotated to the UML based system model, the system analyst
are reported from conceptual bugs in their well{known UML notation. After
certain modi�cations and corrections on the system model are performed, the
system veri�cation process might step into a consecutive phase (using for in-
stance temporal logic instead of Petri nets as the target model).

3 Theoretical Foundations of Model Transformation

In this section, basic concepts of graph transformation systems (such as graphs,
graph transformation rules, transformation units, etc.) are adapted to the spe-
cial needs of model transformation in order to provide its precise mathematical
background. For this purpose, we will basicly follow the directions of [1]. Further
details on the theoretical foundations of model transformation can be found in
[19].

3.1 Basic De�nitions

De�nition 1. A model graph G is a directed, typed and attributed graph with
the following constraints.

{ There are two types of nodes:
� xmi element (representing an XMI element) with two associated at-
tributes: ID as a unique identi�er, and Type for storing the XMI name
of the element.

� value (for basic data values) with three attributes: ID as a unique identi-
�er, Type for representing the XMI name of the data element, and Value

for storing its value.
However, in order to provide a uniform description of graphs, these two types
of nodes are represented by a single type g node, with three attributes (ID,
Type, and Value) with a constraint requiring the ID and Value to be equal
in case of XMI elements.

{ There is a single type of edge, g edge, with two attributes attached (with-
out considering FromNode and ToNode used for referring to graph nodes),
namely, Type (which describes the name of an XMI attribute or reference)
and LinkType (which provides additional information for the generation of
an XMI document).

De�nition 2. A graph transformation rule r = (L;R;Emb;App) contains a
left{hand side (LHS) graph L, a right{hand side (RHS) graph R, some embedding
mechanisms Emb and application conditions App.

The application of r to a graph G replaces an occurrence of the LHS L in G
by the RHS R. This is performed by

1. �nding an occurrence of L in G,

2. removing a part of the graph G determined by the occurrence of L yielding
the context graph D,

3. gluing R and the context graph D by using the embedding mechanism Emb,
and obtaining the derived graph H .

De�nition 3. A model transformation rule (rmt) is a special graph transfor-
mation rule, where both graphs L and R are partitioned into two disjoint parts
(source and target). Graph objects of the disjoint parts are connected only to
reference nodes by special reference edges.

A sample model transformation rule, which generates an intermediate hyper-
graph (IM) as target model from UML as source model, is depicted in Figure
2. Please note that in order to improve the clarity of the illustrations, di�erent
types of graph nodes are depicted in various graphical notation (e.g. resembling
to the original notation in case of UML constructs).

Ref1
<RefA>

Ref1
<RefA>

<<variant>>

OBJ

Left - Source Left - Target

<<variant>>

OBJ

<sfeHW>

VAR

Right - Source Right - Target

Figure 2. A sample model transformation rule (variantR)

The LHS of this rule requires a UML object with the stereotype variant to
be present on the source side without a reference (negative application condition;
a dashed line with a cross), while there are no restrictions for the target side.
According to the RHS, a novel IM node of type sfeHW and a reference node Ref1
are inserted and connected to the UML object dashed reference edges.

The LHS of a model transformation rule is frequently a subgraph of the RHS
(hence no deletion is needed). In such a case, model transformation rules yield
a larger graph as a result of the transformation step.

3.2 Transformation Units

As possible industrial applications of model transformation surely consist of very
large and complex models containing hundreds of rules, model transformation
rules must be extended by a sophisticated structuring mechanisms that allow
to compose them in a modular way. In the graph transformation community,
the concepts of transformation units were introduced for the very same purpose
(e.g. [1, 8]).

De�nition 4. A transformation unit tu = (I; U;R;C; T) is a system where I
and T are graph class expressions (describing initial and terminal graphs), R is
a �nite set of rules and C is a control condition, and U is the set of imported
transformation units (which is empty, initially).

