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Abstract. A new control flow checking scheme, based on assigned-signature
checking by a watchdog processor, is presented. This scheme is suitable for a
multitasking, multiprocessor environment. The hardware overhead is compara-
tively low because of three reasons: first, hierarchically structured, the scheme
uses only a single watchdog processor to monitor multiple processes or proces-
sors. Second, as an assigned-signature scheme it does not require monitoring the
instruction bus of the processors. Third, the run-time and reference signatures are
embedded into the checked program; thus, in the watchdog processor neither a
reference database nor a time-consuming search and compare engine is required.

1 Introduction

Massively parallel computing systems running computing intensive applications de-
mand a high degree of fault-tolerance. Fault-tolerance techniques require error detec-
tion mechanisms with high coverage and low latency. As the majority of failures results
from transient faults, concurrent fault detection is of utmost interest. However, with the
increasing number of processing units and parallel processes, concurrent fault detection
becomes more and more difficult.

Since the majority of transient processor faults results in control-flow disturbances,
a widely used concurrent error detection method is concurrent control flow checking us-
ing awatchdog processor (WP). A WP is a relatively simple coprocessor that compares
the actual control flow - represented by run-timesignatures - with the previously com-
puted reference control flow. WPs can be used to perform other checks as well [7], like
assertions on the data. The coprocessor-approach offers a possibility to connect a single
WP to multiple processors, reducing the hardware overhead.

Most of the WP implementations presented in the literature check single processors.
They can be grouped according to the way run-time signatures are generated and the
source of reference. Some typical methods are presented in Table 1. The methods using
derived run-time signatures monitor and compact the state of the processor bus.As-
signed run-time signatures are computed and inserted into the program source by a pre-
compiler; they are transferred to the WP by the checked processor itself. The reference
is either astored database of the admissible signature sequences or a specialWP pro-
gram of signature evaluation instructions.(In [6] the main processor itself emulates the
signature checker by utilizing unused resources). A further possibility is to transfer the
reference signatures to the WP at run-time explicitly, using special instructionsembed-
ded into the program of the checked processor.

Additionally, different approaches to integrate watchdog processors into multipro-
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cessor systems are known: a Roving Monitoring Processor [13] is connected to multiple
processors and monitors their states sequentially without checking their interactions.
The Checker described in [5] stores the reference signatures in the local memory of the
WP. The information on the control flow graph (CFG) is not stored, the admissible run-
time signatures are identified by associative memory segments in the WP. Multiple pro-
cessors are checked using signature queues.

A further WP method intended to be used in multiprocessors is Extended Structural
Integrity Checking (ESIC [9]). Signatures are assigned based on the high-level lan-
guage structure of the program and transferred to the WP explicitly. Reference signa-
tures are downloaded to the WP in tabular form before the beginning of program
execution. The WP receives the run-time signatures and works as a finite deterministic
stack automaton. In a multitasking environment, the WP always switches to the refer-
ence table of the process a signature was received from.

The main drawback of these methods is the (over)proportional increase of hardware
and time overhead if more computing nodes and processes are added. Our paper pre-
sents a novel program control-flow checking method and a corresponding WP architec-
ture calledSignature Encoded Instruction Stream (SEIS [12]). The design goals of the
SEIS project were:
• An efficienthierarchical checking method ofmultiple processors by a single WP.
• Checkinginteractions between the processes of an application.
• Reducing the hardware overhead by efficient utilization of the WP resources.

As up-to-date microprocessors have a built-in instruction pipeline and on-chip cache
memory, the assigned signature method was chosen as the focus of interest. The exper-
imental multiprocessor system MEMSY1 (Modular Expandable Multiprocessor System
[1,3]) was used as test-bed of the SEIS WP prototype.

The paper is structured as follows. The next section presents the checking schemes
applied on different levels of the target system covering both theoretical and hardware
aspects. The subsequent two sections describe additional features of the watchdog pro-
cessor and the integration of the SEIS WP into the MEMSY multiprocessor, respective-
ly. The last section presents measurement results and conclusions.

