
© 2003, Gergely PINTÉR, András PATARICZA

A Methodology for Benchmarking-based Abstract Fault Modeling

Gergely PINTÉR, András PATARICZA
Budapest University of Technology and Economics

Department of Measurement and Information Systems
{pinterg, pataric }@mit.bme.hu

Abstract

This paper presents a method and environment for
embedding the high-level manifestation of low-level
(physical) faults into the behavioral software model in
the form of in abstract reusable fault models. The main
focus is on the application of intelligent data processing
methods for extracting important phenomena from the
observations in fault injection experiments.

1. Introduction

Designs targeting dependable services rely mainly
on the use of redundant design patterns. Although high-
level redundancy assures a good fault tolerance (FT), a
wide field of applications cannot tolerate a large over-
head caused by a high degree of redundancy like non-
mission critical embedded systems. In these cases a very
faithful fault model has to be estimated and dedicated FT
measures have to exactly fit to it in order to avoid the in-
troduction of an unacceptable overhead.

Since modern software development methodologies
start with high-level modeling, FT mechanisms have to
be included into the models from the early phases of the
development on. This approach necessitates a faithful
mapping of the implementation dependent physical faults
to the implementation independent behavioral level.
Fault metamodels can describe fault mechanisms in a
generalized form. This can be used to generate the faulty
instances of the target system as mutations by distorting
the fault-free behavioral model.

The core idea of our approach is based on experi-
mental investigation of typical (benchmark) applications
in presence of low level faults injected into the system.
These observations are used for a generalization of the
impacts of implementation steps (code generation, com-
pilation etc.) to the behavioral level description of the
faults.

The discovered behavior can be seen as a fault meta-
model, a set of transformation rules that can be applied to
the concrete behavioral model resulting in the concrete
fault model (e.g. such fault meta-model describes control
faults by including some specific additional edges into
the statechart of the fault-free case, thus representing
fault induced illegal state transitions).

The extraction of the fault meta-models needs the
discovery of “typical distortions” in the huge log files
from fault injection campaigns. Our approach did use
data mining to automate this step.

2. Method overview

Our method consists of four main steps: (i) creation
of a behavioral model of the benchmark application, (ii)
source code-level instantiation, (iii) fault injection, and
(iv) postprocessing of the measurement results.

UML statcharts were used for behavioral modeling.
These statecharts provide the basis for (i) automatic code
generation and (ii) reference information for failure de-
tection controlling the collection of log data as well.

The abstract models were instantiated to the source
code level by automatic code generators. Two tools were
used in our approach: the i-Logix Rhapsody and a simple
dedicated, fine tunable code generator developed by us.

The experiments were performed on a simulated
faulty platform consisting of a software-implemented
fault injector and a statechart-level control flow checking
mechanism. The tested programs were instrumented to
send signatures assigned to states of the UML statechart.

Deviations from the reference behavior specified by
the statechart for the fault-free case were detected and
stored in a database by a software-implemented watch-
dog processor [2]. The database records contained the
exact circumstances of the fault injection run (original
register value, inverted bit, etc.) and the result of the test
run (failure mode, like a crash of the tested program or
an illegal state transition).

© 2003, Gergely PINTÉR, András PATARICZA

Single bit inversion faults were injected into the In-
struction Pointer (IP) during the run of the benchmark
application. 200000 targeted fault injection runs were
performed each hitting the execution of the statechart.

Processing of experimental results aims at the gen-
eralization of observed fault effects. The majority of
faults results in straightforward control flow distortions.
However a minor, but non-negligible fraction exposes
complex failure phenomena, which have to be general-
ized to the high modeling level. Please note, that tradi-
tional statistical evaluation methods simply suppress
these secondary failure mechanisms as noise. In our ex-
periments the first preprocessing step removed the ob-
servations corresponding to trivial failure modes in order
to focus on the secondary mechanisms.

Classification, a special kind of predictive modeling
was used for extracting the complex phenomena from the
fault injection logs by the IBM Intelligent Miner for Data
[3]. The method clusters the observation results into
groups composed of internally strongly similar records
but exposing a high level of difference between records
in different groups.

The analysis result is presented as a binary decision
tree with logic formulae over the record attributes as-
signed to the branches. The root of the tree represents the
entire set of data. Branches gradually partition the data
into smaller, but more and more coherent subsets. For
our purposes the selection of factors discriminating dif-
ferent failure behaviors (attributes used in the branch ex-
pressions) was of primary importance.

The data miner was instructed to provide a formula
for determining the targets of illegal transitions in view
of the circumstances (source state signature, original IP
value, inverted bit etc.) in order to identify the regulari-
ties in failure phenomena. Leaves of the resulting deci-
sion tree were the target state signatures. The predicates
assigned to the nodes along of a root–leaf path provide a
deduction chain of the corresponding group (e.g. “if the
code was generated by G and the source signature was S
and the original IP value was between X and Y and the
inverted bit was B then the target signature was usually
T'”), which serves a behavioral description of the corre-
sponding failure phenomenon.

For instance, a specific behavioral pattern occurring
only in codes produced by one of the code generators
was identified, thus indicating the extent of the influence
of code generation to the faulty behavior.

It is important to highlight that although data mining
delivers a behavioral description of the phenomena suffi-
cient for the creation of a fault metamodel; their causal
explanation (i.e. the discovery of the fault propagation
chain) remains a task for an expert. In our case the verifi-
cation of the high level fault model was performed by
investigating the low-level implementation.

3. Conclusions

This paper outlined a method and environment for
constructing fault metamodels applicable even in early
system design phases to characterize the behavior of ap-
plications in presence of faults. The measurement results
collected while executing fault injection campaigns on
benchmark applications were analyzed by an intelligent
data miner. Non-dominant, rarely occurring failure
modes were identified by the analysis. The level of de-
pendence of the failure phenomena from the implemen-
tation technology was estimated. A statechart-level fault
model was developed based on the phenomena discov-
ered.

Figure 1. Overview of the method

References

[1] A. Pataricza and G. Pintér “Data Mining in Fault In-
jection”, In Proc. DDECS 2003.
[2] I. Majzik, J. Jávorszky, A. Pataricza and E. Selényi
“Concurrent Error Detection of Program Execution Based
on Statechart Specification”, In Proc. EWDC-10. 1999.
[3] IBM. “Intelligent Miner for Data. Applications
Guide” 1999.