De�nition 5. A model transformation unit is a transformation unit where

{ the graph model is the one described in Section 3.1
{ the R set of rules are well{formed model transformation rules,
{ the class of control conditions (containing control
ow information) are
composed of extended regular expressions (discussed in details e.g. in [9].
Each ci is either a transformation unit or rule identi�er or a previously
de�ned control condition.
� c1; c2 stands for the control
ow in which c2 is applied right after c1
(concatenation)

� c1jc2 represents such a control
ow where c1 and c2 can be applied par-
allelly (fork).

� if a then c1 else c2 serves as a branch of the control
ow (depending
on the evaluation of a)

� c! applies c as long as possible

Initial and terminal class expressions serve as preconditions and postcondi-
tions on graphs transformed by the unit. Model transformation rules are nested
into transformation units, which units themselves can be imported by further
transformation units (circular import is usually forbidden). In this sense, the
entire transformation is de�ned in a hierarchical way; similarly to the process of
IT system design.

Several ways of non{determinism are embedded in the application of graph
transformation rules, for instance choosing an appropriate rule to be applied
or �nding an occurrence of the LHS of the rule in the graph. Although non{
determinism is often useful in the phase of a mathematical analysis, it has to be
eliminated in practical applications before the implementation phase. Control
conditions provide a natural mechanism to restrict the control
ow of model
transformation.

Figure 3 shows a sample model transformation unit (variantTU), which de-
rives the graph G0 from input graph G. The transformation unit states that

{ the initial and terminal graph must be a well{formed model graph,

{ variantTU has a rule called variantR,
{ two further units (not discussed here in details) are imported, namely, ftsTU
and linkTU

{ the control condition prescribes that
1. ftsTU is executed �rst;
2. the control
ow forks afterwards;

(a) in one thread one should apply variantR as long as possible followed
by the transformation described in linkTU;

(b) in the other thread, if condition c1 evaluates to true then rule A is
applied otherwise rule B is executed.

uml2imTU(G;G
0):

initial: model graph(G)
terminal: model graph(G0)
rules: variantR (Figure 2.), rule A, rule B
uses: ftsTU,linkTU
control: ftsTU; (((variantR!); linkTU) j (if c then rule A else rule B))

Figure 3. Model transformation unit \variantTU"

When using graph transformation rules and transformation units for the
purpose of mathematical model transformations, certain properties are needed
to be assessed.

{ Locality. The rule{based character of graph transformation ensures a cer-
tain degree of locality of action as it manipulates mainly a small piece of the
model.

{ Complexity. One central problem of graph transformation is the eÆcient
matching of the LHS of a rule to a subgraph of the current working graph.
However, graph isomorphism (isomorphism between the LHS of the rule and
a subgraph of the instance graph) is an NP{hard problem, specially typed
graphs and restricted LHSs may reduce complexity to polynomial average for
pattern matching algorithms. Similar problems can also occur when testing
the application conditions.

{ Termination. A graph transformation system is called terminating, if in-
�nite derivations are impossible. In our case, termination is ensured if all
transformation rules increases the number of source elements that has a
related target element.

4 Model Transformation Design in UML

In this section, our aim is to provide a framework for a general speci�cation
method for model transformation systems supporting the visual construction of
transformation units, rules and control
ow structures.

Although several sophisticated visual tools and environments exist in the
graph transformation community for a similar purpose | supporting the cre-
ation of diagram editors (GenGEd, DiaGen [2]) or the manipulation of graphs
(AGG [17], Progres [16]) | they do not provide a suitable solution for model
transformation systems due to the following disadvantages.

{ The construction of such a rich visual language as UML in terms of graphs
from scratch is time consuming (please remember, UML is the source lan-
guage in most model transformations).

{ Control
ow restrictions are only considered in Progres [15] (and probably
in the future system GRACE) while transformation units are not supported.

{ In possible industrial applications, transformation designers should learn to
handle a completely new environment and visual notation.