1. MEMSY was developed in the framework of the DFG project SFB 182. The research presented
here was supported by the Hungarian-German Joint Scientific Research Project #70, Konrad Zuse
Program (DAAD), OTKA-3394 and F7414 (Hungarian NSF)
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Table 1 Control flow checking methods



3

2 Levels of Concurrent Error Detection

Our method is intended for use in multiprocessors with a UNIX-like operating system,
widely used in massively parallel multiprocessors for scientific computations. An ap-
plication consists of processes running the application program written in a procedural
programming language (e.g. C, Pascal). Programs contain procedures composed of
statements. At each level (process, procedure and statement) a different checking meth-
od and WP module is used.

2.1 Statement Level Checking

The execution sequence of statements in a program can be associated with aprogram
control flow graph (CFG). Vertices represent branch-free statement sequences,edges
represent the syntactically correct control flow between them. The CFG can be extract-
ed by syntax analysis of the program source. Interrupts, data dependencies in condition-
al branches, and procedure calls referenced by pointers raise special problems.
Conditional branches allow typically two outgoing edges from a vertex, procedure calls
may call any other procedure, and interrupts, resulting in a call to an interrupt handling
procedure, may occur at any time. The latter two problems belong to the procedure level
and are covered in the next subsection.

Thestatement level WP module checks the correct execution order of statements by
comparison with the corresponding paths in the CFG. In order to identify the state of
program execution, statement labels are assigned to the vertices of the CFG. These la-
bels are explicitly transferred to the WP. The transfer instructions and the label values
are inserted into the high level source text by a precompiler.

Statement labels identify not only the CFG vertices but their (syntactically) valid
successor vertices as well. Thus, checking of the statement label sequence is based only
on the presently checked label and its predecessor. This eliminates the need of a WP ref-
erence database. Hence, the evaluation of the correctness of program flow is a simple
combinatorial task without any time consuming database search, allowing high speed
processing. The label assignment algorithm of the precompiler is as follows (for a more
formal description see [11]):

1. The CFG of the procedure isextracted. The basic control structures form sub-
graphs of the CFG. These subgraphs are identified according to the requirements of
the encoding algorithm: that is, the number of successors of a vertex is limited in
order to reduce the information to be encoded in the label identifying them. The
subgraphs are composed to form the CFG of a procedure.

2. The edges of the CFG are collected into anedge trail. The problem of edge collec-
tion can be solved by well-known methods of Eulerian circuit generation.

3. A cyclic ordering of label values is defined and the edge trail isencoded. Adjacent
vertices of the CFG are encoded by subsequent label values and different trails are
separated by unused sublabels. After encoding the trail, all labels corresponding to
the same vertex (calledsublabels) are concatenated defining thestatement label. In
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this waya statement label is a valid successor of a reference label if and only if one
of its sublabels is successor of one of the sublabels of the reference label. This is
the basic rule of the statement label checking.
Fig. 1 presents an example C program, its CFG and the corresponding sublabel set.
Using the simplest, natural ordering of the sublabels, a sublabelj is a valid succes-
sor of a reference sublabel i if and only if j=i+1 . This rule is implemented by the
successor functionF increasing the reference sublabel value by one. The statement
label sequence during the execution of the program is valid if the subsequent state-
ment labels have successor sublabels. In the example vertexd is a valid successor
of vertexb, sinceF(2,5,2)=(3,6,3) and(6,13,6) have 6 as common sublabel.

4. Intermittent signatures are used in the encoding of special control structures with a
large number (>3) of successor or predecessor vertices. The number of such inter-
mittent signatures (and the time overhead resulting from multiple signature trans-
fers in a single vertex) is limited in a single signature per vertex by using a slightly
modified encoding algorithm. This is based on the reuse of identical sublabels in
different vertices without introducing ambiguity in the encoding [11].
Let assume that acase  statement with an actual sublabel of6 has more output
branches than 3, the maximal number of successor vertices allowed by the basic
encoding scheme. The sublabel7 is assigned to each successor vertex, indicating
that they all are valid successors of thecasevertex. (Note, that no data dependen-
cies, like branch selection, are checked by the WP). The individual output branches
of the case statement will be distinguished by assigning different second and third

a:for (j=0;j<2;j++){
b: if (x<0){
c: x=x+8;

}
else{

d: while (i<3){
e: i=x+i;
f: }
g: }
h:}

b

Program text Program control-flow graph Statement labels

Statement label set:

Vertex Sublabels Vertex Sublabels

a (16,1,1) e (7,8,7)

b (2,5,2) f (9,14,9)

c (3,3,3) g (4,10,4)

d (6,13,6) h (17,11,11)

Fig. 1 The encoding of the program control-flow graph
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sublabels to the vertices.

