
Hardware Accelerators for Petri-net Analysis
Gy. Csert�an, I. Majzik and A. Pataricza

Department of Measurement and Information Systems
Technical University of Budapest, H-1521 Budapest, M}uegyetem rkp. 9

S. C. Allmaier and W. Hohl
Department of Computer Structures (IMMD3)

University of Erlangen, D-91058 Erlangen, Martensstr. 3

Abstract|For reachability analysis of Petri-nets an FPGA-
based accelerator is proposed. Since the simple components

of Petri-nets can be easily realized in high-density FPGAs,
the complete problem can be mapped to silicon providing
a solution environment faster than the traditional software-

based simulators. Some classes of Petri-nets support the
compositional analysis, this way the limited capacity of the
FPGA does not prevent the investigation of real-life prob-

lems.

Keywords: Petri-nets, veri�cation, hardware accelerators

I Introduction

As the complexity of today's computerized control sys-
tems increases, the e�cient modeling and analysis of these
systems becomes more and more time and resource con-
suming. Some methods, e.g. the formal veri�cation of fun-
damental system properties (like absence of deadlock, free-
dom from starvation, unsafe states etc.) can be character-
ized by exponential complexity. Di�erent abstract mathe-
matical models, like dataow networks, Petri-nets, process
algebra share this very same key problem. Thus, although
the computational power of modern computing equipment
used for validation and veri�cation increases rapidly, even
accompanied by a radical drop in the price/performance
ratio, the processing capacity is often insu�cient. In the
case of complex target systems, solving this problem either
requires radical model simpli�cations or extremely long run
times.

The traditional solutions to overcome the performance
bottleneck can be grouped into two typical categories.

� In multiprocessors the task to be performed is dis-
tributed between di�erent general purpose processing
elements according to a structural or functional prob-
lem decomposition.

� In co-processors application dependent dedicated hard-
ware subunits perform some elementary operations
typically by about one order of magnitude faster, than
a program running on the CPU itself.

In many cases, the large hardware overhead of a mas-
sively parallel system is unacceptable, thus either a mono-
processor or a minor con�guration of a multiprocessor ex-
tended by a co-processor per computing node is used.

This work was supported by the Hungarian NFS under the grant
T15728, by the project MKM PFP 2839/98 and by the German-
Hungarian intergovernmental research contract under the acronym
ACCUSE.

The advent of high-speed and complex in-system pro-
grammable FPGA circuits opened new horizons for the use
of dedicated hardware solutions by providing a similar cir-
cuit complexity, as earlier VLSI designs. The new �eld of
recon�gurable (or in another terminology custom) comput-
ing supports the design of general-purpose co-processors.
As both the structure and instruction set of these co-
processors can be downloaded just before starting the pro-
gram, they serve simply as a silicon compiled problem ded-
icated subroutine set for a variety of applications. The
possibility of a run-time recon�guration allows the use of
adaptive algorithms from a pre-compiled library prepared
in the algorithm development phase.

Another promising, but still unexplored possibility is the
use of accelerators, which are well-proven solutions in hard-
ware emulation. In accelerators some complete parts of the
problem are realized on the FPGA, in contrary to the co-
processor approach, where only some parts of the algorithm
are mapped to silicon. This way, additionally to a part of
the solution algorithm, some data structures correspond-
ing to the actual data are realized on the FPGA as well.
A potential way to reduce the synthesis related overhead
is to adopt a similar philosophy as the standard cell based
ASIC design approach does it: an application dependent
basic cell library is de�ned and only the interconnection
network is synthesized during the algorithm development
phase. This way the majority of the synthesis task is ac-
complished already prior to the actual program run.

All of the above mentioned solution alternatives are can-
didates for the use in modeling and validation of digital
systems. In this paper we propose a hardware accelera-
tor for the reachability analysis of systems modeled using
Petri-nets, one of the most popular modeling formalisms.

The paper is structured as follows. Section II introduces
our target formalism, the Petri-nets, and the approaches
of the solution of the reachability problem. In Section III
the mapping of the Petri-net to silicon is presented, while
in Section IV the structure and control algorithm of the
accelerator is described, detailing also the advantages and
limitations of the solutions. Section V presents the class
of compositional Petri-nets where the accelerator can be
e�ciently used. Section VI describes our experimental im-
plementation.

