
1

Multiprocessor Checking Using Watchdog Processors

I. Majzik++, W. Hohl+, A. Pataricza+,++, V. Sieh+

+ Universität Erlangen-Nürnberg, IMMD III, Germany
++ Technical University of Budapest, BME MMT, Hungary

hohl@informatik.uni-erlangen.de

Abstract. A new control flow checking scheme is presented, based on assigned-signature
checking using a watchdog processor. This scheme is suitable for a multitasking, multiproces-
sor environment. The hardware overhead is comparatively low because of three reasons: first,
hierarchically structured, the scheme uses only a single watchdog processor to monitor multi-
ple processes on multiple processors. Second, as an assigned-signature scheme, it does not re-
quire monitoring the instruction bus of the processors. Third, the run-time and reference
signatures are embedded into the checked program; thus, in the watchdog processor neither a
reference database nor a time-consuming search and compare engine is required.

1 Introduction

Massively parallel computing systems running computing intensive applications demand a
high degree of fault-tolerance. Fault-tolerance techniques require error detection mechanisms
with high coverage and low latency. As the majority of failures results from transient faults,
concurrent fault detection is of utmost interest. However, with increasing number of processing
units and parallel processes, concurrent fault detection becomes more and more difficult.

Since the majority of transient processor faults results in control-flow disturbances, a widely
used concurrent error detection method is concurrent control flow checking using awatchdog
processor (WP). A WP as a relatively simple coprocessor compares the actual control flow -
represented by run-timesignatures - with the previously computed reference control flow. This
approach offers the possibility to connect a single WP to multiple processors, reducing the
hardware overhead.

Most of the WP implementations presented in the literature check single processors [10].
They can be classified according to the way how run-time signatures are generated and refer-
ence signatures are stored. Some typical methods are presented in Table 1. The methods using
derived run-time signatures monitor the state of the processor bus.Assigned run-time signa-
tures are computed and inserted into the program source by a precompiler; they are transferred
to the WP by the checked processor itself. The reference is either astored database of the ad-
missible signature sequences or a specialWP program of signature evaluation instructions [7].
(In [18] the main processor itself emulates the signature checker by utilizing unused resources).
A further possibility is to transfer the reference signatures to the WP at run-time explicitly, us-
ing special instructionsembedded into the program of the checked processor.

There are also two approaches to integrate watchdog processors into multiprocessor sys-
tems. The Roving Monitoring Processor [19] is connected to multiple processors and monitors
their states sequentially without checking their interactions. The Checker described in [9]
stores the reference signatures in the local memory of the WP. The information on the control
flow graph (CFG) is not stored, the admissible run-time signatures are identified by associative
memory segments in the WP. Multiple processors are checked using signature queues. A fur-
ther WP to be used in multiprocessors is the Extended Structural Integrity Checker (ESIC [14]).
Signatures are assigned based on the high-level language structure of the program and trans-
ferred to the WP explicitly. Reference signatures are downloaded to the WP in tabular form be-

Accepted to the International Journal of Computer Systems Science & Engineering

2

fore the beginning of program execution. The WP receives the run-time signatures and works
as a finite deterministic stack automaton. In a multitasking environment, the WP always
switches to the reference table of the process a signature was received from.

The main drawback of these approaches is the (over)proportional increase of hardware and
time overhead if more computing nodes and processes are added. Our paper presents a novel
program control-flow checking method and a corresponding WP architecture calledSignature
Encoded Instruction Stream (SEIS [17]). The design goals of the SEIS project were:
• Efficientchecking method ofmultiple processors using a single WP
• Checkinginteractions between the processes of an application
• Reducing the hardware overhead by efficient utilization of the WP resources.

As up-to-date microprocessors have a built-in instruction pipeline and on-chip cache mem-
ory, the assigned signature method was chosen as the focus of interest. The experimental mul-
tiprocessor system MEMSY (Modular Expandable Multiprocessor System) [1],[2],[3] was
used as test-bed for the SEIS WP prototype.

The paper is structured as follows. The next section presents the checking schemes applied
on different levels of the target system covering both theoretical and hardware aspects.
Section 3 describes the integration of the SEIS WP into MEMSY and Section 4 presents mea-
surement results of the prototype implementation.

2 Levels of Concurrent Error Detection

Our method is intended for use in multiprocessors with a UNIX-like operating system, widely
used in massively parallel multiprocessors for scientific computations. An application consists
of processes running the application program written in a procedural programming language.
At each abstraction level: process, procedure, and statement, different checking methods and
WP modules are used.The following run-time informations are monitored and therefore, in-
cluded into a signature:
• thestatement label consisting of three sublabels identifying the location and the valid suc-

cessor statements in the procedure
• theprocedure ID identifying the procedure of a process
• theprocess ID identifying the application process
• theID of the processor which has sent the signature
• synchronization labels (special guard signatures).

