
ANALYSIS OF TEMPORAL PROPERTIES OF DATA FLOW

CONTROL SYSTEMS

GY. CSERT�AN�, C. BERNADESCHIy, A. BONDAVALLIz and L.

SIMONCINIy

�Technical University of Budapest, Department of Measurement and Instrument Engineering,
M}uegyetem rkp. 9, H-1521 Budapest, Hungary
yUniversita di Pisa, Dipartimento di Ingegneria dell'Informazione, Via Diotisalvi 2, I-56100
Pisa, Italy
zCNUCE-CNR, Via S. Maria 36, I-56126 Pisa, Italy

Abstract. This paper investigates the analysis of temporal properties of control systems
modelled using the data
ow computational paradigm. A transformation from data
ow
networks to timed Petri nets is de�ned. It preserves temporal properties and allows, through
the analysis of the Petri net, the indirect evaluation of the properties of the data
ow network.
The paper contains an example for explaining the transformation and showing which kind
of analyses can be performed.

Key Words. Control systems; control system design; control system analysis; time-domain
analysis; data
ow model; timed Petri nets.

1. INTRODUCTION

Early timing analysis may be very important for the
development process of control systems. In case of
real-time systems, where response time of the sys-
tem is constrained by the speci�cation, the temporal
analysis of the system is essential for determining the
satisfaction of the requirements. A temporal analysis
is nevertheless very important also for systems that
are not required to satisfy real-time requirements. A
designer, especially in the early stage of the develop-
ment, would like to know which is the expected time
performance of the design, being prepared to accept
also rather rough measures. Clearly, depending on
the kind of system at hand, the quantities of interest
are rather di�erent. In trying to demonstrate that a
given design of a real-time control system satis�es the
timing requirements, the maximum execution and/or
response time must be provided, which must be com-
puted along all possible execution paths and possible
system states. On the other side, if the purpose is just
to predict the expected time performance of a system,
the average response time, the average execution time
and the steady-state analyses are of interest.

Due to their distributed/parallel and data-driven na-
ture, control systems can be easily modelled by data

ow networks. Data
ow models have the advan-
tages of a simple graphical representation (data
ow
graphs), compactness, expressiveness of the paral-
lelism inherent in the modelled system and others
(Bondavalli et al., 1992; Jagannathan and Ashcroft,

1991). Moreover, it is interesting to note that data

ow concepts have been considered as an appropriate
means of organising real-time processing (Lent and
Kurmann, 1989; Takesue, 1990). Unfortunately how-
ever, data
ow models lack of methods and automatic
tools for analysing their properties. On the contrary,
using directly other formalisms, like Petri nets, for
which a lot of analysis tools are available, has the
disadvantage of needing to cope with very large and
complex models, not always well dominated by the
designer.

This paper investigates the analysis of temporal prop-
erties of control systems modelled using the data
ow
paradigm. A transformation is de�ned from data

ow networks to timed Petri nets, which are known
for modelling very well concurrent, deterministic and
stochastic systems. From the point of view of tempo-
ral behaviour, the transformation is proved to gener-
ate an isomorphic Petri net. Therefore, it permits,
through the analysis of the Petri net, the indirect
evaluation of the data
ow model. Due to space re-
strictions, the transformation, which is presented in
(Csert�an, 1993), is not described in details; an exam-
ple is used instead having also the purpose of showing
which kind of analyses can be performed.

The rest of the paper is organised as follows. Section
2 contains �rst a description of our data
ow model,
which includes timing information, and addresses the
temporal properties of a control system which may
be of interest and may be derived in this framework.

Section 3 introduces the Petri nets proposed for deal-
ing with time and gives hints on the transformation.
Section 4 is devoted to the example of a train set.
Starting from the speci�cation, the data
ow design is
shown and the resulting Petri net is then derived and
evaluated. This application does not include timing
constraints, therefore the kind of evaluation carried
out regards just performance issues. Finally Section
5 contains some concluding remarks.

