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Abstract

Due to their distributed/parallel and data-driven nature, control systems can eas-
ily be modeled according to a data 
ow approach. Control systems are very often
real-time systems therefore a formalism able to capture timing is required. In this
paper we introduce a data 
ow model that includes time and priority for specifying
real-time control systems and we give its formal semantics. The control system is
speci�ed by a data 
ow network which, beside the controller, may include the model
of the plant at some abstraction level. Time is associated to any computational ac-
tivity and time accounting is made directly in the model and not as a separate issue.
Priorities allow to deal with events, as alarm signals, which cannot be delayed. A
general framework for the indirect evaluation of the model is introduced, and a data

ow network to timed Petri net transformation is de�ned allowing the utilization
of the automatic tools of Petri nets for analyzing the temporal properties of the
data 
ow network. The approach is illustrated by an example in which, after the
application of the transformation, selected performance measures are computed.

Keywords: Control systems; control system design; control system analysis;
time-domain analysis; data 
ow model; timed Petri nets.

1 Introduction

A control system is made up of a plant with sensors and actuators, a controller
and the interface towards an operator. The controller continuously interacts
with the plant through control signals and with the operator. The controller
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executes the control algorithm processing the parameters of the environment
sent as signals by the sensors and sends signals to the actuators to intervene in
the environment. In simple systems the software realizing the functions of the
controller is usually organized as a cycle of instructions executed sequentially.
However, this approach does not scale well to more complex systems where
(i) such an ordered cycle may take too long for the real-time requirements
to be satis�ed, (ii) many of the controller instructions are independent and
(iii) the asynchronous nature of the system implies that very few activities
described in the cycle actually take place at each round. Thus asynchronous
models, being able to describe as high degree of parallelism as is admitted by
the requirements of the application, should be used to specify and design such
systems.

Among others, the data 
ow approach has been considered to model asyn-
chronous control systems [19]. Following the data 
ow paradigm, a system
design is represented by a network of nodes which execute concurrently and
exchange data by asynchronous message-passing. Each node is associated with
a set of possible activities. A given activity of a node starts upon receipt of
a pre-de�ned set of messages, executes a computation and terminates with
the output of messages toward other nodes. Although the control engineer's
speci�cation may be a direct representation of an abstract analog computer, or
of hard-wired logic, i.e. of time-continuous functions, it is easily mapped into
a data 
ow net with nodes that accept input messages and produce output
messages, to be executed cyclically at some appropriately high repetition rate
[5]. Data 
ow models have the advantages of a simple graphical representa-
tion (data 
ow networks), compactness and expressiveness of the parallelism
inherent in the modeled system [4,27].

Early timing analysis plays an important role in the development process of
control systems, contributing at the validation to be performed as early as pos-
sible in the design process itself. In case of real-time systems, where response
time of the system is constrained by the speci�cation, the temporal analysis
of the system is essential for determining the satisfaction of the requirements.
The maximum execution and/or response time must be provided. A temporal
analysis is nevertheless very important also for systems that are not required
to satisfy real-time requirements. A designer, especially in the early stage of
the development, would like to know which is the expected time performance
of the design, being prepared to accept also rather rough measures. The av-
erage response time, the average execution time and the steady state analysis
are of interest.

To model control systems, we have extended the traditional data 
ow para-
digm, showing how it can be used in the early phases of the system design
for speci�cation and veri�cation purposes. To analyze the design, we propose
an indirect technique, by transforming the data 
ow model into an equivalent

2



representation which can be analyzed directly. At this extent, a transformation
is introduced from data 
ow networks toward timed Petri nets. The transfor-
mation is proved to generate a Petri net which permits the indirect timing
analysis of the data 
ow model. The idea of using Petri nets in the �eld of
performance evaluation of data 
ow networks was �rst applied in [20], in which
only a subset of data 
ow networks has been considered, composed of a few
types of di�erent data 
ow nodes.

The rest of the paper is organized as follows. In Section 2, we justify the data

ow approach and compare it with other approaches, then formally de�ne our
model. In section 3 the example we use throughout the paper is introduced
and described using our formalism. In Section 4 we brie
y describe a class of
timed Petri nets and the transformation from the data 
ow model to this class
of Petri nets. The relation of the data 
ow model and the corresponding Petri
net is discussed. In Section 5 the transformation is applied to the example and
an analysis of the average and worst case temporal behavior and the schedu-
lability of the simple control system introduced in Section 3 is performed.
Section 6 discusses the limits of this kind of modeling and evaluations.

2 Data 
ow design of control systems

Following the data 
ow design approach, the controller is modeled by a data

ow network that interacts with the external environment. Sometimes, the
external environment, both the plant and the operator, may be modeled to-
gether with the controller to obtain a closed network. Generally, the plant
is speci�ed at a very high abstraction level, by considering the load of the
controlled system and generating the input/output signals accordingly.

We focus on event triggered control systems [22], systems in which activities
start as a reaction to asynchronous events as they occur in the external envi-
ronment. An alternative is time triggered systems [21], represented by systems
which periodically observe the state of the external environment. Event trig-
gered control systems are tailored for a wider set of load hypotheses and o�er
better e�ciency, although not allowing an easy validation as time triggered
ones. Moreover, in a broad class of control systems, the computation is driven
by the change of the state of signals, which are often on/o� signals. This allows
us to restrict to uninterpreted data 
ow nets: data items are not distinguished
from each other, they are represented by tokens. A transition of a signal is
represented by an item in the corresponding channel of the data 
ow net.
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2.1 Data-
ow design environment

E�orts undertaken to support the design of control systems aim at providing
integrated environments in which the composition of the model, simulation
based examination of its behavior as well as formal analysis of the properties
are possible, moreover, the production of prototypes is supported by automatic
synthesis tools. These environments are either based on a single modeling for-
malism with a consistent semantics or seek to systematically combine disjoint
semantics which �t to di�erent modules or phases of the design.

In the literature, various system description techniques and formalisms are
known, with di�erent goals and application areas. Among others, we can men-
tion Hatley-Pirbhai [13] and Ward-Mellor [30] diagrams as general techniques
for structured development of real-time systems or SDL [6] as a standard de-
scription language for communication systems. To model asynchronous, event
triggered systems, mostly the wide family of Petri nets is proposed. In partic-
ular, the application of plain Petri nets has the main advantage that a widely
accepted semantics and sophisticated tools are available. However, it results
in very large and complex models, not always well dominated by the designer.
Using hierarchical nets [16], a more compact model can be provided, but the
analysis techniques are usually based on the mapping of the hierarchical model
to a plain one. Coloured Petri nets [15] have the advantage that, beside pro-
viding a compact model, data dependent control 
ow and computation can
be modeled. Safety properties can be analyzed using sophisticated tools, but
the tools for timing analysis are now in the early phases of development.