In order to avoid these drawbacks, model transformation rules and units are
described by the rich visual language of UML. \Overloading" UML (i.e. using
purely its visual notation and disregarding from its original software modelling
concepts) is not a novel idea. For instance, the MOF metamodelling language
uses the class diagrams of UML to represent metamodels instead of static struc-
ture of an IT system. As a result, any system designer who is familiar with UML
understands MOF metamodels (at least partially).

One major reason for applying the same idea for designing model transfor-
mations in a UML notation is the fact that UML is the most common source
model to be transformed. Our approach allows to use the original UML con-
structs in model transformation rules, moreover, non{UML objects can also be
represented visually by pictorial stereotypes (supported by several UML CASE
tools). The UML model of transformation rules are exported into XMI, and this
XMI document is processed later on by special parsers.

Stereotypes are used in the original UML notation to group classes, packages,
etc. that behave similarly while in our model transformation system, stereotypes
are responsible for providing a graphical notation for all the instances of a speci�c
metamodel class.

4.1 Import Structure

The key concept in the UML representation of the importing mechanism of
model transformation units is the embedding mechanism described by packages.
A UML package may contain further packages in itself, providing a natural
mechanism for denoting tree{like hierarchy of transformation units on package
diagrams.

Whenever a package serves as a transformation unit, this fact is indicated by
the corresponding stereotype TU (as indicated in Fig. 4(a).). As UML support
multiple namespaces (i.e. packages and classed with identical names can appear
in di�erent packages without a name clash), a general package structure was
introduced for transformation units, strictly following its textual description
(compare Fig. 3. and Fig. 4(b).).

uml2im
<<TU>>

(a) A TU

initial terminal

rules uses

control

(b) Contents of a TU

ftsTU
<<TU>>

linkTU
<<TU>>

(c) Imported packages

Figure 4. Transformation units (TU) represented in UML

Transformation units can be imported by placing the necessitated units into
the uses package of the importing unit. Figure 4(c). shows the content of such
a uses package.

4.2 Rule Representation

A model transformation rule is represented by a UML package with a stereotype
rule (see Fig. 5(a).) and placed into the appropriate rules package of its owner
transformation unit (uml2im in our example). A rule is divided into a LHS
and a RHS, also denoted as packages (as depicted in Fig. 5(b)) placed into the
corresponding rule package (variantR in our case). Please note that no name
clashes should occur due to the namespace concepts of UML.

variantR
<<rule>>

(a) A rule

RHSLHS

(b) LHS and RHS

LS
<<UML>>

LT
<<IM>>

Ref
<<Ref>>

(c) Source, target, reference

Figure 5. Rule structure in UML

On both sides (LHS and RHS), one must distinguish between the group
of source and target objects, additionally, the references (de�ning elementary
equivalence between source and target objects) are also needed to be displayed.
Figure 5(c). illustrates how these concepts are denoted when appearing on the
LHS. In each case, an appropriate stereotype de�nes the name of the correspond-
ing metamodel (in our example, UML as source, an Intermediate Model (IM) as
target, and Ref as the referential metamodel).

OBJ
(from LS)

<<variant>>

Ref2
(from Ref)

<<RefA>>

neg

<<sourceRef>>

(a) LHS of rule variantR

OBJ
(from LS)

<<variant>>
VAR

(from RT)

<<SFEHWNode>>

Ref2
<<RefA>>

+sourceRef +targetRef

(b) RHS of rule variantR

Figure 6. Contents of model transformation (MT) rules in UML

Source and target objects in model transformation rules are represented vi-
sually as classes on class diagrams. When a UML model is transformed, its
constructs can also be given using their original notation (i.e. using a state as
a state, a class as a class). On the other hand, in case of mathematical models
(Petri Nets, computational tree logic, etc.), their constructs are represented by
special stereotypes corresponding to a metamodel class. References, which are
of immense importance when formally verifying transformations, are denoted as
classes with associations to source and target objects.

