
VIATRA - Visual Automated Transformations for Formal Verification and
Validation of UML Models

György Csertán Gábor Huszerl Istv´an Majzik Zsigmond Pap Andr´as Pataricza
Dániel Varró

Budapest University of Technology and Economics
Department of Measurement and Information Systems

fvarro,pataricg@mit.bme.hu

Abstract

The VIATRA (VIsual Automated model TRAnsforma-
tions) framework is the core of a transformation-based veri-
fication and validation environment for improving the qual-
ity of systems designed using the Unified Modeling Lan-
guage by automatically checking consistency, complete-
ness, and dependability requirements. In the current paper,
we present an overview of (i) the major design goals and
decisions, (ii) the underlying formal methodology based on
metamodeling and graph transformation (iii) the software
architecture based upon the XMI standard, (iv) and several
benchmark applications of the VIATRA framework.

1. Introduction

The advent of visual design languages promises not only
a better requirement capture and easier software architec-
ture process, but a radical increase in software productivity,
as well. The rapid spread of UML, the Unified Modeling
Language [9], as the dominant object-oriented CASE tech-
nology clearly indicates the market need for effective visual
design technologies.

However, the use of visual CASE methodologies does
assure neither the correctness of the design, nor the depend-
ability of the target application. The designer can still con-
struct syntactically correct but semantically incorrect mod-
els. The assurance of the qualitative correctness of a design
necessitates the checking of (i) thecompleteness and con-
sistencyof the system specification, (ii)global correctness
attributes, like the deadlock freedom of the design, and (iii)
application-specific requirements, like safety requirements.
The dependability of the target application necessitates the
fulfillment of several quantitative requirements, as well. For
instance, (i)timelinessof the application is one of the ma-
jor criteria in real-time system design, or (ii)reliability and

availability measuresare crucial in the system design phase.
During the last decades computer science has success-

fully attacked the majority of these problems by providing
mathematic methods and tools for the modeling and anal-
ysis of dependability attributes. However, these methods
are not widely used in the industry primarily due to the
high level of abstractness of the mathematical modeling and
analysis techniques.

A former ESPRIT project under the acronym HIDE (car-
ried out together with FAU Erlangen, CNUCE Pisa and
two industrial partners [2]) has shown the feasibility of an
automated, multi-aspect dependability evaluation of UML
designs. In HIDE, the UML model of the target design
was enriched by dependability requirements and local de-
pendability attributes associated to the individual compo-
nents. The mathematical models (like timed Petri-nets for
the quantitative evaluation of dependability) were derived
from this model automatically by custom-built model trans-
formations. The results of the mathematical analysis were
back-annotated to the UML model for presentation to the
designer.

2. Design guidelines

An important experience gained from HIDE was that an
ad-hoc implementation of transformations lacks the nec-
essary preciseness, thus implementation errors can make
the transformations be the weakest point in the chain of
tools serving for dependability evaluation. This way a
mathematically precise paradigm was searched for lead-
ing to a general-purpose framework for the definition and
implementation of transformations. Another argument to-
wards the use of such a framework was the need for a
high-degree of flexibility due to the changing and extensi-
ble UML standard, the problems revealed in UML and the
implementation-related aspects of the target application to
be included into the transformation.



As it turned out, an open and flexible transformation
based V & V framework necessitates (i) a general purpose,
mathematically solid paradigm and a user friendly method-
ology for the definition of UML notations (dialects) and
transformations towards a variety of mathematical analy-
sis tools; (ii) an efficient and mechanized methodology to
derive model transformation and back-annotation programs
from these definitions.

Our new framework (called VIATRA: VIsual Automated
model TRAnsformations; depicted in Fig. 1) for UML-
based system verification has the following main attributes:

program
transformation

core
transformation

VIATRA
Analysis

tool

Mathematical

language
modeling

Metamodel of the
mathematical

paradigm
UML

profile

Transformation rules

VIATRA code generator

UML

Standard

(a) Transformation designer view

System
model
under

analysis

UML profile
as modeling

language

program
transformation

core
transformation

VIATRA

Mathematical

language
modeling

Analysis
tool

(b) User view

Figure 1. The architecture of VIATRA

� Both the UML dialect to be used by the modeler and
the input notation of the target mathematical analysis
tool are defined by their respectivemetamodels. This
offers flexibility.

� Transformations can be defined in the form of a set
of simple transformation rules correlating individual
UML notational elements with the target mathemat-
ical notation. These transformation rules themselves
can be designed visually in UML.

� The transformers are automatically derived from the
rules by using the mathematically well-defined and
widely used principle of graph transformations [8].

� A back-annotation engine (based directly upon the au-
tomatically generated transformer) provides the user
with the analysis results integrated into the original
UML model. The entire transformation framework is
hidden from the end user.

3. Modeling concepts in VIATRA

A model transformation-based verification approach for
UML models requires the precise definition of models from
various application domains, which are specified uniformly
by visual metamodeling techniques in VIATRA. A precise
metamodeling method includes the formal definition of the
abstract syntax, the static and dynamic semantics of a lan-
guage.