In order to keep the memory and time overhead at an acceptable level, the number
of statement labels in a procedure can be reduced. This reduction is performed on the
CFG before the encoding step. It can be either static or dynamic.

Static reduction decreases the number of vertices in the CFG and thus the signature
transfer instructions in the program code by merging multiple statements into a single
vertex and correspondingly into a single signature. A user-definedstatic reduction fac-
tor controls the number of statements merged. Higher numbers result in fewer checks,
increase error latency, and reduce the probability of error detection, yet on the other
hand result in a shorter execution time and program size overhead. Static reduction may
remove small branches in the CFG.

Removal of cycles in the CFG is not allowed, because otherwise the program may
run within loops for extended periods of time without any checks. Hence, each loop has
to contain at least one statement label. Overhead measurements (described in Section 5)
have shown a very high bus traffic due to short loops inducing burst-like transfers of
many signatures.Dynamic reduction has proved efficient to avoid this effect. Instead of
transferring a signature, only a counter variable is incremented. If the signature counter
exceeds the user-defineddynamic reduction factor, the counter is reset and a signature
is transferred to the WP. A similar reduction can be achieved for a predefined reduction
factor byloop unrolling followed by a static reduction phase.

The hardware implementation of thestatement-level checker is quite simple, due to
the efficient CFG encoding (Fig. 2). Only the reference statement labels have to be
stored and regularly updated. The successor function of the sublabels can be imple-
mented as a combinatorial logic circuit, the evaluation of the statement sublabels is per-
formed by a comparator set.

2.2 Procedure Level Checking

Theprocedure level checker module has to check the procedure calls and returns. Upon
a procedure call, the WP has to push its state, represented by the previous signature,
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Fig. 2 Statement level checker module

Input

label



6

onto its stack (called thesignature stack), upon return, the latest signature has to be
popped from the stack.

 Procedure calls are potentially data-dependent (e.g. procedure calls through vari-
ables) in high level languages. Neither the location of the procedure call nor the called
procedure can be identified by the precompiler in the CFG extraction step. Hence pro-
cedure calls are allowed at any location of the program, independently of the actual in-
struction structure. This way function calls embedded into arithmetic expressions and
interrupt handler routines can be checked in the same way as procedure calls. The dis-
advantage is that only the returns from procedures can be checked, i.e. a wrong proce-
dure call will be detected only after a long latency. Nonetheless, procedure calls are
allowed to start only at an entry point of a procedure, so only an erroneous jump to the
starting point of a procedure can not be detected immediately.

The first and last statement labels of the procedures are marked by flags:Start of Pro-
cedure (SOP) and End of Procedure (EOP), respectively. SOP means that the WP has
to push the actual reference onto the stack and the actual statement label is valid as the
first reference of the called procedure. In case of EOP the statement label has to be val-
idated by the statement label checker and the next reference has to be popped from the
stack (the reference of the calling procedure).

The procedures of a program are numbered and their identifiers are embedded into
the signatures, together with the statement labels.Procedure IDs are allowed to change
only if the SOP flag is set.

In a multi-tasking environment the WP and the signature stack storage is shared be-
tween different processes. Signature stack areas can be either statically or dynamically
allocated. Static allocation is uneconomical if there are “hyperactive” (e.g. recursive)
processes needing more stack space, while others hardly use the stack. In the case of the
dynamical allocation strategy the individual stacks are parts of a single global stack area
implemented as a linked list. Each process stack is defined by a pointer as a header of a
linked list. Cells of a stack can be linked to and from a global free list consisting of the
whole unused area. Thus, the stack area of a single process is limited only by the global
number of free cells and the activity of the other processes.

The procedure-level hardware checker module consists of thecomparator for proce-
dure IDs and thestack maintenance control. The size of the signature stack storage de-
pends on the number of admissible embedded procedure calls. In the case of astack
overflow its content is stored into its virtual extension in the main memory or in a stable
storage, from where the stack can be reloaded after becoming empty.

2.3 Process Level Checking

The process level module checks the scheduling of application processes running on the
same processor and theinteraction of different processes, i.e. synchronization. Signa-
ture transfer times are monitored by a timer and can be used to detect a hung system.