Reference

Stored signature
database

Watchdog
program

Embedded
signatures

Run-time
control
flow

Derived
signatures

Asynchronous
Signatured
Instruction
Stream [4]

Watchdog
Direct
Processing
[13]

Basic Path
Signature
Analysis [21]

Assigned
signatures

Extended
Structural
Integrity
Checking [14]

Structural
Integrity
Checking [8]

Signature
Encoded
Instruction
Stream [17]

Table 1 Control flow checking methods

3

The lower level checks are independent from the upper level ones; each level forms a self-
contained, independent module. Each of the checks on the different levels can be executed si-
multaneously, assuring high operating speed. The checking modules are summarized in Table
2. An error is detected if any one of the checker modules reports an error.

The checker hierarchy can detect the majority of faults at the level of their first manifestation.
A fault in the program counter results in an invalid sequence of statements; it can be detected
either as a wrong statement label or as a signature time-out. Stack pointer faults can result in a
faulty procedure return detected by the procedure level checker. Permanent software or tran-
sient hardware faults during synchronization are detected by the process level synchronization
checkers.

2.1 Statement Level Checking

The execution sequence of statements in a program can be associated with aprogram control
flow graph (CFG). Vertices represent branch-free statement sequences,edges represent the syn-
tactically correct control flow between them. The CFG can be extracted by syntax analysis of
the program source. Interrupts, data dependencies in conditional branches, and procedure calls
referenced by pointers raise special problems. Conditional branches allow typically two outgo-
ing edges from a vertex, procedure calls may call any other procedure, and interrupts, resulting
in a call to an interrupt handling procedure, may occur at any time. The latter two problems
belong to the procedure level and are covered in the next subsection.

Thestatement level WP module checks the correct execution order of statements by compar-
ison with the corresponding paths in the CFG. In order to identify the state of program execu-
tion, statement labels are assigned to the vertices of the CFG. These labels are explicitly
transferred to the WP. The transfer instructions and the label values are inserted into the high
level source text by a precompiler.

Statement labels identify not only the CFG vertices but their (syntactically) valid successor
vertices as well. Thus, checking of the statement label sequence is based only on the presently
checked label and its predecessor. This eliminates the need of a WP reference database. Hence,
the evaluation of the correctness of program flow is a simple combinatorial task without any
time consuming database search, allowing high speed processing. The label assignment algo-
rithm of the precompiler is as follows (for the formal description see [12]):

Checker
level

Checked
operation

Signature
information

Checker method

Statement
Statement
sequence

Statement
labels

Comparison

Procedure Call and return Procedure ID
Reference stack,
comparison

Process

Scheduling
Process and
processor ID

Processor-process
database check

Synchronization
Guard
signatures

Reference label
generation and
comparison

Signature
transfer rate

Signatures Basic timer

Table 2 Hierarchical checking (summary)

4

1. TheCFG of the procedure isextracted. The basic control structures form subgraphs of the
CFG. These subgraphs are identified according to the requirements of the encoding algo-
rithm: that is, the number of successors of a vertex is limited in order to reduce the infor-
mation to be encoded in the label identifying them. The subgraphs are composed to form
the CFG of a procedure.

2. The edges of the CFG are collected into anedge trail. The problem of edge collection can
be solved by well-known methods of Eulerian circuit generation.

3. A cyclic ordering of label values is defined and the edge trail isencoded. Adjacent vertices
of the CFG are encoded by subsequent label values and different trails are separated by
unused sublabels. After encoding the trail, all labels corresponding to the same vertex
(calledsublabels) are concatenated defining thestatement label. In this waya statement
label is a valid successor of a reference label if and only if one of its sublabels is successor
of one of the sublabels of the reference label. This is the basic rule of the statement label
checking.
Fig. 1 presents an example C program, its CFG and the corresponding sublabel set. Using
the simplest, natural ordering of the sublabels, a sublabelj is a valid successor of a refer-
ence sublabel i if and only if j=i+1 . This rule is implemented by the successor functionF
which increases the reference sublabel value by one. The statement label sequence during
the execution of the program is valid if the subsequent statement labels have successor sub-
labels. In the example vertexd is a valid successor of vertexb, sinceF(2,5,2)=(3,6,3) and
(6,13,6) have 6 as common sublabel.