II Petri-nets and approaches of reachability

analysis

A Petri-net is a 4-tuple N = fP; T; F;m0g where P =
fp1; p2; : : : ; png is a �nite set of places, T = ft1; t2; : : : ; tmg
is a �nite set of transitions satisfying P[T 6= ; and P\T =
;, F � (P � T) [(T � P) is the ow relation (set of arcs)
and m0 : P 7! IN is the initial state. The symbols �t, t�,
�p, p� denote the pre-set and post-set of a transition t or
a place p.

A state of a Petri-net is an assignment of nonnegative
integers to each place. If a place p is assigned k then it can
be referred to as p is marked with k tokens. A transitions
t is enabled if each place p 2 �t has at least one token.
Firing of a transition removes one token from each place in
its pre-set and puts a token to each place in its post-set. A
state (often referred to as a marking) m is reachable from
the initial state m0 if there exists a sequence of �rings that
transforms m0 into m. A Petri-net is said to be k-bounded
if for all reachable states, the number of tokens in any place
is less than or equal to k. An 1-bounded net is said to be
safe.

A number of properties to be analyzed (e.g. safety
and liveness) are e�ectively reducible or equivalent to the
reachability problem, i.e. to check whether some arbitrary
state(s) can be reached from a �xed initial state of the
system.

[1] has shown exponential space lower bound for the
reachability problem. In the literature, a number of meth-
ods are proposed for e�cient reachability analysis, each
having its advantages and drawbacks. The symmetry
method [2] needs the help of the analyst. Stubborn sets [3]
and incomplete reachability analysis [4] in its original form
aim at only �nding deadlocks. Symbolic model checking [5]
uses binary decision diagrams (BDD) to analyze huge state
spaces, however, it is not guaranteed that most distributed
systems have a compact BDD-based representation.

In this paper we focus on a completely di�erent approach
by investigating how the performance bottleneck can be re-
solved by utilizing the advantages of custom computing, i.e.
the application of complex, high-speed user-programmable
and recon�gurable FPGA circuits which enable to map the
complete problem to silicon [6].

III Mapping the Petri-net to silicon

Petri-nets (PN) are favorite candidates to be imple-
mented in an accelerator since the very simple components
of the PN (places and transitions) can easily be synthe-
sized.

Places (Figure 1) are realized in the FPGA by the fol-
lowing elements: (i) a counter representing the number of
tokens in the place, (ii) zero logic signaling if this counter
(i.e. the number of tokens) is non-zero, (iii) enabling logic
for counting up/down of the counter (i.e. changing the
state).

Transitions (Figure 2) are realized by (i) a ip-op which
indicates if the transition has already �red in a given step,
(ii) logic enabling the transition if input places contain the

necessary number of tokens, (iii) logic signaling if the tran-
sition is �rable i.e. it is enabled and selected to �re, (iv)
daisy chain logic (discussed later).
A co-processor could realize the Petri-net and its com-

putation by interpreting transition �rings (state changes)
stored in some tabular form in local memory, in a similar
manner as a pure software simulator would do it, but us-
ing a silicon compiled interpreter. An accelerator provides
a more e�cient solution. It performs the very same task
after a synthesis phase implementing the above realization
of the PN, this way a speed as high as one transition �r-
ing per FPGA clock period can be reached by this direct
emulation of the PN. The price of the higher speed is the
run time needed for the synthesis of the PN. However, the
few number of regular components (places and transitions)
can be used as precompiled macros requiring only their in-
terconnection (wiring) to be generated in each run.