Checking of Process Scheduling. A unique ID is assigned to each application process.
A processor-process database is established in the process level checker module of the
WP: each processor has a record in this database storing the ID of the presently running



7

process. If the operating system schedules a new process on a processor then the corre-
sponding record is replaced by the new process ID. The process and processor IDs are
embedded into the signature; thus, the WP can compare them with the record in the pro-
cessor-process database, allowing only correctly scheduled processes to be active.

Signature transfers are monitored process-wise by separate logicaltime-out checkers
in the WP activated by the scheduler. All time-out checks share the same physical timer
of the WP.

Checking of Process Interaction.One major goal of the research was the extension of
control flow checking to the level of interprocess cooperation. Such checks allow the
blocking of the dissemination of error effects from a faulty process to the other ones. In
this way the error latency and losses in computation time can be drastically reduced. For
this reason a skeleton-like description of the communication and synchronization struc-
ture is required. Synchronization of application processes can be described e.g. by using
a simple CCS-like process algebra [14], (Appendix).

The basic idea will be illustrated by the simplest case, the synchronous communica-
tion between two processes. This kind of communication is valid, if the sender process
closes it after the receiver process has accepted the data, and the receiver can not get
data before the sender begins the communication. An error is detected if one of the part-
ner processes has already finished the communication and the other partner has not even
started it. Similarly to the lower levels checks, the WP will be notified on the status of
the interprocess control flow by special signatures. Reference labels are assigned to the
different phases of the individual processes in order to make their state in the control
flow during the interaction observable for the WP. Such a reference label should change
only after a synchronization in order to distinguish the different phases during the co-
operation. (It can be shown that only the synchronization statements must be guarded
by special signatures).

The informal description of the checking mechanism is as follows: during the syn-
chronisation of two processes two special signatures are sent by each process.

1. The first,initializing signature before the execution of the synchronization notifies
the WP, with which partner process the synchronization is intended. In case of
error-free operation, the other process will send a similar signature referring to the
first process prior of the synchronization. Based on the initialization signatures of
the participating processes the WP internally generates a common reference signa-
ture for both of them.

2. The second signature is sent during the synchronization itself by each participating
process. It contains thereference signature for the partners, computed at compila-
tion time in the same way as the WP handles the initialization signatures. This sec-
ond signature is valid only if the partner processes coincide with the expected ones,
and both processes have already initialized the synchronization, otherwise an error
is detected.

A register (calledreference register) is reserved for each process internally in the
WP. The synchronization checker module executes two operations depending on the ac-
tually received guard signature:
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1. Initialization. The initializing signatures before the statement of synchronization
contain the ID of the presently running process and the ID of the intended partner
for communication. When receiving this type of signature, the WP checker module
examines the reference register of the partner process. If the reference register does
not contain the ID of the running process, than the process is the one beginning the
synchronization and the partner is uninitialized. To indicate this, the checker mod-
ule stores the ID of the partner in the reference register of the running process (uni-
directional, actual→ partner process initialization).
However, if the reference register of the partner already contains the ID of the run-
ning process, the partner is ready for the synchronization due to the processing of a
previous signature. The initialization can be finished. The WP stores in both refer-
ence registers the same reference label identifying the pair of partner processes
(e.g. by some function of the process ID bits). This indicates that the communica-
tion is allowed and the partners are ready for it.

2. Checking: The second guard signature (after the synchronization statement) trans-
fers the synchronization label, which was computed by the precompiler using the
same function as the one used internally in the WP for the generation of the refer-
ence label. The WP checker module compares this label with the content of the ref-
erence register computed during the initialization step. Upon a mismatch an error
exception is raised.

In order to support the checking mechanism above, the precompiler has to parse the
program text to identify the processes to be synchronized at a given statement, generate
the initializing signatures and the synchronization labels.