4. Intermittent signatures are used in the encoding of special control structures with a large
number (>3) of successor or predecessor vertices. The number of such intermittent signa-
tures (and the time overhead resulting from multiple signature transfers in a single vertex)
is limited in a single signature per vertex by using a slightly modified encoding algorithm.
This is based on the reuse of identical sublabels in different vertices without introducing
ambiguity in the encoding [12].

a:for (j=0;j<2;j++){

b: if (x<0){

c: x=x+8;

}else{

d: while (i<3){

e: i=x+i;

f: }

g: }

h:}

b

Program text

Program control-flow graph
Statement labels

Statement label set:

Vertex Sublabels Vertex Sublabels

a (16,1,1) e (7,8,7)

b (2,5,2) f (9,14,9)

c (3,3,3) g (4,10,4)

d (6,13,6) h (17,11,11)

Fig. 1 Encoding of the program control-flow graph

4104

787

1116

333
6136

9149

111117

252

d

a

c

f
e

g
h

5

Assume that aswitch statement with an actual sublabel ofs has more output branches
than3, the maximal number of successor vertices allowed by the basic encoding scheme.
The sublabelF(s) is assigned to each successor vertex, indicating that they are all valid
successors of theswitch vertex (F is the successor function on the sublabels). Note, that
no data dependencies, like branch selection, are checked by the WP. The individual output
branches of theswitch statement are distinguished by assigning different second and
third sublabels to the vertices.

In order to keep the memory and time overhead at an acceptable level, the number of state-
ment labels in a procedure can be reduced. This reduction is performed on the CFG before the
encoding step. It can be either static or dynamic.

Static reduction decreases the number of vertices in the CFG and thus the signature transfer
instructions in the program code by merging multiple statements into a single vertex and cor-
respondingly into a single signature. A user-definedstatic reduction factor controls the number
of statements merged. Higher numbers increase error latency and reduce the probability of er-
ror detection, yet on the other hand result in fewer checks and shorter execution time. Static
reduction may remove small branches in the CFG. Increasing thestatement factor without en-
abling the static reduction merges only branch-free statement sets into a single vertex.

Removal of cycles in the CFG is not allowed, because otherwise the program may run within
loops for extended periods of time without any check. Hence, each loop has to contain at least
one statement label. Overhead measurements (described in Section 4) have shown a very high
bus traffic due to short loops inducing burst-like transfers of many signatures.Dynamic reduc-
tion has proved efficient to avoid this effect. Instead of transferring a signature, only a counter
variable is incremented. If the signature counter exceeds the user-defineddynamic reduction
factor, the counter is reset and a signature is transferred to the WP. A similar reduction can be
achieved for a predefined reduction factor byloop unrolling followed by a static reduction phase.

The hardware implementation of thestatement-level checker is quite simple, due to the effi-
cient CFG encoding (Fig. 2). Only the reference statement labels have to be stored and regu-
larly updated. The successor function of the sublabels can be implemented as a combinational
logic circuit, the evaluation of the statement sublabels is performed by a comparator set.

2.2 Procedure Level Checking

Theprocedure level checker module has to check the procedure calls and returns. Upon a pro-
cedure call, the WP has to push its state, represented by the previous signature, onto its stack
(called thesignature stack); upon return, the latest signature has to be popped from the stack.

 Procedure calls are potentially data-dependent (e.g. procedure calls through variables) in
high level languages. Neither the location of the procedure call nor the called procedure can be

F F F

= =

=

=

= =

=

= =

a

a

a

r

r

r

=

Error

F Sublabel
successor
function

Sublabel
comparator

a
Actual
sublabel

Reference
sublabelr

Fig. 2 Statement level checker module

Input

label

6

identified by the precompiler in the CFG extraction step. Hence, procedure calls are allowed at
any location of the program, independently of the actual instruction structure. Function calls
embedded into arithmetic expressions and interrupt handler routines can be checked in the
same way as procedure calls. The disadvantage is that only the returns from procedures can be
checked, i.e. a wrong procedure call will be detected only after a long latency. Nevertheless,
procedure calls are allowed to start only at an entry point of a procedure, so an erroneous jump
to the starting point of a procedure can not be detected immediately.

The first and last statement labels of procedures are marked by flags:Start of Procedure
(SOP) and End of Procedure (EOP), respectively. SOP means that the WP has to push the ac-
tual reference onto the stack and the actual statement label is valid as the first reference of the
called procedure. In case of EOP the statement label has to be validated by the statement label
checker and the next reference has to be popped from the stack (the reference of the calling pro-
cedure).

The procedures of a program are numbered and their identifiers are embedded into the sig-
natures, together with the statement labels.The procedure IDs are allowed to change only if the
SOP flag is set.

In a multi-tasking environment the WP and the signature stack storage is shared between dif-
ferent processes. Signature stack areas can be either statically or dynamically allocated. Static
allocation is uneconomical if there are “hyperactive” (e.g. recursive) processes needing more
stack space, while others hardly use the stack. In the case of the dynamical allocation strategy
the individual stacks are parts of a single global stack area implemented as a linked list. Each
process stack is defined by a pointer as header of a linked list. Cells of a stack can be linked to
and from a global free list consisting of the whole unused area. Thus, the stack area of a single
process is limited only by the global number of free cells and the activity of the other processes.

The procedure-level hardware checker module consists of thecomparator for procedure IDs
and thestack maintenance control. The size of the signature stack storage depends on the num-
ber of admissible embedded procedure calls. In the case of astack overflow all active processes
have to be stopped and the stack content is stored into its virtual extension in the main memory,
or in a stable storage, from where the stack can be reloaded after becoming empty.

