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ABSTRACT

Modern architectural styles, like the service-oriented style
underlying web services, are highly dynamic. This compli-
cates not only their practical application, but also the mod-
eling and prediction of their behavior. To account for this
problem, we propose to model architectures as graphs, rep-
resented as instances of UML class diagrams, and to describe
their reconfigurations by graph transformation rules. Based
on a sample model for service-oriented architectures, we dis-
cuss what are interesting properties to be analyzed and how
such analysis could be performed.

1. INTRODUCTION

In our days, applications have to be adaptable to changes
in (at least) two dimensions: Changing requirements, like
requests for new functions, may require to integrate new
components either statically or at run-time. Changing en-
vironments, like faulty communication channels or mobility
leading to a reduced bandwidth, may require to replace un-
reachable components.

Current component models like CORBA, EJB, or Web
Services provide the basic techniques to realize the required
flexibility through reconfiguration mechanisms, like dynamic
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loading and binding of components. However, often the more
difficult questions are non-technical ones, like:

1. “Which configuration exactly is the right one to per-
form a certain function in a given environment?”

2. “Is this configuration reachable from the present situ-
ation?” and if so,

3. “By which sequence of reconfiguration steps?”

In order to answer such questions, an architectural model
is required which allows to reason on a more abstract level,
disregarding implementation details like the technicalities of
the component model employed. Still, this abstraction must
not lead to ambiguity, as reasoning on complex problems re-
quires a high degree of precision. This is usually provided by
formal methods-based architectural description languages
like Wright [2] or Rapide [17].

On the other hand, some of the above questions require
knowledge of the problem domain. Therefore, the model
needs to be understood and validated by domain experts
with little or no background in formal specification. Here,
an explicit, visual representation of the architecture in some
diagrammatic language like the Unified Modeling Language
(UML) [22] is often regarded as helpful, even if we risk to
trade this intuitive nature for ambiguity.

At the same time, both UML-based architectural models
and architectural description languages are not very good
at describing the highly dynamic nature of today’s architec-
tures, with unbounded creation and deletion of components
and connectors.

Based on this observation, we propose a combination of
UML modeling and graph transformation as a visual, yet
formal approach to model (and reason about) component-
based architectures. In particular, we use transformation
rules to specify architectural reconfiguration, but also possi-
ble changes in the environment, by graphical pre/post con-
ditions.

Since these models are executable, they support auto-
mated reasoning by means of simulation using graph trans-
formation tools like PROGRES [26] or Fujaba [1], e.g., in
order to check the applicability of a certain sequence of ba-
sic reconfiguration steps in a given situation. Moreover, the
theory of graph transformation provides the basis for static
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answer questions about the reachability of configurations.
In this paper, we present an application of these ideas
to service-oriented architectures (SoAs) which are typical



of their dynamic nature, given the run-time detection of
components through registry services and subsequent dy-
namic binding. Our model for service-oriented architectures
is introduced in Section 2. Based on this model, Section 3
explores possibilities for automated analysis. Section 4 sur-
veys the related work while Section 5 concludes the paper
discussing possible future work.

2. MODELING

In this section, we present our proposal for modeling archi-
tectural styles with UML diagrams and graph transforma-
tion rules. An architectural style includes a static and a dy-
namic specification. The static part, described in Section 2.2,
defines the set of possible components and connectors and
constrains the way in which these elements can be linked to-
gether. The dynamic part, described in Section 2.3, specifies
how a given architecture can evolve in reaction to planned
reconfigurations or unanticipated changes of the environ-
ment. For better understanding, we choose service-oriented
architectures as a case study for our proposal.

2.1 Service-oriented architectures

As shown in Fig. 1, taken from [7], service-oriented ar-
chitectures consist of three types of components: service
providers, service requestors and discovery agencies. The
service provider exposes some software functionality as a
service to his clients. Such a service could, e.g., be a SOAP-
based web service for electronic business collaborations over
the Internet. In order to allow clients to access the service,
the provider also has to publish a description of the ser-
vice. Since service provider and service requestor usually do
not know each other in advance, the service descriptions are
published via specialized discovery agencies. They can cate-
gorize the service descriptions and provide them in response
to a query issued by one of the service requestors. As soon
as the service requestor finds a suitable service description
for its requirements at the agency, it can start interacting
with the provider and using the service.

Service
Discovery Description
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Service
Description
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Provider
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Figure 1: Service-oriented architecture

Such service-oriented architectures are typically highly
dynamic and flexible because the services are only loosely
coupled and clients often replace services at run-time.
Firstly, this is advantageous if the new service provides a
better alternative to the former one concerning functional-
ity or quality of service. Secondly, this kind of reconfigura-
tion might become necessary if a service is not reachable any
longer because of network problems. If a requestor wants to
bind to a new service but requires a certain level of quality
from this service, it is imaginable that these quality proper-

ties can only be guaranteed under certain assumptions. This
means that the quality and/or functionality of the provided
service might depend on other third-party services used by
the service itself. For this reason, the service provider might
have to find suitable sub services on its own before it is able
to confirm a request for a certain level of quality.