The examples in Table 2 present the insertion of guard signatures for synchronous
communication (the sender has to wait for the receiver) and fork-join structures. The

Example Checked process systema Remark

Communication
(synchronization) I(A,B).data.C(A⊗B).Ps |

I(B,A).data.C(B⊗A).Pr

A, B: process IDs

Ps: sender (cont’d)

Pr: receiver (cont’d)
Sender Receiver

data.Ps data.Pr

Single fork (without join)
I(A,B).fork.Pp |

fork.I(B,A).C(A⊗B).Pc

A,B: defined values

Pp: parent (cont’d)

Pc: child activities

Parent Child

fork.Pp fork.Pc

Fork-join structure
I(A,B).fork.exit.I(A,B).C(A⊗B).Pp |
fork.I(B,A).C(B⊗A).Pc.I(B,A).exit.0

A,B: defined values

Pp: parent (cont’d)

Pc: child activities

Parent Child

fork.exit.Pp fork.Pc.exit.0

a I(A,B) means that the process initializes the checking with A as actual and B as partner
label.
C(A⊗B) means the initialization of the checking of label A⊗B using the reference label.

Table 2 Checking of the synchronization
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UNIX-style fork() system call creates a child process by duplicating the parent. The par-
ent may wait for the termination of the child (using thewait() system call, which means
a fork-join structure) or the two processes can run independently. These examples are
asymmetrically checked, since an initialization guard can not precede the starting point
of the child process, and, the child can not check its own termination (Table 2). In the
single fork structure, it is assumed that the parent does not make a new synchronization
before the child starts. Process algebra provides a compact description of the process
interaction structure, as illustrated by the examples in Fig. 3.

Process level checking uses as a hardware resource only theprocessor-process da-
tabase(one record per processor) and thereference registers (their number is propor-
tional with the number of processes).

2.4 Checking Hierarchy

In summary, the following types of information are combined to form a signature:
• thestatement label consisting of three sublabels identifying the location and the val-

id successor statements in the procedure;
• theprocedure ID identifying the procedure of a process;
• theprocess ID identifying the application process;
• theID of the processor which has sent the actual signature;
• synchronization labels (special guard signatures).

Fig. 3 Examples of the process synchronization

Notation:

I(x,y) Initializing signature with labels x, y

Synchronization between two processes

Communication:

C(x) Second signature: checking the label x

I(A,B) I(B,A)

C(Α⊗B) C(B⊗A)

data

data.Pr data.Ps

data

I(A,B)

exitexit

fork.Pc.exit.0 fork.exit.Pp
Receiver: Sender: Child: Parent:

Process control (fork-join):

fork

Pp

C(A⊗B)

I(A,B)

I(B,A)

C(B⊗A)

I(B,A)

Pc
wait()

of the parent
function

Not implemented
in the child

Pr Ps

fork
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The lower level checks are independent from the upper level ones, each level forms a
self-contained, independent module. Each of the checks on the different levels can be
executed simultaneously, assuring high operating speed. The checking modules are
summarized in Table 3. An error is detected if any one of the checker modules reports
an error.

The checker hierarchy can detect the majority of faults at the level of their first man-
ifestation. A fault in the program counter results in an invalid sequence of statements;
it can be detected either as a wrong statement label or as a signature time-out. Stack
pointer faults can result in a faulty procedure return detected by the procedure level
checker. Permanent software or transient hardware faults during synchronization are
detected by the process level synchronization checkers. The check of process schedul-
ing provides an additional method to detect faults in the process descriptors and pointers
to the process table.

3 Additional Features of the Watchdog Processor

3.1 Error Recovery

The SEIS WP is designed to supportrollback recovery in a massively parallel multipro-
cessor. The checked system regularly stores the states of the processes in a stable stor-
age. In case of an error the application is restarted from the saved state avoiding the loss
of the whole computing time. Two-phase commit is used in order to always have a valid
checkpoint. Each process stores its state as a tentative checkpoint in one of two buffers.
A tentative checkpoint is made permanent, if all processes succeed in taking their
checkpoint. Otherwise, the system restarts from the previous permanent checkpoint.