2.3 Process Level Checking

The process level module checks the scheduling of application processes running on the same
processor and theinteraction of different processes, i.e. synchronization. Signature transfer
times are monitored by a timer and can be used to detect a hung process.

Checking of Process Scheduling. A unique ID is assigned to each application process. Apro-
cessor-process database is established in the process level checker module of the WP: each
processor has a record in this database storing the ID of the presently running process. If the
operating system schedules a new process on a processor then the corresponding record is re-
placed by the new process ID. The process and processor IDs are embedded into the signature;
thus, the WP can compare them with the record in the processor-process database, allowing
only correctly scheduled processes to be active.

Signature transfers are monitored process-wise by separate logicaltime-out checkers in the
WP activated by the scheduler. All time-out checks share the same physical timer of the WP.

Checking of Process Interaction.Faulty process interaction and synchronization based on
sensitive data structures like semaphores (memory-based synchronization) or message descrip-
tors/headers (message-based synchronization) may result in the propagation of errors from
faulty processes to the other ones. To prevent these effects, the process interactions need to be
carefully checked as well.

7

The checking of complex communication and synchronization mechanisms requires the for-
mal description of the fault-free operation, the possible faulty operation and the error detection
technique. It provides not only a clear description but also makes the formal reasoning on the
efficiency of the error detection mechanism possible (e.g. error coverage of the technique, ef-
fects of the faulty operation).

The basic idea is illustrated by the simplest example, the synchronous communication be-
tween two processes. If the sender process terminates correctly after the receiver process has
accepted the data and the receiver cannot get data before the sender begins the communication
then the transfer may be considered valid. An error is detected if one of the partner processes
has already finished the communication and the other partner has not even started it.

The approach of the error detection is similar to the lower levels checks. The WP is notified
on the status of the interprocess control flow by special signatures. Such a signature should
change only after a synchronization in order to distinguish the different phases of the individual
processes during the cooperation. In this way a local checking is performed, i.e. only the syn-
chronization statements are guarded by the special signatures.

Based on the reference labels, the checking is performed by the WP in two phases:

1. The first,initializing signature before the execution of the synchronization notifies the WP,
with which partner process the synchronization is intended. It contains the ID of the pres-
ently running process and the ID of the intended partner for communication. In case of
error-free operation, the other process will send a similar signature referring to the first pro-
cess prior of the synchronization.
Based on the initialization signatures of the participating processes the WP internally gen-
erates a common reference signature for both of them: Areference register is reserved for
each process internally in the WP. When receiving this type of signature, the WP checker
module examines the reference register of the partner process. If the reference register does
not contain the ID of the running process, then the process is the one beginning the syn-
chronization and the partner is not initialized. To indicate this, the checker module stores
the ID of the partner in the reference register of the running process.
However, if the reference register of the partner already contains the ID of the running pro-
cess, the partner is ready for the synchronization due to the processing of a previous signa-
ture. The initialization can be finished. The WP stores in both reference registers the same
reference label identifying the pair of partner processes (e.g. by some function of the pro-
cess ID bits). This indicates that both partners are ready for the communication.

2. The second, thereference signature is sent during the synchronization itself by each partic-
ipating process. It is computed by the precompiler at compilation time in the same way as
the WP prepares internally the reference label in the initialization phase. The WP checker
module compares the reference signature with the reference label. If there is a mismatch
then an error is detected. (The reference signature is valid only if the partner processes
coincide with the expected ones, and both processes have already initialized the synchroni-
zation.) Additionally, a time-out is generated if the reference signature does not arrive in a
given time interval after the initialization signature.

The formal description used in this case is a simple CCS-like process algebra [15] due to its
inherent property of expressing synchronous communication. Table 3 presents the compact de-
scription of the original communicating processesP andQ, the insertion of initialization and
reference signatures and the model of the checker (the time-out checking is not included). The
analysis of the reachability tree of the checked process system shows that in case of the pre-
sented faulty application (processQ misses the message and the synchronization) either theEr-
ror action is observable (if the faulty processQsf is scheduled first) or the time-out signal is
generated (if the processPs is scheduled first).

8

2.4 Additional Features of the Watchdog Processor

The SEIS WP is designed to supportrollback recovery in a massively parallel multiprocessor.
The checked system regularly stores the states of the processes in a stable storage. In case of
an error the application is restarted from the saved state avoiding the loss of the whole comput-
ing time.