The data 
ow paradigm is also received some attention and it is generally con-
sidered as an appropriate basis of integrated design environments. The most
noticeable tools are Ptolemy [7] (used for hardware-software co-design and the
design of control systems), some commercial frameworks for signal processing
applications and tool sets based on synchronous data 
ow languages (Signal
[11], Lustre [12]). Data 
ow approach has been also considered as appropriate
means of modeling asynchronous control systems [19] and real-time processing
[25,29]. Data 
ow models proved to be especially useful in designing embedded
control systems where hardware as well as software elements (decomposed in
further steps of model re�nement) have to be modeled and analyzed together.
Namely, data 
ow nodes can be considered either as high-level abstractions of
software modules containing several tasks with well-de�ned interfaces to the
other ones, or as hardware modules describing activities which can be imple-
mented e.g. by �nite state machines.
Although research on data 
ow is less visible and obtained not such amount of
results as that e.g. on the family of Petri nets, this paradigm still has potentials
that justify its investigation.
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In particular, a data 
ow network is usually very close to the intuitive repre-
sentation of the speci�cation of a system, as conceived by a control engineer.
It is easy to understand and �ts to the designers' way of thinking, therefore
time to construct and understand the model can be reduced (the support of
the re-use of nodes and subnetworks also contributes in it). As the automatic
analysis and synthesis tools become more and more powerful and the design
time is dominated by the model construction phase, it can result in signi�cant
speed-up in the design process. The hierarchical representation and the ex-
pressive power of nodes result in a more compact model which highlights the
structure and helps the designer to focus on given subsystems and activities.

Beside the intuitive description, the possibility to assign well-de�ned semantics
enables the formal veri�cation of data 
ow modeled systems. Many proposals
of data 
ow formalisms are known, which �t to di�erent application areas
[17,18]. However, a disadvantage of the data 
ow paradigm originates from
this variety, as the lack of a single, widely accepted model results in the short-
age of evaluation tools. However, the lack of automatical tools can be resolved
by applying the same approach as in the case of other high level formalisms:
the model can be evaluated indirectly, providing transformations towards un-
derlying simpler formalisms that can be analyzed by existing, sophisticated
packages.

Following this approach, the data 
ow model can be used e�ciently as an
expressive, high level common representation of the design environment. The
indirect analysis resolves the lack of direct tools and also enables a more ex-
tensive analysis of the model since it allows to combine the results related to
di�erent aspects which could not be obtained by a single (simpler) formalism.
Since the transformation of the model and the back annotation of the re-
sults into the original environment is automatical, the designer does not have
to deal with the particular formalisms and interfaces used in the underlying
packages. Integration of new tools can be solved by providing the necessary
model transformation and remapping, without having the designers to learn
the new tool itself.

To analyze di�erent properties of the design, di�erent underlying formalisms
and tools can be selected. As two examples, let us consider safety and timing
analysis (dependability analysis techniques were also extended to be used in
data 
ow modeled systems [10]). Safety analysis of the model can be solved by
transformation of the data 
ow model either to a process algebra speci�cation
or to Petri nets. Using the process algebra formalism, equivalence relations and
logic checking tools are provided to check the satisfaction of requirements [2].
Petri nets are also suitable to analyze safety when the set of states reachable by
the execution of the system can be obtained. To derive the timing properties
of the model, the Petri net based analysis �ts best [9], since a wide range of
sophisticated tools are available.
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According to the above considerations, our design environment is structured
as follows. A graphical data 
ow editor allows the designer to develop the
model in a quick and convenient way by supporting hierarchical composition
of nodes and sub-networks, utilization of application-speci�c libraries and also
automatic tools to get prede�ned connection schemes (e.g. redundant struc-
tures) [8]. The basis of model analysis, i.e. the common representation of the
design environment is a plain network of data 
ow nodes, which is assigned a
well-de�ned semantics allowing to de�ne various, theoretically well-grounded
transformations toward other representations. The designer does not have to
deal with this plain net, as it is provided by the data 
ow editor resolving the
subnetworks and library elements automatically. According to the analysis
method requested by the designer, the common representation is transformed
to the formalism of the underlying tool that can perform the analysis. The
tool is then invoked and the results are propagated back into the environment
in the terms of the original design.

In the current paper we focus on a sub-problem of the design environment, the
timing analysis of the design. After introducing the plain data 
ow net (used
as the common internal representation of the environment) and its formal
semantics, we de�ne the transformation toward timed transition Petri nets
and prove that it preserves the timing properties. This way we are allowed to
use it for the indirect timing analysis of the model.

2.2 Timed data 
ow networks

To model dataless, event-triggered, asynchronous control systems we had to
extend the traditional formalism of data 
ow nodes. To study the state-
dependent behavior of the modeled system, we have introduced states of the
nodes. Each node can execute various activities, referred to as �rings. Accord-
ingly, a particular state is the working state: a node is in the working state
during the time in which it is executing a �ring. Firings are executed sequen-
tially, one at a time. The selection of the �ring to be executed depends on the
state of the node and on the availability of tokens over the input channels of
the node. To manage situations when activities are enabled together, but some
priority constraint exists between them, priorities are assigned to the �rings
of the nodes. Additionally, to be able to investigate the timing properties, the
�rings are associated with a timing parameter. The timing parameter denotes
a delay for the execution of the activity. When the plant is modeled in the
design, time may be associated also with the activities of the plant.
Our approach, since within the nodes of the network there is a �nite state ma-
chine like representation of states and state transitions, allows to express data
driven parallel computing as well as state-dependent response of the system.
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De�nition 1 (node) A node n is a tuple n = (In; On; Sn; Rn) where:

In - set of input channels
On - set of output channels
Sn - set of states; swn is the working state of the node
Rn - set of �rings where r 2 Rn is a tuple r = (s;Xin; s

0;Xout; �; �)
s; s0 2 Sn n fswng - states before and after the �ring, respectively
Xin(c) 7! IN , for each c 2 In - number of tokens removed
from each input channel
Xout(c) 7! IN , for each c 2 On - number of tokens put
on each output channel
� gives the delay for the execution of the �ring
� is the priority of the �ring.

A �ring r = (s;Xin; s
0;Xout; �; �) is enabled if and only if the node is in the

state s and each input channel c 2 In contains at least Xin(c) tokens. If a
�ring is enabled then it may be executed.
A �ring is �rable if it is at the highest priority level among the enabled ones.
If there are more enabled �rings at the highest priority level then the �rable
one is selected randomly. If a node is in a non-working state and none of its
�ring is enabled then the node is idle.