IV Structure of the accelerator

The set of reachable states of a Petri-net forms its reach-
ability set (RS). If it is accompanied by the transition re-
lation, then a reachability graph (RG) is formed. The RS
(or RG) can be computed by the following algorithm:
Algorithm 1 (Generation of the RS) Given a Petri-net

in its initial state. The algorithm (Fig. 3) performs an
exhaustive simulation (by a breadth-�rst-search). Func-
tion ChooseRemove selects a state and removes it from the
set of found ones, NewState generates a successor state by
�ring one of the enabled transitions, SearchInsert examines
whether the actual state is in the union of the completed
and found states; if not, then adds the actual state to the
set of found states. The reachability set is generated in
completed states.
The task of the accelerator is the generation of the RS

of the PN by simulation as described in this Algorithm.
Accordingly, it is structured as follows (Figure 4). The PN
simulator implements the successor function in silicon. The
state storage contains the set of found states. A new state
reached by the simulator is examined. If it has not occurred
yet, then it is inserted into the storage; otherwise a suc-
cessor state is generated. The task of the search/compare
engine is to compare the actual state in the simulator with
the states in the state storage or to choose a new state from
the found set if it is needed. This module (including the
simulation control) is implemented as a traditional state
machine.

IV.A The PN simulator

The PN simulator consists of the synthesized building
blocks presented in Section III. Moreover, the simulation
control is supported by connecting the transitions to form
a daisy chain (DCT, Figure 5). In a given state, the en-
abled transitions will �re in this order. Since all enabled
transitions will �re, their order is irrelevant from the point
of view of the RS.
The input of the �rst transition is connected to active

level, the output of the last transition (i.e. the output of
the daisy chain) is connected to the controller of simulation.

down

counter
up

p*

*p

p*

p*

token
empty
non-

p

*p

Fig. 1. Representation of a place

t firing

daisy
chain
out

daisy
chain

in

FF

t*

*t

*t

t*

*t

Fig. 2. Representation of a transition

completed states = ;
found states = fInitial stateg
while found states 6= ; do begin

i = ChooseRemove(found states);
completed states = completed states [i
for each transition t that is �rable in i do begin

j = NewState(i,t);
SearchInsert(j, completed states [found states, found states);

done; done

Fig. 3. Algorithm of reachability set computation

set)
(reach.
storage
State

engine
Search/compare

simulator
Petri net

host interface

marking marking
storedactual

Fig. 4. General structure of the accelerator

A transition �res if it is enabled (enabling logic is active), it
has not �red (�ring ip-op is inactive) and it has an active
input signal in the daisy chain (it is the �rst in the chain
among the transitions being enabled). In this case it does
not propagate the active level for its successors in the chain
until it has �red and the �ring ip-op is set. Transitions
which are not �rable propagate the level on their input to
their output in the chain. Transitions which are enabled
but are later in the chain can not �re before the preceding
ones have �red.

IV.B The state storage and the search engine

Theoretically, the state storage and the search en-
gine should be realized by a content addressable memory
(CAM). However, since a state is a binary word consisting
of a large number of bits (a few hundreds of places each
represented by 4..8 bits), the e�cient implementation is
di�cult. Thus we focussed on an alternative solution. A
(hierarchical structure of) hash tables is built, and the set
of states corresponding to the same hash code is stored dy-
namically in the state storage, in the form of linked lists.
The advantage of this approach is, that the state storage
is divided dynamically between the lists, no static splitting
is needed.

The e�ciency of the storage and the search engine can
be improved further if the hash function is based on the
structure of the net and can group together (some) succes-
sor states. Since the �ring of a transition modi�es the state
in limited number of places, the di�erence between succes-
sor states is restricted to small parts of the binary word
representing the state. In this way, only the �rst element
should be stored in its full extent in the list corresponding
to a given hash code, the next elements can be stored only
as incremental di�erences. While doing the search, each
element can be reproduced each after the other.

...

t t t

to the

1 2

active
(H)

controller

t**t t* *t t**t m-1 t*1 1

tm-1

m-1 m m

m

2*t 2

Fig. 5. Daisy chain of transitions (DCT)

IV.C The simulation control

The simulation control can be implemented either in
breadth-�rst-search (BFS) or in depth-�rst-search (DFS)
manner.

In a BFS approach, all successors of a given state are
generated and stored in the state storage before a next
state is set. In a given state, the transitions are examined.
If there is a �rable transition then it �res. The resulting
state is searched in the RS; if it is not found then it is
stored. Then the previous state is restored in the simula-
tor and, if exists, the next �rable transition �res and the
procedure is repeated. In this way, all enabled transitions
in a given state �re, in the order determined by the DCT.
After all enabled transitions �red, the examination of the
actual (repeatedly restored) state is completed. This fact is
indicated in the state storage by a ag associated with the
state (C ag). A new state, which is not completed yet,
is chosen from the state storage, and its successor states
are examined as described. The algorithm is sketched as
follows:

Algorithm 2 (BFS based generation of the RS)
Given the Petri-net in its initial state in the simulator (the
initial state is loaded into the counters corresponding to
the places, the �ring ip-ops of the transitions are reset).