Checkpointing and restarting a process requires the WP to save and restore its signa-
ture stacks of all processes affected in the main processor. Checkpoints are stored as dy-
namically linked lists in the global stack space. The implementation of the checkpoint
operations increases only the complexity of the stack maintenance hardware, other WP
modules were not changed. Checkpoints may share stack cells with the actively used
reference stack, thus time and space consuming stack copying is avoided. Thus, check-
pointing only requires saving the operational stack pointer, and write-protecting the ref-

Checker level Checked operation
Signature

information
Checker method

Statement Statement sequence Statement labels Comparison

Procedure Call and return Procedure ID Ref. stack, comparison

Process

Scheduling
Process and
processor ID

Processor-process
database check

Synchronization Guard signatures
Reference label genera-
tion and comparison

Signature transfer rate Signatures Basic timer

Table 3 Hierarchical checking (summary)
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erence stack. After an EOP signature labelling a return statement from a subroutine, a
write-protected stack cell is not linked to the free list, but remains part of the checkpoint
space. Thus, the internal checkpoint operations of the WP can be executed in a pre-
defined time independent from the stack depth of the process. The following operations
are supported:
• Generation of a tentative checkpoint: The previous tentative checkpoint in the WP

is replaced by the actual reference signature stack of the process.
• Commitment: The tentative checkpoint in the WP is made permanent.
• Roll-back recovery: The operational reference signature stack of the process is re-

placed by the permanent checkpoint.
The WP executes these operations internally initiated by corresponding special com-

mands embedded in the signature flow.

3.2 Error Notification

If an error is detected by a checker module of the WP, an error status word is generated
and the checked system is alarmed by an interrupt. The error status word is the concat-
enation of the results of the different checker modules. An internal status FIFO is used
in the WP in order to avoid error signal overruns.

4 Integration of an Experimental SEIS WP into a Multiprocessor

4.1 The MEMSY Multiprocessor

The MEMSY multiprocessor developed at the University of Erlangen-Nürnberg has a
2-level hierarchical, scalable regular structure with distributed locally shared commu-
nication memory. The processing nodes at each level form a four-neighbor toroidal
mesh coupled by multiport memories. Locally shared memory modules allow commu-
nication of two neighboring nodes with the help of an interrupt network. This commu-
nication memory is mapped into the address range of the processors and interfaced
through dedicated buses.The basic building block of the MEMSY architecture is an el-
ementary pyramid consisting of one higher level node supervising four lower level
nodes. Each computing node is a multiprocessor itself, containing four MC88100 RISC
processors with the corresponding cache and MMU chips. The processor modules are
off-the-shelf highly integrated boards; so the instruction bus of the processors is not ob-
servable for the purposes of derived signature generation without drastic hardware
modifications.

Each basic pyramid of MEMSY is checked by a single WP in order to reduce the
hardware overhead. Thus, the WP is able to check simultaneously 5 computing nodes
consisting of a total of 20 processors and running a maximum of 1280 processes [10].
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4.2 Signature Transfer

Different types of information have to be transferred to the WP, as pointed out in the
description of the checker modules. WP accesses can be grouped ascommands (e.g.
checkpoint generation, recovery, initialization),special signatures (synchronization
guards, scheduler informations) andcommon signatures. In order to simplify the com-
munication with the checked system, the WP was implemented as amultiport coproces-
sor with ports mapped into the address ranges of the checked processors. Commands
and signatures are transferred through shared memory write cycles; status information
can be obtained by a read cycle. In order to achieve a sufficient bandwidth during sig-
nature transfers, the address word of the signature write access is used to transfer sig-
nature information as well (Table 4).

As example, the preprocessed internal loop of the program in Fig. 1 is shown below.
Static reduction is disabled. The procedure ID in this example is1, process and proces-
sor IDs areboth 0. The assumed base address of the WP signature register is hexadeci-
mal B4000000. The program uses byte addressing mode, thus a byte address offset of
the value of 4 corresponds to a word offset of 1.

*(unsigned long *)(0xB4000004)=0x00603406;

{while (i<3) {

*(unsigned long *)(0xB4000004)=0x00702007;

{i=x+i;}

} *(unsigned long *)(0xB4000004)=0x00903809;}

The internal loop is modified by defining16 as dynamic reduction factor to:

_wpc=0; *(unsigned long *)(0xB4000004)=0x00603406;

{while (i<3) {

if (!((_wpc++)&15)) {

*(unsigned long *)(0xB4000004)=0x00702007;}

{i=x+i;}

} *(unsigned long *)(0xB4000004)=0x00903809;

4.3 Shared Operation

The WP, as a multiport coprocessor, is connected to the five computing nodes in an el-
ementary pyramid. The requests on the input ports of the WP are served sequentially

Address (word addressing mode) Data

Sig.
type

Processor
 ID

Process
 ID

Procedure
 ID

Flags
Sublabel

 #1
Sublabel

 #2
Sublabel

 #3

Bits 2 2 8 10 2 10 10 10

Table 4 Signature structure
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using a round-robin priority scheme. Signature checking is executed within a single
communication memory cycle. An input FIFO is used to smooth out the time overhead
of the relatively complicated checkpoint operations and to avoid delays due to the time-
shared use of the WP. Control operations, like initialization etc., are performed by the
higher level main processor node in an elementary MEMSY pyramid. All error reports
generated in the WP are copied to the higher level node, forming an error log of the en-
tire basic pyramid.