A �ring r = (s;Xin; s
0;Xout; �; �) of a node n is executed during the interval

of time delimited by two instantaneous events:

{ a Start-event (denoted by s(r)) in which 8c 2 In;Xin(c) tokens are removed
from the input channel c of the node, and the state of the node changes
from s to the working state. Moreover a delay is sampled according to � .

{ an End-event (denoted by e(r)) which occurs when the sampled delay ex-
pires. With this event, 8c 2 On;Xout(c) tokens are deposited into the output
channel c of the node, and the state of the node changes from the working
state swn to s0.

The input channels of the node n in Figure 1(a) are a and b (In = fa; bg),
while c is the output channel of n (Op = fcg). If a �ring r exists with initial
state s, �nal state s0, time of the execution of the �ring � 0, priority �0 and
such that it removes i tokens from a, j tokens from b and outputs k tokens on
the channel c (Xin(a) = i;Xin(b) = j and Xout(c) = k) the notation for the
�ring is the following: r = (s; [a! i; b ! j]; s0; [c ! k]; � 0; �0). If the number
of tokens put or removed by the �ring is zero, then it is not included in the
notation.

De�nition 2 (network) A data 
ow network DFN consists of a set of
nodes, on condition that each channel occurs at most once as input and at
most once as output channel of a node.
Given a network, it is denoted by a tuple DFN = (N;C;R; �0), where N de-
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Fig. 1. (a)The node n and n0. (b) The network composed by n and n0. (c) Environ-
ment modeled by dummy nodes. (d) Environment modeled by a net.

notes the set of nodes, C denotes the set of channels while the set of �rings
is referred to as R. Let � be the set of states of the network. A state � 2 �
consists of the states of the nodes (�(n) for each node n) and the states of
the channels (�(c) for each channel c, denoting the number of tokens in the
channel). The initial state of the network is denoted by �0.

We can obtain open or closed networks. A network is open if some channels
are not on both ends connected to the nodes. For example channels a, b, d
and e in Figure 1 (b). In the case of closed networks, each channel links two
nodes.

The environment can be modeled in two di�erent ways:

(i) The input and output of tokens is simulated by adding dummy nodes
to the network, graphically represented by dotted boxes as depicted in
Figure 1(c). The activity of an input dummy node is to deposit tokens on
an input channel of the network, while an output node removes tokens
from an output channel.

(ii) The input and output of tokens is modeled with another data 
ow net-
work representing the environment. The composition of the two networks
results in a closed net, as shown in Figure 1(d).

We apply the following policy in the network for the execution of �rings:
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{ If there are �rable �rings in the network then one of them is selected ran-
domly. Note that �rable �rings belong to di�erent nodes. Then the Start-
event of the selected �ring is executed and the corresponding node enters
the working state by sampling a delay. This step is repeated until �rable
�rings exist, the system time is not increased.

{ If there are no �rable �rings then the End-event of the �ring which has the
minimum remaining delay � is executed. If two or more �rings sampled the
same minimum delay then the selection is random, the �ring that is not
chosen will have a zero remaining delay in the next iteration. The system
time is increased with �.

To avoid to record each small state change, we are interested in selecting a
subset of the states encountered during a computation such that it is still
representative of the computation itself and that allows to maintain all the
relevant information for studying the timing behavior of the system. Consider
that the execution of End-events represents the output of tokens towards nodes
and the system time may be increased only during the execution of an End-
event, while the execution of a Start-event never increases the system time.
Therefore we abstract from states in which Start-events are executed and
characterize computations by recording only those states in which an End-
event is executed. For doing this we introduce the concept of vanishing and
tangible state of the network, similar to vanishing and tangible states of Petri
nets [24]. A state is called vanishing if there is at least one �rable �ring in the
net, otherwise it is called tangible.

Note that after execution of the End-event of a �ring the state of the net
may be tangible or vanishing. Let consider the case of a vanishing state. By
de�nition, the �rable �rings belong to di�erent nodes. Since �rings of di�er-
ent nodes are independent from each other (by de�nition of the network), the
execution of the Start-events of these �rings in any order results in the same
tangible state of the net.
Since in a node the selection among enabled �rings being at the same highest
priority level is random, di�erent sets of �rable �rings can be taken into ac-
count in a vanishing state. To eliminate this inner nondeterminism, each �ring
of a node should have an unique priority.

We de�ne the computation of the net as a series of tangible states. Since the
initial state of the network may be vanishing or tangible, we have to distinguish
two cases.

De�nition 3 (computation) A computation of the network is a �nite or

in�nite sequence �0
(e0 ;F 0

e ;�
0)

; �1
(e1;F 1

e
;�1)

; � � ��k
(ek;F k

e ;�
k)

; �k+1 � � �, where

{ �0 is the initial state;
{ 8k � 1; �k is a tangible state of the net;
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{ for each tangible state �k,
� ek is the End-event of a �ring;
� F k

e is the set of Start-events leading to a new tangible state of the net after
the execution of ek;

� �k 2 IR [ f0g, is a time delay.

{ if �0 is vanishing then �0
(e0;F 0

e ;�
0)

; �1 is replaced by �0
(F 0

e ;�
0)

; �1 where
� F 0

e is the set of Start-events of �rings which are �rable in �0

� �0 = 0;

The one-step computation �k
(ek;F k

e ;�
k)

; �k+1 is interpreted as follows: �k delay
after the previous End-event or after the zero system time for k = 0, the state
of the net changes from �k to �k+1 by the execution of the End-event ek and
by the execution of the Start-events of F k

e in any order. If �0 is vanishing,
the �rst tangible state is reached by executing the Start-events of the �rings
which are �rable in the initial state (the system time in not increased).

A tangible state � of the net is reachable if and only if a computation exists
that transforms the initial state �0 into �.

3 The train set example

In this section we consider the train set example described in [28], where trains
move unidirectionally along a circuit divided into sections (Figure 2). With
the assumption that the train's length is less than each section's length, a
safety criterion for the movement of trains requires that there must be at least
one free section between the head of any two trains in order to avoid collision.

A reservation system can be used to this purpose: a train reserves always two
sections for itself. One section is occupied by the head of the train and a second
one is reserved behind the �rst. Moreover, to be allowed to move forward, a
train has to reserve the next section, so, for limited time intervals, it has three
sections reserved.