2. DATA FLOW NETWORKS FOR
CONTROL SYSTEMS

In (Bondavalli and Simoncini, 1993; Bernardeschi et
al., 1993) a data
ow computational model is pro-
posed for allowing early analyses of control systems.
In this model, the control system corresponds to a
data
ow network whose input and output events de-
scribe the interaction between the control system and
its environment. The control system is made up of
sensors, actuators and a controller. The controller ex-
ecutes the control algorithm, processing the parame-
ters of the environment sent as signals by the sensors.
According to the results of the computation, the con-
troller sends signals to the actuators to intervene in
the environment.

The external environment can be modelled together
with the controller to obtain a closed network, thus
allowing validation and evaluation of properties by
means of analytical models. The controlled system
is speci�ed at a very high abstraction level, by con-
sidering the load of the controlled system and in-
put/output signals generated accordingly. In this
setting, the user describes the behaviour of the con-
trolled system by de�ning the distribution of the sen-
sor and actuator signals. On open data
ow net-
works, instead, only simulation can be executed to
check properties.

A data
ow network N is a set of nodes PN , which
execute concurrently and exchange data over one-to-
one FIFO channels. The functional behaviour of a
node is given by a set of �rings (behaviours); a node
is ready to execute as soon as the data required by one
of its �rings are available. In addition to this basic
functionality of a node, timing characteristics of the
computing nodes are taken into account by associat-
ing to each �ring of a data
ow node the time it takes
to be executed. A priority is also associated to each
�ring of a node. For each node, when more �rings are
veri�ed by the presence of data over channels, the one
with the greatest priority is enabled and selected for
execution. Assigning di�erent priorities to each �ring
of a node admits a nondeterministic behaviour based
on the presence/absence of data, while, given a con-
�guration of the data over the channels, it constrains
the behaviour of the node to be deterministic.

De�nition 1 A node p is a tuple p = (Ip;Op; Sp;Rp;
�p; �p) where:

Ip - set of input channels
Op - set of output channels
Sp - set of states, s0p 2 Sp - initial state

Rp - set of �rings
where f 2 Rp is a tuple (s;Xin; s

0;Xout)
s; s0 2 Sp - states before and after the �ring
Xin : Ip 7! IN - input tokens
Xout : Op 7! IN - output tokens

�p : Rp 7! IN - priority function
�p : Rp 7! fIR+ [f0gg - time function

The meaning of f = (s;Xin; s
0;Xout) is that if the

node is in state s, each input channel i 2 Ip holds at
least Xin(i) tokens, and no other �rings are enabled
being on higher priority level than �p(f), then �ring
f is selected for execution. The execution of the �ring
removes Xin(i) tokens from each input channel i 2 Ip
and outputs Xout(j) tokens on each output channel
j 2 Op, while the node p changes its state from s
to s0. The �ring takes �p(f) time to be executed.
During execution of a �ring the node is in working
state, swp 2 Sp.

The channels of a data
ow network N may link two
nodes (internal channels) or be connected to just one
node (input/output channels) to represent interac-
tions between the control system and its environment
in case of open networks. Communication events oc-
cur when tokens are inserted into an input channel
(input event) or tokens are removed from an output
channel of the network (output event). A network
transition can be generated by the �ring of a node or
by a communication event.