� If the output of the DCT is inactive then there is a
�rable transition. By providing a clock signal, the
�rable transition in the DCT �res, which steps the
counters of the places corresponding to the transition
and sets the �ring ip-op of the transition. A new
state is reached.
The new state is read from the simulator and searched
in the state storage. If it is not found then it is stored
without an active C ag. (If the RG is also to be built
then a pointer is stored which identi�es its predecessor
state, i.e. the previous one.)
The previous state of the Petri-net is restored in the
simulator and the algorithm restarts (the ip-ops of
the DCT are not changed after the last �ring).

� If the output of the DCT is active then there is no
�rable transition. The actual state has no further suc-
cessors, its C ag in the state storage is activated. A
new state without an active C ag is choosen from the
state storage.

{ If there is such state then it is loaded into the sim-
ulator. The �ring ip-ops in the DCT are reset.
The algorithm restarts.

{ If none is found then the generation of the reachabil-
ity set is completed, the algorithm exits.

In comparison with the above BFS, the DFS approach
has the advantage that the original state needs not be re-
stored after each simulation step, thus the speed of the
simulation increases. However, it requires a modi�cation
of the hardware structure of the simulator. If a transition
�red then this fact has to be remembered (returning to this
state it should not �re again). To do this, a �ring counter
should be assigned to each state, marking the transition
which last �red. The input of the DCT is not wired to
an active level, since only that part of the DCT is enabled
which is located after the last �red transition. The logic
implementing this modi�cation is quite complex [7], this
way the BFS was implemented.

IV.D Advantages and limitations

The performance of the accelerator is signi�cantly higher
than that of a software simulator in the subtasks of (i)
selection of the transition to �re, (ii) update of the marking
in input/output places of a transition and (iii) search and
compare in the reachability set. The recon�gurable FPGA
has the advantage that di�erent initial states can be set
without reprogramming the device.

The speed of the accelerator can be estimated in clock
cycles of the simulator. It is assumed that (i) the PN con-
tains N places each having a bound of 16 tokens (ii), in a
single cycle 32 bits are accessed in the simulator and 64
bits in the state storage, (iii) the number of elements in a
sub-list of the state storage is S. The phases of a simula-
tion step are presented in Table I. Accordingly, one step
requires about N(S + 5)=16 clock cycles (e.g. if N = 100
and S = 10 then about 100 clock cycles).

Phase Clock cycles

Firing of a �rable transition,
generating the new state 1
Reading the new state
from the simulator 4N=32
Accessing the (hash)
pointer table 1
Searching in the sub-list
of the state storage < S(4N=64)
Restoring the original state
in the simulator < 4N=32
Storing the actual state
into the state storage 4N=64

TABLE I

Phases of a simulation step

Main limitations of the approach (and their partial solu-
tions) are as follows:

� Only a bounded PN can be analyzed. Unbounded
nets should be examined by approximate analysis or
by introduction of more sophisticated formalisms like
!-states.

� The size of the PN is limited by the FPGA. This prob-
lem can be solved by model decomposition. Since
reachability analysis in general Petri-nets is not com-
positional, candidate nets are restricted to PNs built
in a top-down manner by prede�ned re�nement rules
or special net classes like Superposed Generalized
Stochastic Petri Nets (SGSPN, [8]) which provide de-
composition by de�nition.

� The size of the RS is limited by the available state stor-
age of the accelerator. The implementation of a more
e�cient state storage (e.g. custom memory architec-
ture, BDD-based state storage) and a corresponding
search engine is a task of our future research.