The system is divided into two subparts, the plant and the controller. We
modeled the plant as a data 
ow network, thus obtaining a closed network
(Figure 3 for 6 sections). Section SECTi is responsible for sending sensor
signals to the controller and for receiving actuator signals from the controller.
When a train enters a section the sensor sends an es signal to inform the
controller. After receiving the ls signal by the controller the actuator lets the
train proceed to the next section. At the same time a signal sn is sent to
the next section to model the movement of the train. The �rst part of the
controller, nodes CNTi, where CNTi is associated to SECTi, releases section
i	2 (signal rel) and tries to reserve section i�1 (signal res) (� and 	 denote
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Fig. 2. The train set example

the modulo{n addition and subtraction, respectively, where n is the number
of the sections). If the reservation is successful then CNTi sends the ls signal
to the section. The second part of the controller, nodes RESi, keeps track
the reserved and free sections. Receiving a rel signal it releases the section,
receiving a res signal it reserves the section by sending the ok signal to the
CNTi node. Of course if a given section is reserved for a train it can not be
reserved for another one. The timing variables of the example are reported in
Table 1.
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Fig. 3. Data 
ow model of the train set example
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Table 1
Timing variables of the example

timing variable

�sen - time consumed by a sensor sending a signal

�cross - time a train needs to move along the section

�act - time spent by receiving an actuator signal

�cnt - time the controller needs to send signals

�res - time for reserving a section

�rel - time for releasing a section

The resulting data 
ow speci�cation, when the circuit is divided into six sec-
tions and two trains initially located into section 0 and section 2, respectively,
are running over the circular track is the following.

N =
S5
i=0fSECTi; CNTi; RESig

where

SECTi :
ISECTi = fsni; lsig OSECTi = fsni�1; esig
SSECTi = fsi; s0i; s

00

i g
RSECTi = ffi = (si; [sni ! 1]; s0i; [esi ! 1]; �sen; 0);

f 0i = (s0i; []; s
00

i ; []; �cross; 0);
f 00i = (s00i ; [lsi ! 1]; si; [sni�1 ! 1]; �act; 0)g

CNTi :
ICNTi = fesi; oki�1g OCNTi = flsi; resi�1; reli	2g
SCNTi = fui; u0ig
RCNTi = fgi = (ui; [esi ! 1]; u0i; [resi�1 ! 1; reli	2 ! 1]; �cnt; 0),

g0i = (u0i; [oki�1 ! 1]; ui; [lsi ! 1]; �cnt; 0)g
RESi :
IRESi = fresi; relig ORESi = fokig
SRESi = fvi; v0ig
RRESi = fri = (vi; [resi ! 1]; v0i; [oki ! 1]; �res; 0);

r0i = (v0i; [reli ! 1]; vi; []; �rel; 0)g

Initial state of the channels:
8c 2 C n fres1; res3g; �0(c) = 0; �0(res1) = �0(res3) = 1

Initial state of the nodes:
�0(SECTi)i=1;3;4;5 = si; �0(SECTi)i=0;2 = s0i
�0(CNTi)i=1;3;4;5 = ui; �0(CNTi)i=0;2 = u0i
�0(RESi)i=0;1;2;5 = v0i; �

0(RESi)i=3;4 = vi
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In [2] it has been shown that the previous data 
ow design guarantees a safe
behavior of the trains along the track. The proof has been done for the data

ow description of the controller without timing parameters, using process
algebras and model checking veri�cation technique.

4 Analyzing timed data 
ow networks

To analyze temporal properties of data 
ow networks, we use TimedTransition
Petri nets (TTPN), which are Petri nets in which random execution delays
are associated with transitions [3]. This formalism has been accepted and
widely used for performance evaluation, resulting in the availability of a set
of automatic tools.

We de�ne the transformation from data 
ow networks to TTPN so that no
restrictions are put on the distribution of the �ring delay of our DFN. In order
to take advantage of the availability of automatic tools here we focus on the
Deterministic and Stochastic Petri Nets (DSPN,[24]), a subclass of TTPN.
DSPN permits the association of deterministic and exponentially distributed
execution delays of transitions. The exponential distribution, due to its memo-
ryless property, leads to an isomorphism between DSPN and continuous-time
Markov chains, which highly simpli�es the model analysis. Thus, DFNs re-
stricted to either deterministic or exponentially distributed �ring delays may
be analytically evaluated, while DFNs including other distributions must be
analyzed resorting to simulation. It is worth mentioning that there is active
research on analytical models and methods for coping with non-exponential
�ring delays [14]. Hopefully this will result in the production of new tools able
to deal with non-exponential distributions. These tools can be directly used by
applying our transformation and will allow to evaluate more general networks
analytically.

In the following, we �rst recall the usual de�nition of DSPN introducing some
new de�nitions used in our environment (details on the semantics and �ring
policy can be found in in [24]), then we de�ne our transformation and examine
the relation of the two nets.

4.1 Background

De�nition 4 A Deterministic and Stochastic Petri Net is a tuple
DSPN = (P; T;D;W;H;M0;�;�), where:

P - set of places
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T - set of immediate or timed transitions
D � P � T [ T � P - set of directed arcs, called 
ow relation
W : D ! IN+ - weight function of the arcs
H � P � T - set of inhibitor arcs
M0 : P ! IN - initial marking
� : T ! IN - priority function
� : T ! fIR+ [ f0gg - time function in the case of timed transitions;

For timed transitions, � is the deterministic time value or the parameter of the
negative exponential distribution. For immediate transitions � is used for the
selection of the transition to �re (random switch, if more enabled transitions
are at the same highest priority level).

The current distribution of tokens over the places denotes the marking of the
net. Formally, a marking is a mappingM : P ! IN which gives the number of
tokensM(p) for each place p in the network. Tangible and vanishing markings
were de�ned similarly like in the DFN.

For t 2 T , �t = fp j pDtg is called the preset (also input places) of t, t� = fp j
tDpg is called the postset (also output places) of t.
A transition t is enabled if 8p 2 �t, M(p) � W (p; t). Two transitions t and t0

are in con
ict if �t \ �t0 6= ;.
A timed transition t is �rable if it is continuously enabled during its whole
execution time, sampled according to �(t). An immediate transition is �rable
if it is at the highest priority level among the transitions being enabled.

The �ring policy of the net is race with enabling memory [24]. In a vanishing
marking, enabled transitions being at the highest priority level are found and
one of them is selected on the basis of the random switches. It is �red and
this way a new marking is reached, the system time is not increased. When
a new tangible marking is entered, each enabled timed transition samples a
delay. The sampled distributions are the remaining time to �re, counting the
time for which the transition was enabled since it has last become enabled.
The minimum sampled delay � determines both the transition t that will be
executed and the sojourn time in the marking. The system time is increased by
this minimum delay � and t is �red, thus reaching a new marking. If multiple
transitions sampled the same minimum delay then one of them is selected
randomly. The others will sample zero delay in the next tangible marking.

