
MODEL-LEVEL AUTOMATIC TEST GENERATION
FOR UML STATECHARTS*

András Tóth Dániel Varró András Pataricza
Department of Measurement and Information Systems,

Budapest University of Technology and Economics
H-1521 Budapest, Magyar tudósok körútja 2, Hungary

 {varro,pataric}@mit.bme.hu

Abstract. We present a framework for model-level testing of behavioral UML models.
For automatic test generation, we use planner algorithms to deal with the complexity
of UML models. Our approach is characterized by an automatic and metamodel-
driven transformation from UML statecharts to a tool independent representation of
planner algorithms from which the input language of concrete planner tools can be
easily derived. As a result, UML based system models can be tested in an early phase
of the design prior to implementation.
Keywords: testing, UML statecharts, planner algorithms, model transformation

1 Introduction

Due to the complexity of IT applications there is an increasing need to ensure that the system
under design will inevitably fulfill its specification. For this reason, a verification and validation
(V&V) step based on the use of formal methods is indispensable still in an early phase of the
design process. In V&V, we try to prove mathematically that all the requirements are satisfied for
any possible execution of the system. Unfortunately, these techniques require the traversal of the
entire state space, which is frequently impossible due to limitations of computation power.

Instead of verification, dominant design methodologies of systems engineering mainly
include a phase of testing [1], where only a subset of all possible behavior of the system is
investigated (thus we cannot guarantee that all the requirements will be met) but the automatic
generation of test cases covering the most important functionality of the target application is
highly reliable and automated. Despite the high-level of automation, a thorough testing phase is
very expensive consuming more than 50 percent of the development costs, since many design
errors sought early in the development process are captured by testing only after a complete
implementation.

We present an automatic transformation from behavioral UML models to a tool independent
representation of planner algorithms which automatically generate test cases for a certain test
criteria afterwards. Building on the concepts reported in [2], we extend their formalism by

*This work was supported by the project OTKA T-038027 of the Hungarian Scientific Research Fund.

covering a richer subset of statechart, and introduce a metamodel of planners, which capture the
mathematical structure of planners in standard way corresponding to best engineering practices.

2 A Model Driven Testing Framework

The input of our framework [3] is an UML statechart exported to tool-independent XMI format
by a commercial UML tool. Our transformation program generates a text file as the output,
conforming to the input language of a planner tool (we used Graphplan for our experiments).

In order to achieve independence of concrete back-end planner tools, we created a planner
metamodel, which describes planners in the form of a UML class diagram in order to present the
abstract mathematical definition in a visual way that can be easily understood by systems
engineers as well. As the planner model is represented in such a tool independent format, our
framework can be ported to various planner tools without rewriting the entire transformation.

For our transformation, we conceptually follow the guidelines of [2]. However, we extended
the capabilities of the transformation for handling shallow history and deep history states. Our
framework does not handle the automatic transformation of test criterions into initial and goal
states, and the back-annotation of test vectors. In the future, we plan to exploit the use of standard
UML extensions (profiles) to provide a suitable solution for the problem.

Finally, planner tools automatically generate test cases for a given test criterion by finding a
feasible plan that leads from the initial state to the goal state (representing the test criterion).
Typical test criterions include testing each transition, each state, or each execution path (up to a
certain depth) at least once.

3 Conclusions

As a result, UML designs can be tested and design flaws can be detected in the modeling phase of
the development process prior to any implementation activities saving a considerable amount of
cost. Even though our framework is still in an early stage, our transformation program (written in
Java) can already handle a rich subset of the UML statechart formalism by generating
automatically a planner model for the Graphplan tool. In order to keep our methodology open for
additional back-end planner tools, we constructed a planner metamodel to provide a high-level
representation of the mathematical definition.

Future work will include (i) the handling of various UML diagrams in an integrated and
consistent test environment (ii) the automatic derivation of test criteria (initial and goal states)
from UML representations, (iii) the back-annotation of test results to UML models, and (iv) the
exploitation of hierarchical planners as the back-end tools that provide a closer and optimized fit
to the hierarchical nature of statecharts.

References

[1] Binder, R.: Testing Object-Oriented Systems. New Jersey (USA), Prentice Hall 1999.
[2] Fröhlich, P., Link, J.: Automated Test Case Generation from Dynamic Models. In: Bertino, E. (Ed.): Proceedings
of the ECOOP 2000, 14th European Conference on Object-Oriented Programming, Springer-Verlag Berlin
Heidelberg 2000, pp: 472-491
[3] Tóth, A., Varró, D., Pataricza A.: Model Level Automatic Test Generation for UML Statecharts. Technical
report. Dept. of Measurement and Inf. Systems, Budapest Univ. of Technology and Economics, January 2003.