V The compositional method

To overcome the problem of size limitation a composi-
tional solution is proposed. The net is decomposed into
sub-nets that are called partitions. The reachability analy-
sis of the sub-nets can be done independently, and the �nal
reachability graph is composed from the sub-graphs. Since
the analysis of sub-nets can be done independently, there is
no obstacle to execute the analysis runs one after the other
on the same FPGA accelerator board. It is also possible
to execute the di�erent tasks on di�erent FPGA process-
ing units at the same time, if one has multiple accelerator
boards.
The selected method is based on Superposed Generalized

Stochastic Petri Nets (SGSPN) for the relative simplicity
of the decomposing and composing algorithms and due to
their nice property that their components are GSPNs. Su-
perposed Generalized Stochastic Petri Nets [8] is a class of
Petri-nets which enables compositional reachability as well
as performance analysis of the net.
In our environment, concentrating on reachability prob-

lems only, we introduce the following restrictions. First,
we assume that the net consist of timed transitions only
(which means that the priorities between timed and im-
mediate transitions are ignored). Second, we restrict our
investigation to models without inhibitor arcs. Moreover,
we assume that every arc has a multiplicity of one. This
way, for the experimental version of the accelerator, we
restrict the model to be a \Superposed Stochastic Petri
Net". Since we use the top-level algorithms developed for
SGSPNs, and these restriction will be removed in the next
versions (by modifying the hardware structure of the ac-
celerator, i.e. including two daisy chains for timed and
immediate transitions, including extra logic for inhibitor
arcs and multiple arcs), we use the SGSPN notation in the
following.
During analysis the reachability sets of components are

explored in complete isolation (assuming that synchronized
transitions are not disabled by other components) and sub-

1: decompose SGSPN into N GSPNs

2: forall i 2 N

3: Qi=reachability analysis of GSPNi
4: compose Q from Qi's

5: produce RG from Q

Fig. 6. Reachability Analysis Algorithm for SGSPNs

sequently the overall reachability set is composed. Accord-
ingly, the reachability analysis algorithm (see Figure 6 for
SGSPNs in general consists of the following steps:

� decompose the SGSPN into N GSPNs along of syn-
chronized transitions

� solve the reachability analysis of each GSPN sepa-
rately, and store the results in the state-transition ma-
trices Qi

� compose the state-transition matrix Q of the SGSPN
from the sub-matrices Qi ([9])

� create the reachability graph of the SGSPN from the
state-transition matrix Q

� optionally timing analysis of SGSPN can be solved like
in [8]

V.A The decomposition task

Unfortunately, nothing about the how-to of decompo-
sition is presented in the mentioned bibliography. Later
articles also does not provide information about the de-
composition task. Therefore, an own method is used to
partition of the SGSPN.
It relies on a simple spatial partitioning method. This

is done in the hope that the designer of the Petri net drew
the net in such a way, that corresponding / neighbor places
and transitions are stored subsequently in the GSPN �le.
In this case these places and transitions will be part of
the same sub-net, and \communication" between sub-nets
can be minimized. Note that this minimal communication
criteria could be a good starting point for optimization of
the partitioning.
Of course manual assisted partitioning would be also pos-

sible, but often analysis of the net is not done by the de-
signer of the net, if ever the net was not created automat-
ically. The steps of decomposition are the following:

1. Places are partitioned into N parts by spatial par-
titioning. N is de�ned by the user, since implemen-
tations details of the accelerator card are still miss-
ing. Therefore, N can not be computed automatically
based on the size of the Petri nets the accelerator card
can accept.

2. Transitions are checked upon their input and output
places:
(a) If all input and output places of the transition be-

long to the same partition, the transition is called
local and it will belong to that same partition.

(b) Otherwise the transitions belongs to multiple parti-
tions, and is a synchronization transitions. (Except
the case, when the transition is an immediate one
that must not be a synchronization transition. In

this case repartitioning of the places is necessary.
Fortunately in our current work only timed transi-
tions are assumed.)

3. Transitions are partitioned according to the results of
step 2, and TS the set of synchronization transitions
is built.