Checkpointing and restarting the system requires the WP to save and restore the signature
stacks of all processes affected in the main processor. Checkpoints are stored as dynamically
linked lists in the global stack space. The implementation of the checkpoint operations increas-
es only the complexity of the stack maintenance hardware, other WP modules were not
changed. Checkpoints may share stack cells with the actively used reference stack, thus time
and space consuming stack copying is avoided. Checkpointing only requires saving the opera-
tional stack pointer, and write-protecting the reference stack. After an EOP signature labelling
a return statement from a subroutine, a write-protected stack cell is not linked to the free list,
but remains part of the checkpoint space. Thus, the internal checkpoint operations of the WP
can be executed in a predefined time independent from the stack depth of the process. The fol-
lowing operations are supported:
• Generation of a tentative checkpoint: The previous tentative checkpoint in the WP is re-

placed by the actual reference signature stack of the process
• Commitment: The tentative checkpoint in the WP is made permanent
• Roll-back recovery: The operational reference signature stack of the process is replaced by

the permanent checkpoint.
The WP executes these operations internally initiated by corresponding special commands

embedded in the signature flow.
If an error is detected by a checker module of the WP, an error status word is generated and the
checked system is alarmed by an interrupt. The error status word is the concatenation of the
results of the different checker modules.

Process terms

Original process
system

Original_application = P | Q
P = message.P’ |
Q = message.Q’

Modified
(signatured)

process system

Signatured_application = Ps | Qs =
init(p,q).message.checker(p⊗q).P’ |
init(q,p).message.checker(p⊗q).Q’

A faulty, signatured
process system

Faulty_application = Ps | Qsf =
init(p,q).message.checker(p⊗q).P’ |
init(q,p).checker(p⊗q).Q’

Checker process
Checker =

init(p,q).(init(q,p).checker(p⊗q).checker(p⊗q).0 + checker(p⊗q).Error) +
init(q,p).(init(p,q).checker(p⊗q).checker(p⊗q).0 + checker(p⊗q).Error)

Checked faulty
process system

Faulty_application | Checker

P’, Q’ processes represent the actions following the message transfer,
init(p,q) andinit(q,p) represent the transfer of different initialization signatures,
checker(p⊗q) represent the transfer of the common reference signature,
Error action represent the error signal.

Table 3 Checking of the synchronization

9

3 An Experimental SEIS WP for the MEMSY Multiprocessor

The MEMSY multiprocessor developed at the University of Erlangen-Nürnberg has a 2-level
hierarchical, scalable regular structure with distributed locally shared communication memory
[2], [3]. The processing nodes at each level form a four-neighbor toroidal mesh coupled by mul-
tiport memories. Locally shared memory modules allow communication of two neighboring
nodes with the help of an interrupt network. This communication memory is mapped into the
address range of the processors and interfaced through dedicated buses. The basic building
block of the MEMSY architecture is an elementary pyramid consisting of one higher level node
supervising four lower level nodes. Each computing node is a multiprocessor itself, containing
four MC88100 RISC processors with the corresponding cache and MMU chips. The processor
modules are off-the-shelf, highly integrated boards; so the instruction bus of the processors is
not observable for the purposes of derived signature generation without drastic hardware modi-
fications.

Each basic pyramid of MEMSY is checked by a single WP in order to reduce the hardware
overhead. Thus, the WP is able to simultaneously check 5 computing nodes consisting of a total
of 20 processors and running a maximum of 1280 processes (max. 256 processes per node)
[11].

The WP as a multiport coprocessor is connected to the five computing nodes in an elemen-
tary pyramid. The requests on the input ports of the WP are served sequentially according to a
round-robin priority scheme. A signature is transferred within a single communication memory
cycle. An input FIFO is used to smooth out the time overhead of the relatively complicated
checkpoint operations and to avoid delays due to the time-shared use of the WP. Control oper-
ations, like initialization etc., are performed by the higher level main processor node in an ele-
mentary MEMSY pyramid. All error reports generated in the WP are copied to the higher level
node, forming an error log of the entire basic pyramid.

 The WP is implemented as a 16 MHz coprocessor board on the VME bus of the higher level
node with interfaces to the four computing nodes on the lower level identical with those used
for the communication memory. WP operations (arbitration, signature evaluation, stack han-
dling and checkpointing) are controlled by 6 MACH230 PLDs (3600 gate equivalent per de-
vice). The signature stack is in a 256 K * 64 bit RAM block which is oversized if no recursive
programs are running. Synchronization checks were not used in the experimental version of the
WP. Worst case signature transfer and evaluation time is even in this moderate speed experi-
mental version as low as 300-600 ns depending on the signature type and number of simulta-
neous requests. Tentative checkpoint generation is executed in 2.3 microseconds.

The SEIS C precompiler was implemented in C (fully portable code of about 4000 lines).
Since the WP is memory-mapped, the signature transfer statements are simple instructions in-
serted into the high level C source. The signature data word contains the statement label, while
the statement identification (processor, process and procedure IDs) is transferred in the address
word undergoing a logical to physical address translation in the MMU. During process initial-
ization, the MMU is programmed in such a way that the uniform logical processor and process
IDs (assigned in the precompilation phase) correspond exactly to the IDs assigned actually by
the operating system. Thus, code sharing between processes is allowed.