In de�ning a computation of the DSPN, we abstract from vanishing markings
concentrating on the sequence of tangible markings.

De�nition 5 (computation) The computation of the DSPN is de�ned as
follows:

14



M0 (t0;F 0

t
;�0)

; M1 � � �Mk
(tk;F k

t
;�k)

; Mk+1 � � �, where

{ M0 is the initial marking;
{ 8k � 1;Mk is a tangible marking of the net;
{ for each tangible marking Mk,
� tk is a timed transition;
� F k

t is the set of immediate transitions �red according to the �ring policy
after tk, resulting in a new tangible marking

� �k 2 IR [ f0g is a time delay.

{ if M0 is vanishing then M0 (t0;F 0

t
;�0)

; M1 is replaced by M0 (F 0

t
;�0)
; M1 where

� F 0
t is a set of immediate transitions �red subsequently before reaching the

tangible state M1

� �0 = 0;

The one-step computation Mk
(tk;F k

t
;�k)

; Mk+1 is interpreted as follows: �k

delay after the �ring of the previous timed transition or after the zero system
time for k = 0, the marking of the DSPN changes from Mk to Mk+1 by the
execution of the tk timed transition and then by the �ring of the immediate
transitions in F k

t .

4.2 The DFN to DSPN transformation

The transformation T : (N;C;R; �0) ! (P; T;D;W;H;M0;�;�) maps a
DFN to a DSPN by mapping the events of the data 
ow net onto transi-
tions of the Petri net and both the channels of the net and the states of the
nodes onto places of the Petri net.

(i) Places
Let P = PC [ PS [ PW , where PC are the places corresponding to chan-
nels, PS the places corresponding to normal states and PW the places
corresponding to working states obtained by the following rules:
{ each channel is mapped to a di�erent single place with the name equal
to the name of the channel
8x 2 C : T (x) = x 2 PC ;

{ for each node, any normal state is mapped to a di�erent single place
with the same name of the state;
8x 2

S
n2N (Sn n fswng) : T (x) = x 2 PS ;

{ for each node n, the working state is mapped onto a set of places; more
precisely a place is associated with each �ring of the node and the name
of the place is swr

n; r 2 Rn;
8n 2 N : T (swn) = fswr

n; r 2 Rng. Thus
S
n T (swn) = PW ;
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(ii) Transitions, priority � and time parameter �
{ the Start-event of each �ring r is mapped to an immediate transition
with the same name of the event and priority inherited from the �ring.
Since in this case � denotes a random switch, it is set to 1 for all
immediate transitions to have equal probability for the execution of
transitions with the same priority:
8r 2 R : T (s(r)) = s(r) 2 T with s(r) an immediate transition;
�(s(r)) = �, where � is the priority associated to r; �(s(r)) = 1;

{ the End-event of each �ring r is mapped to a timed transition with
the same name of the event and zero priority and the time function
inherited from the �ring:
8r 2 R : T (e(r)) = e(r) 2 T with e(r) a timed transition; �(e(r)) = 0;
�(e(r)) = � .

(iii) Flow relation
{ Transitions representing Start-events of �rings are connected to places
representing states and channels (input places) and working states (out-
put places):
For each t 2 T if t = T (s(r)) with r = (s;Xin; s

0;Xout; �; �), r 2 Rn:
�t = fp 2 PC j p 2 In and Xin(p) 6= 0g [ fsg and t� = fswr

ng;
8p 2 �t \ PC :W (p; t) = Xin(p), while W (s; t) = 1 and W (t; swr

n) = 1.
{ Transitions representing End-events are connected to places represent-
ing working states (input places), normal states and channels (output
places):
For each t 2 T if t = T (e(r)) with r = (s;Xin; s

0;Xout; �; �):
�t = fswr

ng and t� = fp 2 PC j p 2 On and Xout(p) 6= 0g [ fs0g;
8p 2 t�\PC : W (t; p) = Xout(p), whileW (swr

n; t) = 1 and W (t; s0) = 1.

(iv) Initial marking
{ Places corresponding to channels are set according to the initial state
of the channel in the DFN:
8c 2 PC : M0(c) = �0(c);

{ The marking of places corresponding to states is always 0, except for
the places corresponding to the initial state of the nodes which is equal
to 1:
8x 2 PW : M0(x) = 0;
8x 2 Sn; n 2 N : if �0(n) = x then M0(x) = 1 else M0(x) = 0

An example of the transformation is reported in Figure 4, where the Petri net
corresponding to the data 
ow node CNT1 is shown. Places are represented
by circles with the name of the place inscribed inside; moreover, the places
in PW [ PS are represented by dotted circles. Transitions are represented by
boxes; moreover, immediate transitions are represented by shadowed boxes.
The name of the transition is inscribed inside the box. The weight associated
to an arc is represented graphically as a number located near the arc (we omit
the number when it is equal to 1).
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Fig. 4. Representation of the node CNT1

By the transformation, there is a one to one mapping between immediate
transitions of the DSPN and Start-events of the DFN. Similarly there is a one
to one mapping between timed transitions of the DSPN and End-events of the
DFN.

A marking of the DSPN is mapped to a state of the DFN by the following
de�nition:

De�nition 6 (State corresponding to a marking) Given a marking M
reachable from the initial marking of the DSPN. The state � of the DFN
corresponding to M is obtained as follows:

8c 2 C; �(c) = M(c)
8n 2 N;�(n) = s 2 Sn n fswng if M(s) = 1;

�(n) = swn if 9r 2 Rn such that M(swr
n) = 1

The mapping is unambiguous, since exactly one of the places of a node in
PS [ PW contains a token (by the construction of the net).

A state of the DFN corresponds to a set of markings of the DSPN which di�er
in the distribution of tokens in the places of PW . The reason is that there is a
single working state of a node in the DFN, but there is a place corresponding
to the working state of a node for each �ring of the node in the DSPN.

4.3 Properties of the transformation

The de�ned transformation provides the DSPN in its initial marking corre-
sponding to the initial state of the DFN. In this section we prove that reacha-
bility and timing analysis problems of the DFN can be solved using the DSPN
model. It has to be shown that each computation of the DSPN can be uniquely
mapped to an existing computation of the DFN, and then that each compu-
tation of the DFN corresponds to an existing computation of the DSPN. Here
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only the sketch of the proof is outlined, the detailed description is found in
[26].