De�nition 2 The data
ow network N composed by
the set PN of nodes, is de�ned by:

CN =
S

p2PN
(Ip [Op) - set of channels

IN = (
S

p2PN
Ip) n (

S
p2PN

Op) - input channels

ON = (
S

p2PN
Op) n (

S
p2PN

Ip) - output channels

RN = Rin [Rout [Rint - set of events
Rin - set of input events

and � : Rin 7! fIR [f0gg is its time function
Rout - set of output events

and � : Rout 7! fIR [f0gg is its time function
Rint =

S
p2PN

Rp - set of internal events

�N = �CN
�PN - set of states, where

 denotes the Cartesian product,
�0 - the initial state
�CN : CN 7! IN - state of channels
�PN (p) 2 Sp;8p 2 PN - state of nodes

An input event r 2 Rin �nishes the execution when its
�ring time expires and starts a new execution immedi-
ately. An output event r 2 Rout starts the execution
upon arrival of tokens to the corresponding output
channel and �nishes it when the �ring time expires.
An internal event r 2 Rint, which corresponds to a
�ring of a node, starts the execution when it becomes
enabled and �nishes after expiring of the �ring time.
A parallel execution of all the selected �rings (at most
one for each node) is therefore possible, and will ac-
tually be performed in an implementation according
to the available computational resources. The anal-
yses will be performed considering this extreme level
of parallelism where no delays are added due to lack
of resources so providing an upper bound on the ideal
timing properties admitted by the design.

One of the most important characteristics of a real-
time control system is the maximum response time,
which is the time value elapsed between the arrival
of a signal from the environment and the sending of
the corresponding command to the actuator. The
maximum is computed over all possible system ac-
tivities under any circumstances, i.e. no matter in
which state the system was when the input signal
was received or which other activities were executed
concurrently. By computing an average instead of the
maximum the average execution time also called av-
erage response time is obtained. The analysis meth-
ods applied to study timing properties are: transient
analysis and steady-state analysis. One of the possi-
ble implementations of transient analysis is to start
the control system from a given state and to let the
controller execute as far as possible (i.e. by start-
ing all possible activities). This kind of analysis does
not allow to receive input signals and the controller
is isolated from the environment.

Execution time of activities is supposed to be a known
exponentially distributed, stochastic variable or a
known �xed, deterministic value. The exponential
distribution refers to the fact, that during normal op-
eration (high probability) a component is supposed to
have an execution time with lower and upper bounds,
while a faulty component (low probability) may have
very large even in�nite execution time. In this case,
obviously, the maximum execution time of any system
is in�nite. Still one can try to give a probabilistic tim-
ing assessment: �nd a time threshold � such that the
execution will terminate by � with the desired (high)
probability.

3. FROM DATA FLOW NETS TO PETRI NETS

A Petri net is a bipartite graph with two types of
nodes; places and transitions. Places may contain to-
kens, and the current distribution of tokens over the
places denotes the state of the modelled system. On
the other hand places represent the conditions (pre-
and post conditions) to allow a transition to execute.
The execution of a transition changes the distribu-
tion of tokens and thus represents the state change
(event) of the system under study. Timed Petri nets
were introduced by extending the original formalism
with the notion of time, where time parameter can
be assigned to transitions or to places. Mainly due to
theoretical problems for the case where time is associ-
ated to places no analysis tools have been developed.
For the other case, in which timing parameter can be
interpreted as execution time of events, a rich set of
tools and methods is available. As theoretical back-
ground they usually adopt Markov chains.

In (Csert�an, 1993) a transformation from data
ow
networks to timed Petri nets is de�ned. After ex-
tensive studies of many di�erent types of timed Petri
nets, for which automatic tools are available to sup-
port the analysis of the network, the class of Deter-
ministic and Stochastic Petri nets (DSPN) has been
chosen as a target model (Ajmone Marsan and Chi-
ola, 1987). Each channel of the data
ow network and

each state of a node is simply mapped into a place of
the Petri net, while each �ring is mapped into two
transitions: an immediate transition, which denotes
the starting phase of the �ring, and holds the priority
property of the �ring, and a timed transition, which
inherits the timing properties of the �ring. Arcs of
the net correspond to the links of the data
ow net-
work, arc weights are set according to the input and
output mappings of �rings. From the point of view
of temporal behaviour, the transformation is proved
to generate an isomorphic Petri net.