4. Finally the arcs are partitioned according to the par-
titioning of places and transitions.

5. After partitioning the sub-nets are written into �le in
a user de�ned Petri net tool format.

V.B The composition task

Composition of the reachability tree from sub-
reachability trees. The input of the task are the state-
transition matrices Qi of the sub-nets. These state-
transition matrices should be (if they are not already) split
into parts Qi

l
describing local transitions and Qi

t describing
the e�ects of synchronizing transitions. The state transi-
tion matrix Q is then composed by using tensor additionL

and tensor multiplication
N
:

Q =

N�1M

i=0

Qi

l +
X

t2TS

w(t)

N�1O

i=0

Qi

t

VI Experimental implementation of the

accelerator

An experimental version of the accelerator was built to
estimate the time required to synthesize the net and the
size of the Petri-net which could �t into the FPGA. The
search engine and the state storage were designed to be as
simple as possible and the class of Petri-nets was restricted
to safe nets.
The evaluation board is the VCC H.O.T.Works DS, a

complete PCI-based programming and development sys-
tem built upon the Xilinx XC6200 chip family. Its main
features include XC6216 on-the-y recon�gurable FPGA
with 64x64 logic cells (each containing a ip-op and/or
an arbitrary two-input logic gate), 128Kx32bit on-board
SRAM and programmable clock generator. The accelera-
tor was built as a single-chip one, i.e. both the Petri-net
and the search/compare engine were implemented in the
available FPGA and the on-board memory was used as
state storage.
The accelerator was designed by using a VHDL elabora-

tor and the XACT-Step6000 place and route (P&R) soft-
ware provided for the evaluation board. Our �rst experi-
ments showed that the main bottleneck of the technology
is that the synthesis tools are not able to handle e�ciently
the regular structure of the PN to be mapped to the FPGA.
This way, in order to avoid the P&R process to be an order
of magnitude slower than the simulation itself, specialized
P&R tools have to be developed.

VII Conclusion

In this paper we have studied the application of an
FPGA-based accelerator for reachability analysis of Petri-
nets. The experiments showed that up-to-date high-
density, high-speed FPGA circuits are able to simulate

Petri-nets of reasonable size at encouraging speed. How-
ever, in order to reduce the time required for synthesis, spe-
ci�c tools are required which are optimized to the problem
domain, i.e. to the components and structure of Petri-nets.

References

[1] E. Cardoza, R. Lipton, and A. Meyer, \Exponential space com-
plete problems for Petri nets and commutative semi-groups", in
Proc. 8th annual ACM Symposium on Theory of Computing,
1976, pp. 50{54.

[2] P. Huber, A. M. Jensen, I. O. Jensen, and K. Jensen, \Towards
reachability trees for high-level Petri-nets", Technical report PD-
174, DAIMI, Dept. of Computer Science, Aarhus University, 1985.

[3] A. Valmari, \Stubborn sets for reduced state space generation",
in Supplement to Proc. 10th Int. Conference on Application and
Theory of Petri-nets, Bonn, 1989, pp. 1{22.

[4] G. J. Holzmann, \On limits and possibilities of automated pro-
tocol analysis", in Proc. 7th Protocol Speci�cation, Testing and
Veri�cation, 1987.

[5] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, \Petri net
analysis using Boolean manipulation", in Proc. 5th International
Conference on Application and Theory of Petri Nets, Zaragoza,
Spain, 1994.

[6] Gy. Csert�an, I. Majzik, A. Pataricza, and S. C. Allmaier, \Reach-
ability Analysis of Petri-nets by FPGA Based Accelerators",
in Proceedings of Design and Diagnostics of Elecronic Circuits
and Systems Workshop, DDECS98, Szczyrk, Poland, September
1998, pp. 307{312.

[7] I. Majzik, A. Pataricza, and S. C. Allmaier, \Support of for-
mal veri�cation by FPGA based accelerators", Internal report,
Dept. of Computer Structures (IMMD3), University of Erlangen-
Nuremberg, Erlangen, Germany, 1997.

[8] S. Donatelli, \Superposed Generalized Stochastic Petri Nets: Def-
inition and e�cient solution", in Proc. 15th Int. Conf. on Ap-
plication and Theory of Petri Nets 1994, Zaragoza, Spain. 1994,
pp. 258{277, Springer Verlag, LNCS-815.

[9] P. Kemper, \Reachability analysis based on structured represen-
tations", in Proc. 17th Int. Conf. on Application and Theory of
Petri Nets, Osaka, Japan, June 24-28, 1996, J. Billington and
W. Reisig, Eds. 1996, pp. 269{288, Springer Verlag.