Theorem 7 The DFN model is isomorphic with the DSPN model in the fol-
lowing sense:
1) a tangible marking Mn of the DSPN is reachable by a computation

M0 (t0;F 0

t
;�0)

; M1 � � �Mn�1 (tn�1;Fn�1

t
;�n�1)

; Mn

if the tangible state �n corresponding to Mn is reachable in the DFN by a
computation

�0
(e0;F 0

e ;�
0)

; �1 � � � �n�1
(en�1;Fn�1

e ;�n�1)
; �n,

with ti = T (ei), F i
t = T (F i

e) and �i is corresponding to M i for all i in the
computation, the �i parameters are equal as denoted. (To simplify the notation,
we de�ne T (fs(r1); � � � ; s(rn)g) = fT (s(r1)); � � � ;T (s(rn))g.)

2) Conversely, a tangible state �n of the DFN is reachable by a computation

�0
(e0;F 0

e ;�
0)

; �1 � � ��n�1
(en�1;Fn�1

e ;�n�1)
; �n

if there is a marking Mn reachable in the DSPN by a computation

M0 (t0;F 0

t
;�0)

; M1 � � �Mn�1 (tn�1;Fn�1

t
;�n�1)

; Mn,
with ti = T (ei), F i

t = T (F i
e) and �i is corresponding to M i for all i in the

computation; �i parameters are equal as denoted.

Proof sketch. The proof of the Theorem is inductive on the length of the
computation.
(a) For the initial marking of the DSPN and for the initial state of the DFN,
the Theorem is valid (by de�nition of the transformation and the mapping).
They are reachable by zero-length computations.
(b) Let assume that the Theorem is valid for marking Mn�1 of the DSPN
reached from M0 by the computation

M0
; � � �

(tn�2;Fn�2

t
;�n�2)

; Mn�1

and for state �n�1 of the DFN reached from �0 by the computation

�0; � � �
(en�2;Fn�2

e ;�n�2)
; �n�1

Then, the following statements can be derived:

(i) A timed transition t is enabled in Mn�1 if and only if the �ring, whose
End-event is e with T (e) = t, is actually being executed by the DFN in
�n�1.

(ii) A timed transition t with a �ring delay � can be selected to be �red in
Mn�1 if and only if the End-event e, T (e) = t, with the same delay � can
be selected to be executed in �n�1.

(iii) Let M 0 be the marking reached from Mn�1 by �ring an enabled timed
transition t and let e be the End-event such that T (e) = t. Then, the
state �0 reached from �n�1 by executing e is the state corresponding to
M 0.
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In the following, we distinguish two cases:
(a) If M 0 is tangible, then �0 is tangible as well, in this way a new tan-

gible marking and a new tangible state are reached, the induction proves

the Theorem as Mn�1 t
!M 0 with Mn = M 0, �n�1

e
! �0, with �n = �0.

(b) If M 0 is vanishing, then �0 is vanishing, too. In M 0, the �ring of
�rable transitions leads to a new tangible marking. Similarly, in �0 the
execution of �rable Start-events leads to a new tangible state.
The sets of �rable transitions that can lead to a new tangible state are
exactly the sets of transitions which can be derived by transforming the
sets of Start-events leading to a new tangible state in the DFN. Addition-
ally, the probability that transitions of a given set are �red (each after the
other, according to the �ring policy of the DSPN) is equal to the probabil-
ity that in the DFN the Start-events of the corresponding set are executed.
If the transitions of a given set are �red then the reached tangible mark-
ing M 00 is such that: when executing the corresponding set of Start-events
leads to �00 in the DFN, it is exactly the state corresponding to M 00. The
induction proves the Theorem as Mn = M 00, �n = �00.

Applying the above statements, point 1) of the Theorem can be proved for each
possible computation of the DSPN. A similar reasoning can be applied to prove
point 2). 2

In the proof of Theorem 7 the type of the distribution of the �ring delays dis-
tributions is not utilized; the Theorem is valid for a DFN and a corresponding
Petri net with generally distributed �ring times, using the semantics and �ring
policy de�ned in Section 2.2 and in Section 4.1. Additionally, the stochastic
behavior of the two models are equivalent in the sense that in a computation
of a DSPN, for each tangible marking, the probability that the model evolves
to a given successor tangible marking is the same as the probability that in
the corresponding computation the DFN evolves to the corresponding next
tangible state.

Theorem 7 and its consequences assure that reachability analysis (focussed
on tangible states) as well as steady-state and transient timing analysis of
the DFN can be performed using the corresponding DSPN model. One can
investigate e.g. existence (or absence) of given states, how much time is needed
to reach a given tangible state, what are the computations leading to a given
state, what is the probability of a state or execution rate of a �ring (if a steady
state exists).

Finally we note that in the Petri net given by the transformation, the timed
transitions are not in con
ict with each other, so the policy of the net for
resolving con
icting timed transitions is irrelevant. Tools and simulators which
use race with age memory �ring policy are also suitable for the analysis of
temporal properties of the data 
ow network.
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5 Timing analysis of the train set example

The train set example is used to highlight the usefulness both of the data

ow design approach and of the indirect analysis. Instead of performing the
complete analysis of the train set controller (which is not the main concern of
this work), we report a few examples to show the kind of analysis that can be
done on the design. Among various timing characteristics interesting for a de-
signer, and choosing the default values of the timing parameters (exponential
distribution) as reported in Table 2, we show the following evaluations:

{ The average cycle time of trains: this is a performance indicator and will be
computed using analytical solutions for the Petri net.

{ The maximum cycle time of trains: this quantity needs to be computed in
order to verify if timing requirements are satis�ed; it will be derived by
simulation (using stochastic variables with exponential distribution implies
that each transition can experiment an in�nite worst case time).

{ The probability that a train has to wait at the end of a section for the signal
of the controller: this is a reactive parameter that will be computed again
using analytical solutions for the Petri net.

{ Schedulability analysis: in the DFN model the nodes execute parallel, but
further steps of the model re�nement require to deal with the supporting
hardware architecture. The activities of the nodes have to be associated with
processes which are allocated and scheduled on processors. It is important
to analyze as early as possible the expected timing behavior of the system
when the parallel execution is constrained.

Table 2
Parameters and their values

parameter: value: [1/s]

�cross 0.01

�sen 50

�act �sen=3

�cnt �sen � 10

�res �sen � 10

�rel �sen � 10

Simulations were performed using the SimNet Petri net simulator, while SPNP
[23] (accuracy is better than 10�10) has been used for the analytical solutions.
We summarize the cost of the analysis at the end of the section.
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5.1 The Petri Net Equivalent to the Data Flow Net

The Petri net derived by applying the transformation to the train set data

ow design is shown in Figure 5. To keep the Figure as simple as possible,
each couple of immediate transition and timed transition (associated to each
�ring of a data 
ow node by the transformation) is replaced by a single timed
transition.