4. AN EXAMPLE OF TIMING ANALYSIS

The train set example described in (Saed et al., 1991),
where trains move unidirectionally along a circuit,
(see Fig. 1) is now considered. The time parame-
ters have been chosen to be exponentially distributed
stochastic variables. For this example, the data
ow
speci�cation will be given, the corresponding Petri
net derived and analysed using the GreatSPN tool
(Chiola, 1987). Results regarding the steady-state
analysis are here reported.

With the assumption that the train's length is less
than each section's length, a safety criterion states
that there must be at least one free section between
the head of any two trains in order to avoid collision.
A reservation system can be used to this purpose:
a train reserves always two sections for itself. One
section is occupied by the head of the train and a
second one is reserved behind the �rst. Moreover, to
be allowed to move forward, a train has to reserve
the next section, so, for limited time intervals, it has
three sections reserved.

Fig 1. The train set example

According to the proposed modelling approach, the
system is divided into two subparts, the model of the
plant and the model of the controller connected by
sensor and actuator signals, as shown by Fig. 2 in the
case of two trains and six sections. Section SECTi is
responsible for sending sensor signals to the controller
and for receiving actuator signals from the controller.
When a train enters a section the sensor sends an es

signal to inform the controller. After receiving the
ls signal by the controller the actuator lets the train
proceed to the next section. At the same time a signal
sn is sent to the next section to model the movement
of the train. The �rst part of the controller, nodes
CNTi, where CNTi is associated to SECTi , releases
section i	 2 (signal rel) and tries to reserve section
i�1 (signal res) (� and 	 denote the modulo{6 addi-
tion and subtraction, respectively). If the reservation
is successful CNTi sends the ls signal to the section.
The second part of the controller, nodes RESi, be-
haves like a memory keeping track the reserved and

SECT0

sn0

sn1

sn5
es5

ls5

ls0

es 0 res0

res1

ok1

ok0

rel3

rel4

CNT

CNT

RES

RES

RES

RES

RES

RES0

1

2

3

4

5SECT5

0

5

plant controller

Fig 2. Data
ow model of the train set example

free sections. Receiving a rel signal it releases the
section, receiving a res signal it reserves the section.
Of course if a given section is reserved for a train it
can not be reserved for another one. The two trains
are supposed to be in sections SECT0 and SECT2
initially.

The timing variables of the example (all exponentially
distributed) are the following:

� �sen - time consumed by a sensor sending a sig-
nal (with parameter �sen);

� �cross - time a train needs to move along the
section (�cross);

� �act - time spent by receiving an actuator signal
(�act);

� �cnt - time the controller needs to send signals
(�cnt);

� �res - time for reserving a section (�res);

� �rel - time for releasing a section (�rel).

The resulting data
ow speci�cation is:

N =
S

5

i=0
fSECTi ; CNTi;RESig

�0
C : 8i; sni; esi; lsi; oki; reli 7! 0
res1 7! 1; res3 7! 1; resf0;2;4;5g 7! 0

�0
PN

(p) = s0p;8p 2 PN
SECTi :
ISECTi = fsni; lsig OSECTi = fsni�1; esig
SSECTi = fsi; s

0
i; s

00
i g s0SECTi = si; i = 1; 3; 4; 5

s0SECTi = s0i; i = 0; 2
RSECTi = ff = (si; [sni ! 1]; s0i; [esi ! 1]);

f 0 = (s0i; []; s
00
i ; []);

f 00 = (s00i ; [lsi ! 1]; si; [sni�1 ! 1])g
�SECTi (f) = 0;8f �SECTi (f) = �sen
�SECTi (f

0) = �cross �SECTi (f
00) = �act

CNTi :
ICNTi = fesi; okig OCNTi = flsi; resi; reli	2g
SCNTi = fsi; s

0
ig s0CNTi

= si; i = 1; 3; 4; 5
s0CNTi

= s0i; i = 0; 2
RCNTi = ff = (s0i; [oki�1 ! 1]; si; [lsi ! 1]);
f 0 = (si; [esi ! 1]; s0i; [resi�1 ! 1; reli	2 ! 1])g
�CNTi(f) = 0;8f �CNTi (f) = �cnt;8f