2.2 Static model

We model the static part of the architectural style with
UML class diagrams [22] as shown in Fig. 2. Classes repre-
sent three different types of elements: architectural elements,
messages, and specification documents. The architectural el-
ements like components and services are obviously required
for the static model. In our case, a component can play dif-
ferent roles at the same time, i.e., a ServiceProvider can also
be a ServiceRequestor and vice versa. The DiscoveryAgency
is considered as subclass of ServiceProvider because it pro-
vides services dedicated especially to publishing and query-
ing the service specifications. A ServiceRequestor interacts
with a Service via a Session instance. This session contains
the information about the current state of the interaction for
each requestor since it is possible that different clients inter-
act with the same service simultaneously. Hence, the session
represents the actual connection between a requestor and a
service.
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Figure 2: Service-oriented architectural style

If a component wants to initiate a certain reconfigura-
tion operation, it usually has to communicate this to other
affected components. Since we want to model these recon-
figurations in the dynamic part, we provide the necessary
types of signals and messages for the communication in the
static model. For instance, the Query, Request, and Discon-
nect messages are used when searching the discovery agency,
for certain service specifications, and for creation or cancel-
lation of a session.

We also include representations of specification documents
in the static model. They are necessary to describe recon-
figuration operations in which a component is dynamically
searched at run-time and bound to certain requirements.
Our architectural style defines two types of specification doc-
uments: Requirements and ServiceSpecifications, which both
contain a set of Properties. In the case of a requirements doc-



ument, these properties are required by a service requestor
for the service it wants to use. In the case of a service spec-
ification describing a particular service, these properties are
guaranteed by the service provider. In some cases this might
only be possible under certain assumptions which then in
turn lead to new Requirements.

The associations between the classes define how the above
mentioned elements can be linked in a concrete architecture,
constrained by the given cardinalities'. Other constrains and
well-formedness rules can be added as OCL expressions [22].
For instance, the following expression restricts the allowed
implies links between Properties to those pairs which actually
satisfy a logical implication: 2

context Property inv:
self.implies->forAll(p | self.expression
implies p.expression)

An architecture compliant with the style can be regarded
as an instantiation of the class model as exemplified in
Fig. 3. Component comp2, which provides service sl to the
requestor srl, also plays the service requestor role sr2 and
uses the service s2. This is necessary to guarantee property
p4 of the service specification whose assumptions are sat-
isfied by s2. In this situation the session se2 is required in
order to serve session sel. We model this dependency as a
link between the two sessions. This link can then serve as
a reminder if somebody wants to close se2 while sel is still
running.
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Figure 3: Example service-oriented architecture

2.3 Dynamic model

In order to reason about planned or unanticipated recon-
figurations of architectures, we use graph transformation
rules to capture the dynamic aspects of the architectural
style. A graph transformation rule is a pair of UML object
diagrams [22], defining the pre and post conditions of the
transformation. For conciseness, we integrate pre and post
conditions in one figure and tag elements which are added
to the architecture during the application of the rule with
the label {create}, and elements which are deleted with the
label {delete}.

Figure 4 shows a first example of such a rule in which a
service requestor sends a request to the service it would like

No explicit cardinality means 0..n by default in Fig. 2.
2The first implies refers to the name of the association (see
Fig. 2), the second one refers to the reserved OCL operator.

to connect to. As precondition the requestor has to know
a service specification which could satisfy its requirements.
As postcondition the request is created and linked to all
properties of the requirements. This is done because the ser-
vice provider which receives the request has to confirm all
the required properties before a successful connection to the
service can be established.
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Figure 4: Creating a request for a known service

specifies

Because of space limitations we cannot present all recon-
figuration rules for the service-oriented architectural style,
but only a condensed excerpt. Therefore we also omit the
rules which deal with the just created request and try to
confirm all required properties on the service provider side.
This might also include the need for the provider to become
a service requestor in order to satisfy the assumptions which
are made in the specification of its service in order to pro-
vide certain properties or a certain level of quality of service.
Each time, the service provider can actually guarantee one
of the required properties, the link toConfirm between that
property and the request is deleted. Finally, if all properties
have successfully been confirmed to the service requestor, a
new session with the service can be established as defined in
Fig. 5.
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Figure 5: Create session and connect to the service

This rule contains a negative application condition which
prevents its application if there are no properties in the re-
quirements which still have to be confirmed by the provider.
Otherwise, the rule can be applied to the architecture. It
creates a new session instance which realizes the connection
between the requestor and the service. Since the request has
been fulfilled, the corresponding message can be deleted. Af-
ter that, the binding of the requestor to the new service has
been completed, and it can access the service.