4 Measurement Results

Standard benchmarks (likewhetstone, dhrystone, linpack etc.) and scientific calculation pro-
grams representing the expected typical MEMSY user profile (like amultigrid based solver of
Poisson differential equations) were used for verification. TheSEIS C precompiler inserted the

10

signature transfer statements, compilation was done usinggcc version 2.2.2 generating a highly
optimized code. The following characteristics were measured for each reduction strategy:
• run-time overhead(number of signatures sent to the WP)
• distribution of the number of steps between subsequent signature transfers in terms of num-

ber of instructions executed
• overhead in static code length
• fault coverage.
Naturally, the resulting characteristics show a dependency on the benchmark and on the reduc-
tion method applied. However, the basic trends were essentially identical. Therefore, the fol-
lowing analysis of the measurement results is illustrated mainly by the detailed results of the
multigrid solver. The experiences with other benchmarks will be presented as accumulated in-
tervals.

4.1 Run-time overhead

The run-time overhead is proportional with the number of signatures sent to the WP. This pa-
rameter can be controlled by the static and dynamic reduction factors. The reduction of signa-
tures in a C program fragment is demonstrated in Table 4. The static reduction factor defines
the maximum number of statements which are associated with a single signature, the dynamic
reduction factor defines the rate of the signature transfer in short loops.

The effects of the reduction depend heavily on the application (Table 5). In case oflinpack the
dynamic reduction reduces the number of signatures to 25%, while the effect of the static re-
duction is not so significant (87%). Fordhrystone static reduction is efficient (58% and 42%)
while dynamic reduction can not reduce the number of signatures further (57%). Themultigrid
solver is selected for the detailed investigations.

Original
program

result=0;
DIM=9;
for (k=0; k<DIM; k++) {

result += v1[k]*v2[k];
}

Signatured
(no

reduction)

*WP_BASE=0x80100401; result=0;
*WP_BASE=0x00200802; DIM=9;
*WP_BASE=0x00302003; for (k=0; k<DIM; k++) {

*WP_BASE=0x00401404; result += v1[k]*v2[k];
} *(unsigned long *)(0x00000004)=0xC0602406;

Static
reduction
(factor=5)

*WP_BASE=0x80101001; result=0;
DIM=9;
for (k=0; k<DIM; k++) {

*WP_BASE=0x00501805; result += v1[k]*v2[k];
} *WP_BASE=0xC0201C02;

Dynamic
 reduction
(factor=8)

*WP_BASE=0x80100401; result=0;
*WP_BASE=0x00200802; DIM=9;
_wpc = 0; *WP_BASE=0x00302003; for (k=0; k<DIM; k++) {

if (!((_wpc++)&7)) {*WP_BASE=0x00401404;}
result += v1[k]*v2[k];

} *WP_BASE=0xC0602406;

Table 4 Reduction examples

11

The run-time overhead was measured using the system timer of MEMSY (10 ms resolution),
in a single-processor environment. The overhead increases drastically when using a small re-
duction factor, even to a level of 100% indicating a cumulative effect of multiple disadvanta-
geous factors (Fig. 3). External bus cycles, like those required for signature transfer are by a
factor of 4 to 10 slower than a cache access [5]. If there are too few statements to execute be-
tween two consecutive signatures, bus saturation can occur. In this case the CPU has to wait for
the end of the transfer inactivating its internal speedup mechanisms (instruction prefetch, pipe-
lining).

For a more detailed analysis the integrated distribution of time periods between subsequent
signature transfers was measured (Fig. 4). The benchmark was executed in a single-step mode
and a trace of the processor instructions was registered. In the ideal case, all signatures should
be transferred within the same time period, defined by the user as a compromise between fault
coverage and performance loss. The first peak in the density function (Fig. 5) after only 3 in-
structions results in a lesser extent from the unavoidable use of intermittent signatures in com-
plex control structures. The dominating cause are over-tested short loops, as a costly check is
performed after only a few machine instructions. Dynamic reduction or loop unrolling with a

Number of
run-time signatures

Reduction parameters

No
reduction

Statement
factor 5

Static 5
Statement
factor 5

Dynamic 8

Static 5
Dynamic 8

Benchmark

whetstone
119,633
100%

76,733
64%

62,924
53%

60,320
50%

46,511
39%

dhrystone
1,220,029
100%

710,010
58%

510,008
42%

700,010
57%

480,008
39%

linpack
11,824,205
100%

11,121,185
94%

10,294,233
87%

2,900,598
25%

2,197,450
19%

multigrid 5
78,992
100%

57,988
73%

35,921
45%

42,564
54%

26,262
33%

Table 5 Overview of the reduction alternatives

100%=
19.3 sec

0

50

100

150

200

250

R
un

 ti
m

e%

Original program
Loop unrolling

signatures
1 2 5 10Without

Fig. 3 Run time overhead

---- Static reduction factor -----

12

subsequent static reduction (both puncturing signature transfers to each kth execution of the
loop body) result in a radical reduction in run-time overhead without a drastic decrease in fault
coverage. Undertesting can occur, even in the case of a single statement such simple asa=b , if
a andb are complex data types involving a long copy operation.