RESi :

IRESi = fresi; relig ORESi = fokig
SRESi = fsi; s

0
ig s0CNTi

= si; i = 3; 4
s0CNTi

= s0i; i = 0; 1; 2; 5
RRESi = ff = (si; [resi ! 1]; s0i; [oki ! 1]);

f 0 = (s0i; [reli ! 1]; si; [])g
�RESi (f) = 0;8f �RESi (f) = �res

�RESi (f
0) = �rel

4.1 The Petri Net Equivalent to the Data Flow Net

The Petri net derived by applying the transformation
is depicted in Fig. 3. Places corresponding to the
channels are referred to with the same name, while
those denoting the internal state of data
ow nodes
and transitions are numbered increasingly. Immedi-
ate transitions and additional places are omitted to
keep the Petri net as simple as possible.

sec.sen=0.500000

sec.cross=0.001000

sec.act=0.200000

cnt=10.000000

res=1.000000

rel=1.000000

sn3

sn4

sn5

es0

ls0

es1

ls1

es2

ls2

es3

ls3

es4

ls4

es5

ls5

res0

ok0

rel0

res1

ok1

rel1

res2

ok2

rel2

res3

ok3

rel3

res4

ok4

rel4

res5

ok5

rel5

T7

T8

T9

T6

T10

T11

T12

T13

T14

T15

T18

T19

T20

T21

T22

T23

P9

T24

T25
T26

T27
T28

T29
T30

T31
T32

T33
T34

T35

P54

P53

P52

P48

P46

P44

T38

T40 T41

T43

T44 T45

T46 T47

P73

P74

P75

P76

P77

P78

P79

P80

P81

P82

P83

P84

sn0

sn1

sn2

T37

T39

P7

P16

P22

P31

P36

P42

P8

P15
P14

P20
P21

P27
P26

P32
P33

P38
P39

P51

P50

P49

P47

P45

P43

T42

T36

T16

T17

Fig 3. Petri net model of the train set example

Transitions T6, T9, T12, T15, T18, T21 symbolise
the sending of a sensor signal when a train has en-
tered the section. Firing of transitions T8, T10, T14,
T17, T19, T22 represents the movement of a train
from the beginning of the section to its end and T7,
T11, T13, T16, T20, T23 the reception of the actua-
tor signal. T24, T26, T28, T30, T32, T34 correspond
to receiving the sensor signal and starting the reser-
vation and release of sections, while T25, T27, T29,
T31, T33, T35 correspond to sending the actuator sig-
nal to the sections thereby allowing trains to proceed.
Finally T36, T38, T40, T42, T44, T46 represent the
reservation of sections and T37, T39, T41, T43, T45,
T47 their release. Before leaving some section and
until entering the next one, a train has three sections
reserved. A train in SECT3 has SECT3 and SECT2
reserved, it can move forward only after SECT4 has
been reserved too, this happens with the �ring of
transition T4. All the three sections remain reserved
until �ring of T41, which releases SECT2 . T41 may
be �red only after the train has entered SECT4 (tran-
sition T18).

4.2 Analysis of the Example

Since this is not a real time application, the aver-
age time a train needs to cover the whole circuit is
of main concern. To this purpose, steady-state anal-
ysis is executed, thus obtaining the reachability set
of the Petri net. The results of steady-state analysis,
done by GreatSPN, give the average number of tokens
in places and the average throughput of transitions.
From these values the cycle time is computed in the
following way: the average throughput of transition
T6 gives the number of sensor messages sent in unit
time from section SECT0 to the controller that is the
frequency trains enter SECT0. Since i) the number
of trains is �xed and ii) the safety rule imposes that
trains can not overtake each other, in one cycle T6
will �re once for each train. Therefore the cycle time
is: �cycle = n=throughput(T6) where n is the number
of trains. Since the plant is a ring the same result
can be obtained �xing the observation point at the
entrance of any section.