The basic dynamic model consists of about ten more
transformation rules which cover publishing a service de-
scription to a discovery agency, querying the agency for a de-
scription, creating a request for the service aiming at a new




session, and disconnecting from an existing session. They
do not yet capture a fault model and related repair mecha-
nisms. If a more complex reconfiguration step requires a se-
quence of individual transformation rules, these rules could
be combined using explicit control flow constructs. For in-
stance, story diagrams [10] combine graph rewriting rules
based on UML object diagrams with control flow elements
as provided by UML activity diagrams.

3. ANALYSIS

In the current section, we identify automated means to
formally reason about the correctness and consistency of
architectural styles and concrete architectures captured by
high-level specifications in the form of structural UML dia-
grams and graph transformation rules as discussed in Sec. 2.

3.1 Properties

Essentially, the analysis tasks we aim to carry out can be
grouped into three main areas (as summarized in Fig. 6).
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Figure 6: Analysis tasks

1. Conformance of the model of the architectural
style to the informal requirements. At first, we
have to show that the model of an architectural style
fulfills the informal requirements. In this respect, the
intuitively constructed graph transformation rules are
validated whether they faithfully capture the intended
dynamic behavior (i.e., the protocol or scenario) of the
style. As for our SoA example, one can be interested
in proving that, for instance, (i) each time a required
service is provided by a certain provider, a connection
will be built up sooner or later between the requestor
and provider components, and (ii) eventually, the re-
questor and provider will be disconnected.

2. Conformance of the implementation of the ar-
chitectural style to its model. A further analysis
task is to prove that a concrete implementation of an
architectural style (such as a specific middleware) cor-
responds to the formal model we constructed.

3. Consistency of an application and an architec-
tural style. From an application point of view, it is
much more important to prove that an architectural

style is properly used by the application. Hence we
need to show that the style and the application is con-
sistent from both a static (well-formedness constraints
are satisfied) and dynamic point of view (the applica-
tion implements the protocol soundly). For instance,
in a given application that uses the SoA style, one can
ask whether an execution sequence of the application
describing how to query a given service is consistent
with the protocol defined by the style. Here, we typ-
ically perform wverification as the behavioral model of
the application is compared with a reference specifica-
tion defined by the architectural style.

In the presence of faults, a carefully constructed fault
model (captured (i) on the model level by additional graph
transformation rules or (ii) on the requirements level by fur-
ther assumptions) aims at formalizing what changes in the
context are encountered. Afterwards, we can first assess the
fault-tolerant capabilities of the style itself by proving con-
sistency when certain well-formedness constraints are not
satisfied by the application or the context. After identifying
the dependability bottlenecks where certain repair actions
are indispensable, new rules can be introduced to the oper-
ational description of the style to provide such repair mech-
anisms, thus the model checking process may continue with
an extended rule set.

Below, we provide a brief overview of automated valida-
tion (Sec. 3.2) and verification (Sec. 3.3) techniques that
we want to use to assess the correctness and consistency
analysis of graph transformation based descriptions of ar-
chitectural styles.

3.2 Validation

For the validation of the graph transformation rules aim-
ing to capture the dynamic behavior of the architectural
style, we propose two different techniques (with sufficient
tool support):

e Interactive simulation. Many existing graph trans-
formation tools (like Fujaba [1] or PROGRES [26]) of-
fer an interactive visual environment for simulating the
rules defining also how these models can evolve provid-
ing a means to estimate the behavior of an application
in various situations. Simulation allows designers to
play with “what if” scenarios and to concentrate on
the key aspects of the particular architecture. Results
are not as complete as with analysis, but they are read-
ily available and more interactive.

e Critical pair analysis. Critical pair analysis [5] is
a powerful technique to statically detect potentially
conflicting rule pairs by automatically generating sam-
ple models for which the application of the two rules
would be in conflict. Afterwards, the validator inves-
tigates these problematic situations to decide whether
they really cause problems.

3.3 \Verification
For the consistency verification of architectural styles, we

propose:

e Reachability analysis by graph parsing. Many
verification problems can be formulated as the reacha-
bility (or non-reachability) of a given configuration of



the system. Built upon the technique of graph pars-
ing, one can decide whether the target configuration
can be generated by the graph transformation system
if started from a specific initial model, thus providing
means to backward reachability analysis.

e Model checking graph transformation systems.
Given the structural description of the architectural
style, the graph transformation system, and an arbi-
trary (bounded) model instance of a given application,
we can automatically generate a state transition sys-
tem [29] and verify properties by model checking tech-
niques.