4.2 Overhead in code length

The overhead in code length varied between 20% and 85% in the general case depending on
the benchmark and static reduction factor. Results of the multigrid application are shown in Fig.
6. The number of signatures depends on the program size only approximately linearly with a
moderate coefficient. This overhead is affordable even for large programs in the Mbyte range.
The efficiency of the static reduction rapidly drops with increasing reduction factor. Our bench-
mark program consists typically of short branch-free statement sequences embedded into nest-
ed loops. (In each loop at least one signature must be included). Dynamic reduction does not
influence the code length significantly.

4.3 Fault coverage

The fault coverage was measured using a software fault injector (based on the Unixptrace sys-
tem call, [20]). Single bit transient errors were injected into the program counter at a single ran-
dom phase of the program execution. 5000 experiments were performed for each individual
case; the fault coverage was estimated with a relative error less than±5% at a confidence level

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 s

ig
na

tu
re

s
(1

0
3)

Without reduction

Dynamic: 2 + static: 3
Unrolling + static: 5

Static: 10

Unrolling + static: 10

Dynamic: 16 +static: 3

Time (number of instructions)

Fig. 4 Integrated number of signature transfers

0

5

10

15

20

0 5 10 15 20 25 30

N
um

be
r

of
 s

ig
na

tu
re

s
(1

0
3)

Time (number of instructions)

Loop unrolling + static reduction by a factor of 5Original program

Fig. 5 Frequency density function of the time between signatures

13

of 99%. The errors masked by the program itself, affecting neither the control flow nor the final
results are eliminated.

The majority of the errors was detected by the standard primary checking mechanisms of the
CPU-MMU complex (segmentation violation, bus error, illegal opcode). However, for bench-
marks in the Mbyte range the number of remaining errors not detected by these mechanisms
increases (the probability, that a single-bit error in the address word changes one of the bits
checked by the WP is depicted in Fig. 7). In the case of the extremely smallmultigrid bench-
mark, most of the detected errors was covered by the segmentation and bus checks (85%).

The fault coverage (Fig. 8) of the WP is typically in the interval of 10-65% of the errors re-
maining undetected by the standard checking mechanisms. The decrease of fault coverage with
a growing static reduction factor is a consequence of the larger address range between two con-
secutive signatures, as control flow errors remaining within this interval are not covered by any
WP method. This overall result corresponds to the coverage of other WP implementations, like
in [16].

-----------Static reduction factor-------

0

50

100

150

200

250

C
od

e
le

ng
th

%

Original program
Loop unrolling

Without
signatures

1 2 5 10

100%=
4592 Bytes

Fig. 6 Static code length overhead

0 1 2 Program size (MB)
0.0

0.2

0.4

0.6

0.8

1.0

in byte selector bits (2 bit)
in segment bits
in bits checked by the WP

Probability

Fig. 7 Error probability in given address bits

(program address space)

14

Conclusion

 The advantages and possible use of an assigned signature watchdog processor in multiproces-
sor and multitasking environments were discussed. Main idea of the proposed SEIS method is
the redundant encoding of the program CFG. In this way, only the last signature of each pro-
gram block has to be stored as reference. The evaluation of the actual signature is a simple com-
binatorial task. The advantages of the proposed methods are the low hardware cost, the high
processing speed and the possibility of integration into existing systems. First experiments with
the MEMSY multiprocessor yielded encouraging results.

However, the traditional views on WPs based on high-level preprocessing, which originate
in the very first publications on this topic, must be revised in the light of the measurement
results. Beyond question, this approach remains attractive due to its outstanding advantages,
like portability or compatibility with compiler-made automatic optimization. Fault coverage
corresponds approximately to the known methods at the assembly level. On the other hand, the
rough granularity of individual statements does not allow a sufficiently fine tuning of the
distribution of signature transfers in time. The current development aims at going deeper in the
syntax hierarchy down to the elementary operation level, where a similarly structured, but
significantly more detailed CFG can be built as at the instruction level. When weighting the
edges of this CFG with the operation execution times, the dynamic distribution of signature
transfers reduces to a known optimization problem. The WP can be further used without any
modification thanks to the very general and flexible nature of the encoding algorithm.

Acknowledgments
The research presented here was supported by the Hungarian-German Joint Scientific Research
Project #70, Konrad Zuse Program (DAAD), OTKA-3394 and F7414 (Hungarian NSF).
MEMSY was developed in the framework of the DFG (Deutsche Forschungsgemeinschaft) as
part of ‘Sonderforschungsbereich 182’.