Table 1: Parameters and their value

parameter: value: [1/s]

�cross 0.01
�sen *
�act �sen=3

�cnt �sen � 10
�res �sen � 10
�rel �sen � 10

The �rst analysis performed aims at verifying that,
when the time necessary to trains to cross sections
(�cross) is several orders of magnitude bigger than
the time necessary for the controller, the cycle time
remains almost constant and close to the time trains
need to cross a circuit of the same length without the
controller. Sections are supposed to be long about
1:5 Km and �cross = 0:01 gives an average time of 100
seconds for a train to cross it. The values for the
other parameters are reported in Table 1, where �sen
has been selected to range between 1000 and 0.01
(seconds) that covers not only plausible values but
also unrealistic ones. This choice allows to measure
the impact of the delay of the controller and to �nd
for which ratio of the 'physical' and 'electronic' times
the cycle time changes signi�cantly.

The numerical results for one and two trains are given
in Table 2, while Fig. 4 shows the results in a dia-
gram. As long as �sen is much smaller (up to three
orders of magnitude) than �cross, the time spent by
the controller can be neglected. The cycle time in
case of one train is very close to 6 � 1=�cross. When
�sen is closer to �cross, the time used by the controller
may become signi�cant, thus impacting the cycle time
(right end of Fig. 4). The same observation holds in
case of two trains. If two trains are in the circuit,
they interfere each other: one train 'locks' the other
by forcing it to wait for a section to become free. The
interference between trains remains unaltered until

the time necessary to the controller becomes relevant
for the cycle time. In this experiment, with two trains
and six sections, the interference increases the cycle
time with respect to one train by a factor of 1:25.

Table 2: Cycle time of trains

�sen cycle time (1) cycle time (2)

1000 600.02 750.02

100 600.24 750.24
50 600.48 750.48
10 602.40 752.43

5 604.80 754.87
1 624.00 774.46
0.5 648.00 799.21

0.1 840.35 1007.81
0.075 920.63 1099.68
0.05 1081.39 1290.54

0.025 1565.40 1903.33
0.01 3030.79 3901.04

2 trains

1 train

av
g.

 c
yc

le
 ti

m
e

[s
]

500

1000

2000

4000

10100 1 0.1 0.011000

λ sen [1/sec]

Fig 4. Cycle time of trains

The degree of interference seems to depend on the
number of sections of a circuit or, conversely, on the
number of trains in a given circuit. Other two settings
have been used to check this conjecture. �sen = 50, a
reasonable value, that gives the average sensor time of
0:02sec and the average controller time of 0:006sec,
has been set leaving the other parameters unaltered.
The cycle time has been computed for two trains run-
ning on circuits of 5; 6; 8; 10; 11; 12 sections and in
a circuit of 11 sections the cycle time of 1; 2; 3; 4; 5
trains. The results of varying the number of sections
are in Table 3 graphically represented in Fig. 5, while
the cycle time of varying the number of trains is re-
ported in Table 4 and Fig. 6.

Table 3: Cycle time varying the number of sections

No. of sections cycle time [s]

5 667.12

6 750.48
8 933.94
10 1125.75

11 1223.05
12 1320.90

measured value

optimal value

number of sections

6 7 8 9 10 11 12

600

1000

1400

5

av
g.

 c
yc

le
 ti

m
e

[s
]

Fig 5. Cycle time varying the number of sections

The continuous line in Fig. 5 shows the theoretical
optimal values of the cycle time; i.e., considering 1
train on the circuit and an instantaneous controller.
It can be seen that the ratio between the measured
cycle time and the ideal optimal is decreasing start-
ing from 1.334 (for 5 sections) to 1.1 (for 12). The
same trend can be observed from Fig. 6, where it is
clearly seen that, with increasing number of trains,
the dependency makes the cycle time increase over
linearly.