In our design environment, the Petri net equivalent of the model is generated
automatically [1]. The DFN is composed using a graphical data 
ow editor
[8], where the nodes of identical type are used as modules, although a simple
textual editor could be used directly. Note that also the representation using
our low level data 
ow formalism (18 nodes) is simpler than the corresponding
Petri net which consists of 84 transitions (42 immediate and 42 timed ones)
and 120 places. (Generally, if the number of section is s then the number of
places in the Petri net is 20s, the number of transitions is 14s.) It would be
more di�cult to manually derive and maintain the Petri net model even in
this very simple example. The data 
ow model is more compact and easy to
survey, expresses the (natural) structure of the problem.

5.2 Average Execution Time

To compute the average time a train needs to cover the whole circuit steady-
state analysis was performed. The results of steady-state analysis provide the
average number of tokens in places and the average throughput of transitions.
From these values the cycle time is computed in the following way: the average
throughput of �ring f0 (which denotes the sending of a sensor signal when a
train has entered section 0) gives the number of sensor messages sent in unit
time from section SECT0 to the controller, that is the frequency trains enter
SECT0. Since (i) the number of trains is �xed and (ii) the safety rule imposes
that trains can not overtake each other, in one cycle f0 will �re once for each
train. Therefore the cycle time is: �cycle = n=throughput(f0) where n is the
number of trains. Since the plant is a ring the same result can be obtained
�xing the observation point at the entrance of any section.

The �rst analysis performed aims at verifying that, when the time necessary
to trains to cross sections (�cross) is several orders of magnitude larger than the
time necessary for the controller, the cycle time remains almost constant and
close to the time trains need to cross a circuit of the same length without the
controller. �sen has been selected to range between 1000 and 0.01 (1/seconds)
that covers not only plausible values but also unrealistic ones. This choice
allows to measure the impact of the delay of the controller and to �nd for
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Fig. 5. Petri net model of the train set example

which ratio of the 'physical' and 'electronic' times the cycle time changes
signi�cantly.

The numerical results for one and two trains and 6 sections are given in Table 3.
As long as �sen is much smaller (up to three orders of magnitude) than �cross,
the time spent by the controller can be neglected. When �sen is closer to
�cross, the time used by the controller may become signi�cant, thus impacting
the cycle time. From Table 3 it also appears that two trains running in the
circuit interfere each other: one train 'locks' the other by forcing it to wait for
a section to become free. With six sections, the interference among the two
trains increases the cycle time (with respect to one train) of about 20{25%.

The degree of interference seems to depend on the number of sections of a
circuit or, conversely, on the number of trains in a given circuit. Thus we com-
puted the cycle time at varying number of sections with two trains (Table 4),
and at varying number of trains with 11 sections (Table 5).
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Table 3
Cycle time of trains

�sen 1 train 2 trains overhead %

1000 600.02 750.02 24.99

100 600.24 750.24 24.99

50 600.48 750.48 24.98

10 602.40 752.43 24.90

5 604.80 754.87 24.81

1 624.00 774.46 24.11

0.5 648.00 799.21 23.33

0.1 840.35 1007.81 19.92

0.075 920.63 1099.68 19.44

0.05 1081.39 1290.54 19.34

0.025 1565.40 1903.33 21.58

0.01 3030.79 3901.04 28.71

Table 4
Cycle time varying the number of sections with two trains

No. of sections cycle time [s] optimal value overhead %

5 667.12 500.40 33.31

6 750.48 600.48 24.98

8 933.94 800.64 16.64

10 1125.75 1000.80 12.48

11 1223.05 1100.88 11.09

12 1320.90 1200.96 9.98

Table 4 reports the optimal values of the cycle time; i.e., considering 1 train
on the circuit. It can be seen that the overhead of the measured cycle time
with respect to the optimal is decreasing starting from 33.31% (for 5 sections)
to 9.98% (for 12). In Table 5, it should be noted that, with increasing number
of trains, the dependency makes the cycle time increase over linearly.
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Table 5
Cycle time varying the number of trains with 11 sections

No. of trains cycle time [s] increment%

1 1100.88 -

2 1223.05 11.09

3 1380.32 12.85

4 1608.87 16.55

5 2049.82 27.40

5.3 Maximum execution time

Using stochastic variables with exponential distribution implies that each tran-
sition can experiment an in�nite worst case time. Therefore for each path on
the net, the worst response time is in�nite. In this case, it is interesting to
evaluate the time within which the train completes a cycle with a given prob-
ability, or, conversely, the probability a cycle will be completed within a given
time threshold. Focusing on the former measure, we have derived by simula-
tion the cumulative distribution function of the cycle time, which allows us to
compute the time within which the train completes a cycle with 90%, 95%,
and 98% probabilities. The distribution functions were represented graphically
and the time values corresponding to the given values of the distribution were
derived. 1000 measurements were performed and to increase the accuracy, the
cycle time was computed at the beginning of each section and then averaged.
In this way, for 95% con�dence level, 5% con�dence interval of the results was
assured.

Table 6
Cycle time as a function of �sen

�sen[1=s]

1000 100 50 10 1 0.1 0.025 0.01

average 750.0 750.2 750.5 752.4 774.5 1007.8 1903.3 3901.0

90% 931 931 932 936 951 1165 2188 4396

95% 1050 1053 1057 1064 1096 1293 2388 4811

98% 1215 1218 1221 1226 1238 1440 2594 5187

The time necessary for a train to complete a cycle with 90%, 95%, and 98%
probabilities has been computed as a function of three di�erent parameters,
namely the speed of the controller, the number of sections and the number of
trains. Here for space limitations we show just the results for the �rst case with
6 sections and 2 trains (Table 6). The results of the measurements are rather
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regular and consistent with the average times, the maximum time increases
in all the three cases with slower sensors, increasing number of sections and
increasing number of trains.

5.4 Probability a train has to wait

The system engineer might be interested in the probability that a train has to
stop at the end of a section and has to wait for the signal of the controller. By
steady state analysis, we computed the distribution of response time of the
controller and from it we extracted the probability that a train has to stop at
the end of a section and has to wait for the signal of the controller. As before,
we considered three di�erent parameters: the speed of controller, the number
of sections and the number of trains. The results show a regular behavior and
we observed that the probability a train has to wait is more sensitive to the
interference among trains than to the other parameters. Thus, the impact of
the number of trains is presented in Table 7 with 11 sections and �sen = 50.
Increasing the number of trains, the probability increases overlinearly, which
is in agreement with the overlinear increasing of the cycle time in Table 5.