While previous techniques for validation preserve all
information of the modeled system, in the model
checking case only dynamic parts of the application
(i.e., those that can be altered by a rule) are projected
into the target transition system while static parts are
simplified by a compile time preprocessing in order to
obtain a manageable state space.

Properties to be verified are captured in the specifica-
tion language of the model checker tool, which typi-
cally take the form of temporal logic formulae (as in
the case of SPIN [14] or SAL [3]), or simple transitions
that are not allowed to fire during model evolution
(e.g., in Mur¢ [21]).

4. RELATED WORK

Several proposals have influenced our work. First of all, we
should mention the many ADLs (Architectural Description
Language): Rapide [17], Wright [2], Darwin [18], C2 [28], and
xADL [8] are just a few examples. In all these approaches,
concepts are well-defined, but the concrete representation
does not always support them. This is why we decided for a
well known representation of concepts, paired with a formal
definition of their interaction and composition. Given the
UML-like representation, we have to consider the work by
Medvidovic et al. [19] that assesses the suitability of UML
to represent software architectures.

If we move to the more theoretical foundations, we must
mention the CHAM approach [15], in which architectural
reconfiguration is studied in terms of molecules and reac-
tions, and the proposals that represent architectural styles
by means of graph grammars and reason on changes and
evolution with respect to structural constraints. Some ap-
proaches [16,27,30] assume a global point of view when de-
scribing reconfiguration steps which, in a real system, cannot
be taken for granted. Other approaches (for example [13])
model reconfiguration from the point of view of individual
components which synchronize to achieve non-local effects.
Here, locality corresponds to context-freeness, that is, a rule
is local if it accesses only one component (or connector) and
their immediate neighborhood. Synchronization of rules is
expressed in the style of process calculi.

Our proposal does not use a grammar to generate the
particular architectures. We utilize a model (i.e., class dia-
grams and constraints) to express the valid instances of a
given style. Graph transformation rules are exploited only
to render the dynamic aspects like evolution and reconfigu-
ration. The advantage is that a declarative specification is
more abstract and easier to understand, even if a construc-
tive/operational one is better for analysis and tooling.

Nowadays, the work by Muccini, in his Ph.D. thesis [20],
offers a wide and complete presentation of the efforts on
modeling, analyzing, and testing software architectures.

Moving to implementation-oriented approaches, we want
to mention the work by Rutherford et. al. [25] that uses En-
terprise JavaBeans as the underlying component model. It
is interesting because of the “concrete” viewpoint, but they
do not maintain a neat architecture model as we propose.

We also want to take into account the proposals on self-
adaptative and self-healing systems [11]. For example, Or-
eizy et al. [23] discuss the problem and identify a set of
significant needs. Georgiadis et al. [12] model structural ar-
chitectural styles by means of Alloy: Their models are con-
cise and elegant, Alloy supports automatic analysis, but the
expressiveness of these models is not self-evident.

5. CONCLUSIONS AND FUTURE WORK

The paper presents a case study on modeling and analyz-
ing architectural styles with graph transformation. Specifi-
cally, we exemplify the approach on service-oriented archi-
tectures.

Our current work is on experimenting different solutions
— besides that presented in the paper — to express rules,
constraints and control mechanisms to find the right balance
between expressiveness and analyzability.

Rules can be extended to address adaptability and the ca-
pability of automatic recovery ( [11]). If we consider modern
scenarios where applications are ubiquitous and they must
adapt their behavior on the context in which they are ex-
ecuted, a disciplined approach to modeling these aspects is
essential. Rules offer a clean and neat way to specify how
the architecture should react to the different stimuli, but the
analysis capabilities — both model-checking and simulation
— complement the design with the capability of automatic
reasoning and predicting the behavior of specified architec-
tures. In a similar way, rules can specify the self-healing
capabilities associated with the specific style or family of
architectures.

Notice that the graph transformation system can also be
seen as the coordinator that supervises the adaptation pro-
cess. In this context we do not want to discuss all related
problems and implementation issues, which would be pre-
mature, but rather to pinpoint the possibility of using the
same technology both as modeling means and as run-time
supervisor.

If we do not embed the graph transformation system in the
running environment, we can use it to test the architecture.
Plans here cover the derivation of both suitable test cases
— at architecture level — derived from the rules and model-
based oracles to assess the quality of test results. The two
aspects can be tackled independently: Test case generation
for architectures is nothing new (see for example [4]), the
novelty is the rule-based derivation. To the best of authors’
knowledge, there are no proposals to derive test cases from
graph transformation systems, but grammar-based test case
generation is almost standard practice if we consider pure
textual grammars ( [6]).

Similar considerations apply to oracle generation: model-
based oracles are well-known (for example [24]), but the use
of a graph transformation system as abstract level is inno-
vative.
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