Table 4: Cycle time varying the number of trains

No. of trains cycle time [s]

1 1100.88
2 1223.05

3 1380.32
4 1608.87
5 2049.82

av
g.

 c
yc

le
 ti

m
e

[s
]

number of trains
1 2 3 4 5

2000

1800

1600

1400

1200

1000

2200

Fig 6. Cycle time varying the number of trains

5. CONCLUDING REMARKS

In this paper the analysis of temporal properties of
control systems modelled using a data
ow computa-
tional paradigm has been addressed. The analysis of
the Petri net obtained by a transformation preserving
temporal properties has been used for the evaluation
of data
ow networks. An example is described re-
lated to a non real-time application. The analysis
performed aimed to quantify the average cycle time
in di�erent contexts to measure the impact of the
number of trains or length of the circuit on the over-
all performance as well as the interference between
trains when they become too close to each other.

In some contexts, it may be interesting to run a tran-
sient analysis measuring the time between two events,
e.g. the time necessary to execute some part of the

controller. In order to measure maximum times, nec-
essary for analysing real time applications, two pos-
sible approaches are practicable. Either one can use
di�erent distributions that have a maximum for each
transition like the uniform one or compute the max-
imum as a value such that the execution will termi-
nate with the desired (high) probability. In the for-
mer case the GreatSPN tool allows just deterministic
distribution so some extension should be developed.
The latter case requires a very careful management
of probabilities. Future work will focus on possible
improvements of the transformation in order to allow
a more detailed temporal analysis. A re�nement of
the timing parameters to re
ect more lifelike distri-
butions will also be considered.

6. REFERENCES

Ajmone Marsan, M. and G. Chiola (1987). On
petri nets with deterministic and exponentially
distributed �ring times. Proc. Advances in
Petri Nets 1987, LNCS 266, 132{145, Springer-
Verlag.

Bernardeschi, C., A. Bondavalli and L. Simoncini
(1993). Data
ow control systems: an exam-
ple of safety validation. Proc. SAFECOMP'93,
Poznan, Poland, 9{20, Springer-Verlag.

Bondavalli, A., L. Strigini and L. Simoncini (1992).
Data-Flow like Languages for Real-Time Sys-
tems: Issues of Computational Models and No-
tation. Proc. 11-th Symposium on Reliable
Distributed Systems, Houston, USA, 214{221.

Bondavalli, A., and L. Simoncini (1993). Functional
Paradigm for Designing Dependable Large-
Scale Parallel Computing Systems. Proc.
ISADS '93 Int. Symp. on Autonomous Decen-
tralized Systems, Kawasaki, Japan, 108{114.

Chiola G. (1987). A graphical net tool for perfor-
mance analysis. Proc. 3rd Int. Workshop on
Modeling Techniques and Performance Evalua-
tion, Paris, France.

Csert�an Gy. (1993). Temporal Analysis of data
ow
computational paradigm based on control Sys-
tems. Internal Report IR-1/93-LS-CsGy, De-
partment of Information Engineering, Univer-
sity of Pisa.

Jagannathan R., and Ashcroft E.A. (1991). Fault
Tolerance in Parallel Implementations of Func-
tional Languages. Proc. FTCS-21, Montreal,
Canada, 256-263.

Lent B., and H. Kurmann (1989). The OR data
ow
Architecture for a Machine Embedded Control
System. International Journal of Real-Time
Systems, 1, 107-132.

Saed A., de Lemos R., and Anderson T. (1991).
The role of formal methods in the requirements
analysis of safety-critical systems: a train set
example. Proc. FTCS-21, Montreal, Canada,
478{485.

Takesue M. (1990). Data
ow Computer Extension
towards Real-Time Processing. International
Journal of Real-Time Systems, 1, 333-350.