4.4 MMU Utilization

As described earlier, the process ID field is embedded into the part of the signature
transferred via the address bus. During preprocessing and compiling, the same constant
values are assigned to all process ID fields in the statement labels, because these IDs are
unavailable at compilation time. At run-time, depending on the process ID, the same
virtual address ranges are mapped by the MMU to different physical address ranges of
the WP. Thus, the unrestricted use ofshared codeand shared libraries is supported.

In the MMU WP address sub-ranges can be defined as nonexistent or write-protect-
ed. Only a single page corresponding to the process ID is visible in the user address
space of a process preventing illegal accesses to the address range of other processes.
Additionally, WP commands (e.g. checkpointing and recovery) are privileged, avoid-
ing, for example, an accidental checkpoint overwrite.

4.5 Implementation Details

SEIS Precompiler. The current precompiler processes programs written in C language.
The precompiler itself was written in C too, so it is fully portable to different platforms.
For parsingbison is used, the encoding algorithm is a linear one.
WP Hardware. The WP was implemented as a 16MHz coprocessor board on the VME
bus of the higher level node with interfaces to the four computing nodes on the lower
level identical with those used for the communication memory. WP operations (arbitra-
tion, signature evaluation, stack handling and checkpointing) are controlled by 6
MACH230 PLDs (3600 gate equivalent per device). The signature stack is in a 256K
RAM block which proved to be oversized if no recursive programs were running. Syn-
chronization checks were not used in the experimental version of the WP. Worst case
signature transfer and evaluation time is even in this moderate speed experimental ver-
sion as low as 300-600 ns depending on the signature type and number of simultaneous
requests. Tentative checkpoint generation is executed in 2.3 microseconds.
Operating System Modifications. The operating system of the checked computers was
only slightly modified. Interrupt handlers serving the WP (e.g. detected error, saturation
of the WP stack) have to be added to the system. The creation or scheduling of a new
process requires the initialization of the internal WP processor-process database and the
initialization of the address translation tables in the MMU.
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5 Measurement results

Standard benchmarks (likedhrystone, whetstone, linpack etc.) and scientific calcu-
lation programs representing the expected typical MEMSY user profile (like amultigrid
based solver of Poisson differential equations) were used for verification. Compilation
was done usinggcc version 2.2.2 generating a highly optimized code. The following
characteristics were measured for each reduction strategy:
• static code length;
• fault coverage by injecting single bit transient errors into the program counter at a

single random phase of the program execution (5000 experiments were performed
for each individual case. The fault coverage was estimated with a relative error less
than±5% at a confidence level of 99%);

• program run times, using the system timer of MEMSY with a resolution of 10 msec;
• number of signatures sent to the WP;
• distribution of time between subsequent signature transfers in terms of number of

instructions executed by tracing the program in single-step mode.
Naturally, the resulting characteristics show a dependency on the benchmark and on

the reduction method applied. However, the basic trends were essentially identical.
Therefore, the following analysis of the measurement results is illustrated by the de-
tailed results of the multigrid solver. The experiences with other benchmarks will be
presented as accumulated intervals.
The overhead in code length varied between 20% and 85% in the general case depend-
ing on the benchmark and static reduction factor. Results of the multigrid application
are shown in Fig. 4. The number of signatures depends on the program size only ap-
proximately linearly with a moderate coefficient. This overhead is affordable even for
large programs in the Mbyte range. The efficiency of the static reduction rapidly drops
with a growing reduction factor. Our benchmark program consists typically of short
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branch-free statement sequences embedded into nested loops. (In each loop at least one
signature must be included). Dynamic reduction does not influence the code length sig-
nificantly.
Fault coverage (Fig. 5) is typically in the interval of 10-65% of the errors remaining
undetected by the standard primary checking mechanisms of the CPU- MMU complex
(nonexisting address, illegal opcode etc.). In this figures the errors masked by the pro-
gram itself, affecting neither the control flow nor the final results are eliminated. The
decrease of fault coverage with a growing static reduction factor is a consequence of the
larger address range between two consecutive signatures, as control flow errors remain-
ing within this interval are not covered by any WP method. This overall result corre-
sponds to the coverage of other WP implementations, like in [16].