In Fig. 6. the visual notation of the model transformation rule variantR (see
Fig. 2) is illustrated. The LHS prescribes (as source pattern) that a UML class
cannot be transformed if it has a reference of type RefA indicated by a negative
application condition neg depicted as a dependency.

According to the RHS, a novel target IM object of type SFEHWNode and a
reference node (Ref2 of type RefA) is added, the former one to the target model,
while the latter one to the reference model. Source and target classes are linked
to the reference node by associations with special role names (sourceRef and
targetRef).

4.3 Control Flow Description

In transformation units, control
ow is usually de�ned by extended regular ex-
pressions. As regular expressions can easily be transformed into �nite automaton,
UML statecharts seem to provide the most suitable visual notation for control
conditions, due to the fact that they are a generalization of �nite automaton
(supporting e.g. hierarchical behaviour).

As depicted in Fig. 7 (which describes the control condition of the transfor-
mation unit uml2imTU shown in Fig. 3), each rule and imported transformation
unit are referred in the statechart diagram as a simple state. Initial and �nal
states are used to indicate where the execution should be started and �nished.

ftsTU
<<TU>>

S

variantR
<<rule>>

linkTU
<<TU>>

Final
Rule_A

<<rule>>

Rule_B
<<rule>>

fork

branch

!

;

;;

[c==true]
;

Figure 7. Statechart of the control
ow

Transitions triggered by a semicolon (;) denote the concatenation control
condition, while the self{transition with a trigger \!" identi�es the as long as
possible semantics of a rule or transformation unit.

Synchronization bars (special pseudo states in UML) are used for depicting
the fork operation in the control
ow (the join operation is implemented by the
�nal state), while the if{then{else structure (performing a branch in the control

ow) is shown by a decision cube (also a pseudo state in UML) and guarded
transitions containing a logical condition that has to be ful�lled for �ring the
given transition.

One can easily verify that the visual description (provided by the statechart
in Fig. 7) is equivalent to the control condition of transformation unit uml2imTU
(shown in Fig. 3).

5 Conclusion

In the current paper, the basic features of a general purpose model transforma-
tion system was outlined. Our designated environment will support the auto-
matic generation of the model transformation algorithm of a proven quality by
verifying the correctness and completeness of transformations.

As a result, di�erent kind of mathematical models like temporal logic, Petri
nets, process algebra, etc. are closely integrated to UML based system models,
Thus, a complex veri�cation environment will be provided at hand for system
designers without requiring a thorough knowledge of modelling by sophisticated
tools.

Moreover, the architecture was designed to ful�l the requirement of tool{
independence by using a uniform description of models based on XMI, the novel

XML based model interchange format already used extensively to exchange UML
models of di�erent CASE tools.

The method of model transformation follows the paradigm of graph trans-
formation, which has been applied successfully in various (both theoretical and
practical) �elds.

{ Model transformation rules are a special form of graph transformation rules
containing reference relation for coupling the source and target objects.

{ As complex rule based systems of industrial relevance may contain hundreds
of rules, transformation units are adopted that allow the modular construc-
tion of a large set of rules.

{ The control
ow of model transformation is described by extended regular
expressions providing a means for all major control
ow operations.

A complex model transformation system should support the visual speci�ca-
tion of transformations as well. For this purpose, we have chosen to overload the
visual notation of UML (forgetting about its original means to model software
systems) as existing graph transformation tools are insuÆcient for a �ne{grained
integration of MOF metamodels and visual languages.

{ The structure of transformation units is denoted by a cluster of UML pack-
ages with special stereotypes.

{ The objects in model transformation rules are depicted by classes with a
stereotype to their metaclass.

{ The control conditions of transformation units are represented by UML stat-
echarts, naturally with certain restrictions.

Such a UML based speci�cation environment has the main advantage that
transformation designers need not get acquainted with a completely new visual
environment but within their well{known UML tool. With this respect, its in-
dustrial utilization gets much more easier.