In VIATRA, the static syntaxof a modeling language
is specified in the form of UML class diagrams (following
basically the concepts of MOF metamodeling [6]) and for-
malized by typed, attributed and directed graphs.Metamod-
elsare interpreted as type graphs, andmodelsare valid in-
stances of their type graphs [11]. Our experiments showed
that mathematical notations described by a corresponding
metamodel are much more expressive for engineers than
pure mathematical formulae.

A sample metamodel of finite automata (taken from a
mathematical domain) is depicted in Fig. 2.

Transition
char: Char

StartState

AccState State
name:String

Automata

states

to

from

current transitions

Figure 2. The metamodel of finite automaton

VIATRA uses a declarative and pattern-based descrip-
tion technique forstatic semanticswhere the majority of
well–formedness constraints is provided by graph patterns
that preserve visuality.

Graph patterns also play a major role in the definition
of the dynamic semanticsof a model as the evolution of a
model is described by graph transformation rules [8]. A
graph transformation ruleis a 3-tuple(LHS;N;RHS),
whereLHS is the left-hand side graph,RHS is the right-
hand side graph, whileN is (an optional) negative applica-
tion condition graph. The application of the rule to a model
graph (UML model of the user) rewrites the user model by
replacing the pattern defined byLHS with the pattern of
theRHS. A sample graph transformation rule is depicted
in Figure 3. This rule describes the dynamic operational
semantics of finite automata (i.e., how a transition can be
fired).



a1:Automata

s2:Statet1:Transitions1:State

current

states
transitions

states

tofrom

LHS

a1:Automata

s2:Statet1:Transitions1:State

states
transitions

states

tofrom

currentRHS

Figure 3. A sample transformation rule

Transformationswithin and betweenmodels are uni-
formly specified by corresponding graph transformation
rules thus providing an easy-to-understand visual way for
semantic definitions.

As the main goal of model transformation is to derive
a target model from a given source model, source and tar-
get objects are linked together to form a single graph. For
this reason, the concepts ofreference graphsare introduced.
The structure of a reference graph is also constrained by
a corresponding reference metamodel, which contains (i)
references of existing source and target metamodel nodes;
(ii) novel reference nodes that provide a typed coupling of
source and target objects, and (iii) reference edges interre-
lating nodes. Reference graphs also provide the primary
basis for the back–annotation of analysis results.

The entire operational semantics of a VIATRA model
or its transformation is defined by amodel transition sys-
tem, where the next graph transformation rule to be applied
in a specific mode is constrained by acontrol flow graph.
As the majority of rules perform local modifications on the
models they can be executed in parallel for all occurrences
(forall mode). Alternatively, a rule is applied on a (non-
deterministically chosen) single matching (try mode), or, it
is applied as long as possible (loopmode).

4. A technological overview of VIATRA

The general technological concept of the VIATRA
framework is the use of the XMI standard for arbitrary
MOF-based metamodel (simultaneously including UML
and mathematical models like Petri nets, dataflow networks,
hierarchical automata, etc.) in order to obtain an open, tool-
independent architecture. A typical scenario of model trans-
formations in a UML environment is as follows:

Design phase. The interaction with VIATRA commences
with a design phase performed within a traditional UML
CASE tool that has XMI export facilities for MOF. We cre-
ate the MOF metamodels of the source and target model-
ing language. Afterwards, we relate the source and target
objects to each other by constructing the reference meta-
model. Then we export our metamodels in an XMI format
that conforms to the MOF Model [6]. These files serve as
primary inputs for VIATRA. For the next step, the transfor-
mation rules and the control structures are created by a spe-
cial UML profile tailored to graph transformation systems,
and exported into the UML XMI format.

Automated program generation. In the next phase, a
Prolog implementation of the transformation program is
generated automatically. This automated program genera-
tion method itself, which is the semantic core of the VI-
ATRA framework, was also designed and implemented by
consecutive model transformations in a reflective way [10].

Automated transformations. Finally, the previously
generated transformation programs can be applied to the
transformation of various source models. As for the typical
case, the UML model created by a software engineer will
serve as the input of a transformation thus it is exported into
an XMI format. The outputs of the transformation, i.e. the
reference and the target models, are also exported in an XMI
format. The concrete input language of a specific analysis
tool can typically be generated from this format by either (i)
simple Prolog programs, (ii) XSLT transformations, or (iii)
Java programs.

Verification of transformations. As an ongoing activity,
we also aim at the formal verification of model transforma-
tions in order to provide a higher level of quality and faith-
fulness for such transformations. Syntactic correctness and
completeness can be verified by planner algorithms [11].
Semantic correctness of transformations is being verified
by projecting model transformation rules into the SAL in-
termediate language [1], which provides access to an auto-
mated combination of symbolic analysis tools (like model
checkers and theorem provers).