Fig. 8 Run time vs fault coverage

100 120 140 160 180 200

Run time%

F
au

lt
co

ve
ra

ge
%

Dynamic reduction with a

Static reduction

static reduction factor of 3

Variable reduction factors
in parentheses

(1)(2)
(5)

(10)

(2)

(4)
(8)

(16)
(64)

(100%= without signatures)
0

10

20

30

40

50

15

References
1 Dal Cin, M et al.

‘Fault Tolerance in Distributed Shared Memory Multiprocessors’, In: A. Bode, M.Dal Cin (eds.),
Parallel Computer Architectures, LNCS 732, Springer, Berlin (1993) pp 31-48

2 Dal Cin, M Hohl, W Hönig, J and Pataricza, A
‘MEMSY - A Modular Expandable Multiprocessor System with Fault Tolerance’,Proc. Parallel
Systems Fair of the 8th IEEE Int. Parallel Proc. Symp., Cancun (1994) pp 21-28

3 Dal Cin, M Hohl, W et al.
‘Architecture and Realization of the Modular Expandable Multiprocessor System MEMSY’,Proc.
1st Int. Conf. on Massively Parallel Computing Systems (MPCS’94), Ischia, May 2-6, 1994 IEEE
(1994) pp 7-15

4 Eifert J B and Shen J P
‘Processor Monitoring Using Asynchronous Signatured Instruction Streams’,Proc. FTCS-14, IEEE
(1984) pp 394-399

5 Handy J
The Cache Memory Handbook. Academic Press, San Diego (1993)

6 Hofmann F et al.
‘MEMSY - A Modular Expandable Multiprocessor System, In: A. Bode, M. Dal Cin (eds):Parallel
Computer Architectures, LNCS 732, Springer, Berlin (1993) pp 15-30

7 Hönig, J and Sieh, V
‘Software-Based Concurrent Control Flow Checking’,Internal Report IMMD 3, Univ. Erlangen
(1994)

8 Lu D J
‘Watchdog Processors and Structural Integrity Checking’, IEEE Trans. Comp., Vol 31
No 7 (July 1982) pp 681-685

9 Madeira H, Camoes J and Silva G
‘A Watchdog Processor for Concurrent Error Detection in Multiple Processor Systems’,Micro-
processors and Microsystems Vol 15 No 3 (April 1991) pp 123-131

10 Mahmood A and McCluskey E J
‘Concurrent Error Detection Using Watchdog Processors - A Survey’,IEEE Trans. Comp., Vol 37
No 2 (February 1988) pp 160-174

11 Majzik I
‘Fault Detection in the MEMSY Multiprocessor using a SEIS Watchdog Processor’,Internal Re-
port IMMD3 10/1993, Univ. Erlangen (1993)

12 Majzik I
‘SEIS: A Program Control Flow Graph Encoding Algorithm for Control Flow Checking’,Technical
Report TUB-TR-94-EE14, Technical University of Budapest (1994)

13 Michel T, Leveugle R and Saucier G
‘A New Approach to Control Flow Checking Without Program Modification’,Proc. FTCS-21,
IEEE (1991) pp 334-341

14 Michel E and Hohl W
‘Concurrent Error Detection Using Watchdog Processors in the Multiprocessor System MEMSY’,
In: M. Dal Cin, W. Hohl (eds):Fault Tolerant Computing Systems, Informatik-Fachberichte 283,
Springer, Berlin (1991) pp 54-64

15 Milner R
Communication and Concurrency. Prentice Hall, New York (1989)

16 Miremadi G, Karlsson J, Gunneflo U and Torin J
‘Two Software Techniques for On-Line Error Detection’,Proc FTCS-22, IEEE (1992) pp 328-335

17 Pataricza A, Majzik I, Hohl W and Hönig J
‘Watchdog Processors in Parallel Systems’,Microprocessing and Microprogramming 39, North
Holland (1993) pp 69-74

16

18 Schuette M and Shen J P
‘Exploiting Instruction Level Resource Parallelism for Transparent Integrated Control-Flow Mon-
itoring’, Proc. FTCS-21, IEEE (1991) pp 318-325

19 Shen J P and Tomas S P
‘A Roving Monitoring Processor for Detection of Control Flow Errors in Multiple Processor Sys-
tems’,Microprocessing and Microprogramming 20, North Holland (1987) pp 249-269

20 Sieh V, Pataricza A, Sallay B, Hohl W, Hönig J and Benyó B
’Fault Injection Based Validation of Fault-Tolerant Multiprocessors’.Proc.µP’94, the 8th Sympo-
sium on Microcomputer and Microprocessor Applications, Budapest, Hungary (1994) pp 85-94

21 Sridhar T and Thatte S M
‘Concurrent Checking of Program Flow in VLSI Processors’,Proc. 1982 Int. Test Conf., IEEE
(1982) pp 191-199