Fig. 5 Run time vs fault coverage
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The run-time overhead increases drastically when using a small reduction factor, even
to a level of 100% indicating a cumulative effect of multiple disadvantageous factors
(Fig. 6). External bus cycles, like those required for signature transfer are by a factor of
4 to 10 slower than a cache access [17]. If there are too few statements to execute be-
tween two consecutive signatures, bus saturation can occur. In this case the CPU has to
wait for the end of the transfer inactivating its internal speedup mechanisms (instruction
prefetch, pipelining). For a more detailed analysis the integrated distribution of time pe-
riods between subsequent signature transfers was measured (Fig. 7).

In the ideal case, all signatures should be transferred within the same time period,
defined by the user as a compromise between fault coverage and performance loss. The
first peak in the density function (Fig. 8) after only 3 instructions results in a lesser ex-
tent from the unavoidable use of intermittent signatures in complex control structures.
The dominating cause are overtested short loops, as a costly check is performed after
only a few machine instructions. Dynamic reduction or loop unrolling with a subse-

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 s

ig
na

tu
re

s 
(1

0
3 )

Without reduction

Dynamic: 2 + static: 3
Unrolling + static: 5

Static: 10

Unrolling + static: 10

Dynamic: 16 +static: 3

Time (number of instructions)

Fig. 7 Integrated number of signature transfers

0

5

10

15

20

25

0 5 10 15 20 25 30

N
um

be
r 

of
 s

ig
na

tu
re

s

Time (number of instructions)

Loop unrolling + static reduction by a factor of 5Original program

Fig. 8 Frequency density function of the time between signatures



17

quent static reduction (both puncturing signature transfers to each kth execution of the
loop body) result in a radical reduction in run-time overhead without a drastic decrease
in fault coverage. Undertesting can occur, even in the case of a single statement such
simple asa=b , if a andb are complex data types involving a long copy operation.

Conclusion

 The advantages and possible use of an assigned signature watchdog processor in mul-
tiprocessor and multitasking environments were discussed. Main idea of the proposed
SEIS method is the redundant encoding of the program CFG. In this way, only the last
signature of each program block has to be stored as reference. The evaluation of the ac-
tual signature is a simple combinatorial task. The advantages of the proposed methods
are the low hardware cost, the high processing speed and the easy integration into ex-
isting systems. First experiments with the MEMSY multiprocessor yielded encouraging
results.

However, the traditional views on WPs based on high-level preprocessing, which
originate in the very first publications on this topic, must be revised in the light of the
measurement results. Beyond question, this approach remains attractive due to its out-
standing advantages, like portability or compatibility with compiler-made automatic
optimization. Fault coverage corresponds approximately to the known methods at the
assembly level. On the other hand, the rough granularity of individual statements does
not allow a sufficiently fine tuning of the distribution of signature transfers in time. The
current development aims at going deeper in the syntax hierarchy down to the elemen-
tary operation level, where a similarly structured, but significantly more detailed CFG
can be built as at the instruction level. When weighting the edges of this CFG with the
operation execution times, the dynamic distribution of signature transfers reduces to a
known optimization problem. The WP can be further used without any modification
thanks to the very general and flexible nature of the encoding algorithm.

Appendix

The elements of the process algebra are defined as follows:
• P,Q,...agents (representing the processes);
• a,b,...∈L labels (representing observable operations e.g. receivea and senda, re-

spectively; 0 represents the end of the process);
• α,β,...∈Act, (Act=L∪{τ}) actions (e.g. send, receive and the internal synchroniza-

tion τ).
The expressions are composed with the help of three operators as prefix (., sequencing
of actions), summation (+ , non-deterministic choice) and composition (|, parallel exe-
cution):P::= 0α.PP+PP|P.
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