5. Pilot transformations

Formal verification. The formal verification of logic cor-
rectness of concurrent object-based systems designed in
UML necessitates the transformation of the statechart di-
agrams (describing the behavior of the objects) to mathe-
matical models amenable to formal verification. In [4] a
transformation from a subset of UML statecharts (covering



all aspects of concurrent behavior) to Promela, input lan-
guage of the model checker SPIN [3], was presented. We
extended this approach to multiple statecharts (i.e. objects)
communicating through event queues and implemented the
transformation in the VIATRA framework.

The UML model is transformed by about 40 graph trans-
formation rules to a semantically equivalent formal model
called Extended Hierarchical Automata (EHA). The EHA
format has the advantage that the interlevel and compound
transitions are resolved and the state refinement is expressed
in a strict tree structure. A single EHA is composed of
simple sequential automata related by a state refinement
function, while the individual objects specified in the UML
model are represented by a set of communicating EHAs.
The resulting XML representation of the EHAs is post-
processed by a Java application to generate the correspond-
ing Promela code. The results of the verification (counter-
examples) are available in the form of message sequence
charts and execution traces to be back–annotated to the
UML CASE environment.

Checking general safety criteria. Most of the accidents
caused by computer programs occur due to flaws in the
specification; mainly because of its incompleteness, incon-
sistency, or non–determinism. For this reason, N. Leve-
son has specified 47 general criteria for the specification of
safety-critical software [5]. When using UML as the spec-
ification language for such software, the majority of these
criteria should be verified on statecharts.

The standard metamodel of statecharts is not directly ap-
propriate for an automated analysis due to its complex state
hierarchy (composite and concurrent states etc.). In order to
automate the verification process, we introduced areduced
form of statecharts which is a flat model having only basic
elements like states, events, transitions and actions [7]. The
transformation process to the reduced form of statecharts
has been implemented by about 60 (relatively simple) rules
in VIATRA. The main safety criteria (as being static well–
formedness constraints) are also stated in the form of graph
patterns, and required to introduce some additional 40 rules
having a criterion on the left-hand side and an error message
object on the right. The user is informed about the results
of analysis via an XML file generated by VIATRA.

Benchmark applications. We used the UML models of
two industrial dependability-critical applications in order to
validate our approach. One pilot design is a safety-critical
part of anartificial kidney machine. The second applica-
tion is the core part of arailway supervisory traffic control
and optimization systemwhich provides a real-time global
view of the traffic and delivers information for operator de-
cisions. Both example systems necessitate the analysis of
their models for correctness, completeness and consistency.

6. Conclusions

The first experiences with VIATRA, which includes
more than 10 complex model transformations (manipulat-
ing source models having more than 50,000 graph objects),
are promising. The generation time of a new transforma-
tion program lies in the range of several minutes on a usual
desktop PC. The generation of the mathematical model it-
self takes typically less than a few tens of seconds for the
models of small and medium size evaluated so far.

The combination of visual design of transformation rules
as definition language and graph transformation based gen-
eration of transformers seem to be an effective way to con-
quer the problems related to the implementation of complex
mathematical software.

References

[1] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre,
H. Rueß, J. Rushby, V. Rusu, H. Sa¨ıdi, N. Shankar,
E. Singerman, and A. Tiwari. An overview of SAL. In C. M.
Holloway, editor,LFM 2000: Fifth NASA Langley Formal
Methods Workshop, pages 187–196, 2000.

[2] A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Patar-
icza, and G. Savoia. Dependability analysis in the early
phases of UML based system design.International Journal
of Computer Systems - Science & Engineering, 16(5):265–
275, 2001.

[3] G. Holzmann. The model checker SPIN.IEEE Transactions
on Software Engineering, 23(5):279–295, 1997.

[4] D. Latella, I. Majzik, and M. Massink. Automatic verifi-
cation of UML statechart diagrams using the SPIN model-
checker. Formal Aspects of Computing, 11(6):637–664,
1999.

[5] N. G. Leveson.SAFEWARE: System Safety and Computers.
Addison Wesley, 1995.

[6] Object Management Group.Meta Object Facility Version
1.3, September 1999.

[7] Z. Pap, I. Majzik, and A. Pataricza. Checking general safety
criteria on UML statecharts. In U. Voges, editor,Com-
puter Safety, Reliability and Security (Proc. 20th Int. Conf.,
SAFECOMP-2001), volume 2187 ofLNCS, pages 46–55.
Springer, 2001.

[8] G. Rozenberg, editor.Handbook of Graph Grammars and
Computing by Graph Transformations, volume 1: Founda-
tions. World Scientific, 1997.

[9] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[10] D. Varró. Automatic program generation for and by model
transformation systems. In H.-J. Kreowski, editor,Proc.
AGT 2002: Workshop on Applied Graph Transformation,
2002.

[11] D. Varró, G. Varró, and A. Pataricza. Designing the auto-
matic transformation of visual languages.Science of Com-
puter Programming, 44(2002):205–227, 2002.