Table 7
Probability as a function of the number of trains

Number of trains P(train has to wait)

1 0.000

2 0.111

3 0.250

4 0.432

5 0.699

5.5 Schedulability analysis

All the evaluations shown so far refer to a DFN model in which all the nodes
execute possibly in parallel. This way the 'logic' of the design is analyzed and
the collected information represents an upper bound of parallelism intrinsic
to the design itself. Obviously, to complete the design of a system further
steps are required to deal with the supporting hardware architecture. In both
cases, when a given architecture is already provided and its usage constitutes a
requirement for system development, or a proper hardware architecture must
be identi�ed, the activities of the nodes must be associated with processes
which may be allocated and scheduled on processors. These steps of design
must be analyzed as early as possible to compute the expected timing behavior
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of the system when the parallel execution is constrained. It may be used, for
example, to understand how many processors are necessary such that the
response time of the system does not degrade with respect to the ideal case of
unlimited parallelism, or to quantify the degradation of the timing behavior
of the system, if a given number of processors are available.

Schedulability properties can be easily analyzed in the data 
ow model. In
general, concurrency of data 
ow nodes can be restricted by introducing the
model of a \resource pool", which consists of a channel containing initial tokens
representing the resources and two additional nodes collecting and dispatching
these tokens. In the case of processor resources, the latter node implements
the scheduler. It has the same number of �rings as the number of �rings of
the nodes participated in the scheduling. Assigning priorities to these �rings,
a non-preemptive, priority based scheduling can be modeled. In nodes which
represent activities to be scheduled, additional channels are inserted, to re-
quest, get and release resources. A �ring of a node, to be enabled, needs the
(additional) availability of a resource (processor). Allocation problems can be
examined by assigning the nodes to distinguished resource pools (to a set of
processors). The integration of the additional nodes and the corresponding
modi�cation of the net can be performed automatically.

In our example, the activities of the controller, represented by the �rings of
CNTi and RESi nodes, can be scheduled on one or more processors (the
nodes SECTi represent the environment of the controller, i.e. trains, sensors
and actuators). Thus, we measured the average time needed by the controller
after receiving the sensor signal to activate the actuator signal of a section (let
a given train move to the next section). To do this, the controller was analyzed
modeling the arrival of sensor signals and the movement of trains by immediate
�rings. The measurement results for 9 sections and �cnt = �res = �rel =
500 (corresponding to the previously used �sen = 50 value) are presented in
Table 8.

Table 8
Average response time of the controller [msec]

Number of processors 1 train 2 trains 3 trains 4 trains

1 8.0 16.0 24.0 32.0

2 6.1 8.1 12.1 32.0

3 6.0 6.9 9.9 32.0

4 6.0 6.8 9.9 32.0

In case of 1 train, the reservation of a section and the release of the other
one (left by the train) can be done in parallel, this way the application of two
processors can speed up the controller. In case of 2 or 3 trains, 3 processors
are needed to avoid considerable time overhead. If 4 trains are in the system,
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there are few parallel activities of the controller because the trains have to
wait for each other, thus the response time does not depend on the number of
processors.

5.6 Cost of the analysis

The time and hardware resources needed for the measurements consist of
those necessary for the transformation and those required by the simulation
and analysis tools. The automatical data 
ow network to Petri net transfor-
mation is a linear algorithm (with respect to the number of �rings in the DFN
model), and it can be performed considerably fast even on common PCs (in
about a few seconds for the networks analyzed here). Considering the simu-
lation and analytical solution of the resulting Petri nets, we utilized (by the
transformation) well known analysis and simulation packages, and did not in-
troduce new techniques. Thus, the required resources and limitations are that
of the underlying tools.

The analytical solution of the Petri net by the SPNP tool includes the gen-
eration of the reachability graph (RG) of the model, resulting in extensive
memory allocation, which restricts the analysis to workstations with paging
and virtual memory capabilities. The size of the RG can not be expressed in
terms of the number of nodes in the network, and in our examples depends
also on the number of trains. In our experiments the average size was of few
megabytes with a maximum of about 20 megabytes. Even in this case the
generation of the RG and the solution of the net required less than 10 minutes
on a Sun Sparc 10 workstation.

Using simulation tools, the main requirement is the time needed to perform
the simulation. The SimNet package running on a 66MHz PC needed about
15 minutes to perform 1000 measurements on the largest net (11 sections, 5
trains). More sophisticated simulation tools running on fast workstations can
reduce this time signi�cantly.

6 Concluding remarks

In this paper we have de�ned a formal model of asynchronous uninterpreted
data 
ow networks to be used as a framework for the design process of those
control systems that rely for their behavior just on the presence or absence
of signals. To represent the state-dependent behavior of the system, we have
introduced states of the nodes. To represent priority constraints, priorities are
assigned to the activities of the nodes. Additionally, to be able to investigate
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the timing properties, the activities are associated with a timing parameter
that denotes a delay for the execution of the activity.

A data 
ow network is usually very close to the intuitive representation of the
speci�cation of a control system, as conceived by a control engineer and, �t-
ting the designers' way of thinking, allows to reduce the time to construct the
model. Due to the extensions introduced, our approach uni�es the advantages
of strict data 
ow models and FSM description techniques. Beside the intu-
itive description, the possibility to assign formal semantics enables the formal
veri�cation of data 
ow modeled systems.

The lack of a widely accepted model of data 
ow networks resulted in the
shortage of automatic tools which could support the evaluation of the model.
To be able to analyze the properties of the design, we have followed a rather
common approach used for almost all high level formalisms such as high level
Petri nets. In these formalisms an indirect evaluation is made possible by
resorting to the tools available for lower level representations (as most of the
analysis on Petri nets are performed through Markov models). Our formalism,
as well as high level and hierarchical Petri nets, resort to plain Petri net tools
for analysis. Automatic model transformations and the back annotation of the
results into the original model will hide the speci�c representations and tools
required for the validation.

In this work we de�ned a transformation towards Timed Transition Petri nets
and proved that it preserves the timing properties of the data 
ow network.
This transformation can be performed automatically and enables the use of
simulation and analytical tools available for TTPN.

The application of this method to an example, even though a simple one,
has been conducted referring to the DSPN subclass of TTPN and allowing to
appreciate the kind of analysis which can be automatically performed. The
choice of DSPN allows to obtain analytical solutions of the network restricted
to deterministic and exponentially distributed �ring delays, still admitting
simulation for more general cases. However, it has to be emphasized that the
transformation is valid for the entire TTPN class, thus including all data 
ow
networks whose timing variables follow di�erent distributions. As soon as new
tools dealing with non-exponential distributions will be available they can be
directly used by applying our transformation.
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