However, there are several issues that need further investigations. Research
has already started to cover the following most important ones.

{ A parser that is able to point out major conceptual errors in the XMI de-
scription of a model transformation.

{ Generating the Prolog algorithm implementing a visual speci�cation.
{ Attaching semantic constraints to source and target objects by means of the
Object Constraint Language (OCL) [12].

References

1. M. Andries et al.: Graph Transformation for Speci�cation and Programming. Sci-
ence of Computer Programming, 34 (1999) 1{54.

2. R. Bardohl, G. Taentzer, M. Minas and A. Sch�urr.: Application of graph transfor-
mation to visual languages. In [5].

3. A. Bondavalli, I. Majzik, and I. Mura. Automatic dependability analyses for sup-
porting design decisions in UML. HASE'99: the 4th IEEE International Symposium
on High Assurance Systems Engineering, 1999.

4. M. Dal Cin, G. Huszerl, K. Kosmidis: Evaluation of safety{critical system based
on guarded statecharts. In Proc. HASE'99 4th IEEE International Symposium on
High Assurance Systems Engineering , (1999).

5. H. Ehrig, G. Engels, H.J. Kreowski and G> Rozenberg, editors. Handbook on Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scienti�c, Singapore, 1999.

6. G. Engels, G. Taentzer (organizers): APPLIGRAPH Subgroup Meeting on Ex-
change Formats for Graph Transformation Systems, Paderborn, September 5{6.
2000.

7. G. Holzmann: The model checker SPIN. IEEE Transactions on Software Engineer-
ing , 23 279{295, (1997).

8. H.J. Kreowski, S. Kuske. Graph transformation units and modules. In [5]
9. S. Kuske: More about control conditions for transformation units. In Hartmut

Ehrig, Gregor Engels, Hans-Jrg Kreowski, Grzegorz Rozenberg, Proc. Theory and
Application of Graph Transformations, volume 1764 of Lecture Notes in Computer
Science, pp. 323{337. 2000.

10. D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of
UML Statechart Diagrams. In Proc. IFIP TC6/WG6.1 3rd International Confer-
ence on Formal Methods for Open Object-Oriented Distributed Systems, 1999.

11. Object Management Group. Meta Object Facility Version 1.3, September 1999.
http://www.omg.org.

12. Object Management Group. Object Constraint Language Speci�cation Version 1.3,
June 1999. http://www.rational.com/uml.

13. Object Management Group. XML Metadata Interchange, October 1998.
http://www.omg.org.

14. S. Owre, N. Shankar. The Formal Semantics of PVS , Technical Report, Computer
Science Laboratory, SRI International, August, 1997.

15. A. Sch�urr: Programmed graph replacement systems. in G. Rozenberg (ed.): Hand-
book on Graph Grammars: Foundations, Vol. 1, Singapure: World Scienti�c, 479{
546, (1997).

16. A. Sch�urr. Introduction to PROGRES, an attributed graph grammar based spec-
i�cation language. In M. Nagl, editor, Graph{Theoretic Concepts in Computer
Science, Lecture Notes in Computer Science, vol. 411, 151{165, , Springer, Berlin,
(1990).

17. G. Taentzer, C. Ermel, M. Rudolf. The AGG approach: language and environment.
In. [5].

18. D. Varr�o. Automatic transformation of UML models. Master's thesis, Budapest
University of Technology and Economics, 2000.

19. D. Varr�o, G. Varr�o, and A. Pataricza. Designing the automatic transformation of
visual languages. Submitted to Science of Computer Programming. Special issue
to appear in December 2000.

20. D. Varr�o, G. Varr�o, and A. Pataricza. Designing the automatic transformation
of visual languages. In H. Ehrig and G. Taentzer, editors, GRATRA 2000 Joint
APPLIGRAPH and GETGRATS Workshop on Graph Transformation Systems,
pages 14{21. Technical University of Berlin, Germany, March 2000.

