
Reachability and Timing Analysis in Data Flow Networks: A Case Study

B. Antal, Gy. Csert´an and I. Majzik
Technical University of Budapest

Dept. of Measurement and Instr. Eng.
Budapest, H-1521, Hungary

majzik@mmt.bme.hu

A. Bondavalli and L. Simoncini
CNUCE-CNR

Pisa, I-56100, Italy
Via S. Maria 36

a.bondavalli@cnuce.cnr.it

Abstract

The need of efficient implementation, safety and perfor-
mance requires early validation in the design of computer
control systems. The detailed timing and reachability anal-
ysis in the development process is particularly important if
we design equipments or algorithms of high performance
and availability. In this paper we present a case study re-
lated to the early validation of control systems modeled by
data flow networks. The model is validated indirectly as it
is transformed to Petri nets in order to be able to utilize the
tools available for Petri nets.

1. Introduction

Compactness, modularity, data driven and distributed na-
ture, the support of stepwise refinement and direct imple-
mentation makes the data flow modeling paradigm attrac-
tive for system designers [3]. A current disadvantage of the
approach is that the lack of common semantics results in
the shortage of available analysis and evaluation tools. Per-
formance and safety analysis of data flow modeled systems
can not be performed easily.

The problem can be solved by indirect analysis of data
flow networks (DFN). A set of model transformations exist
which preserve selected properties of the model and result
in a representation which can be analyzed by a variety of so-
phisticated tools. The formal background and (theoretical)
proof of isomorphism regarding the properties to be ana-
lyzed assures that the results gained by the analysis of the
transformed model can be propagated back to the original
data flow representation.

In this paper, we show that reachability, early perfor-
mance and timing analysis of data flow modeled systems
can be performed through an automatic data flow net to
Petri net transformation. This way, the wide range of tools
available for Petri nets can be utilized without coping with

construction of large and complex Petri net models, which
is done automatically.

The correspondence between data flow networks and
Petri nets is a natural idea [6]. However, the proof of iso-
morphism first requires to define the type and exact seman-
tics of data flow networks and then the class of the corre-
sponding Petri nets. [5] introduces a transformation from
DFN models to timed Petri nets of the class Determinis-
tic and Stochastic Petri Nets [8]. [7] proves that the trans-
formation preserves timing and reachability properties, thus
the analysis of data flow networks can be performed on the
equivalent Petri net.

The formal and theoretical background of the model
transformation is a topic of other papers, here we concen-
trate on presenting the usefulness of the transformation by
an application example. As part of the model of a com-
plex computer system, the (sub)model of a disk handler is
presented. We selected this example since it has a com-
pact representation describing hardware as well as software
parts of the system, it is easy to survey and despite of the
simple representation useful measures of the system can be
derived. Our goal is to show the methodology of the net-
work analysis without dealing with the overhead caused by
a more complex model.

The rest of the paper is organized as follows. In Section 2
the modeling approach is presented. First our data flow no-
tation is defined which is intended to model distributed con-
trol systems. The Petri net notation and the corresponding
analysis tools are also recalled. The model transformation
is introduced in Section 2.4, the equivalence of the two rep-
resentations is discussed in Section 2.5. The results of the
model analysis are presented in Sections 3 and 4. The paper
is closed by a short conclusion.

2. Modeling approach

The early validation of control systems is regularly per-
formed at higher level of model abstraction where the de-
signer does not want to deal with the exact representation



of computation and data values. At this level, uninterpreted
data flow networks are used in which data are represented
by tokens (interpreted data flow networks with exact data
values are introduced in further steps of the model refine-
ment). The data dependences are modeled at this level by
the stochastic behavior of the network. We restrict our in-
vestigation to uninterpreted models.

In the following, first the data flow and Petri net notations
are reviewed then the transformation itself is outlined.

2.1. The data flow notation

A data flow network (DFN) consists of nodes and unidi-
rectional channels, where nodes represent computation and
data processing, channels represent the data transmission
between the nodes and from/to the environment. The pos-
sible activities of a node are modeled by firings. If a fir-
ing fires, the state of the node changes, some tokens are re-
moved from the input channels of the node and some tokens
are inserted into the output channels of the node. A firing
is associated with a delay which represents the time needed
to complete the activity. During this time, the node is in a
working state preventing the start of other firings. The firing
delay can be given either by its distribution function or by
its exact value (deterministic firing delay). To assure the an-
alytical evaluation of the network, the distribution function
of the firing delay is restricted to be negative exponential.

Thus, a node of the DFN is defined by the tuple of

� set of input channels;
� set of output channels;
� set of states with a distinguishedworking state;
� set of firings where each firing is described as fol-

lows: the state and the number of tokens in the input
channels required by the firing, the state reached after
the firing, the number of tokens inserted by the firing
into the output channels, and finally the priority and
the time function of the firing delay.

The DFN is a composition of the nodes by connecting
the channels to each other (each channel connects exactly
two nodes, self loops are not excluded). It can be given by
the

� set of nodes;
� set of channels;
� initial state of the network (composed of the initial

states of the nodes and the number of initial tokens in
the channels).

The interaction between the environment and the DFN
is taken into account either by modeling the environment
(closed network) or by representing the events of the envi-
ronment by dummy input (output) nodes which have only
output (input) channels connected to the channels of the

DFN and firings inserting (removing, respectively) tokens
into these channels.

A firing of a node is enabled if the node is in the state re-
quired by the firing and its input channels contain the neces-
sary number of tokens (i.e. all data required for the activity
is present). If an enabled firing fires, first the given num-
ber of tokens is removed from the input channels and the
state of the node changes to the working state (start event
of firing). After the firing delay, tokens are placed into the
output channels and the state of the node changes to the one
given by the firing (end event). The selection between the
enabled firings of a node is based on the priorities (selection
between the firings at the same priority level is random).

In the network, the firings of different nodes can fire par-
allel, the order of start events is random (since each channel
connects exactly two nodes, the nodes are not in conflict
with each other). The actual state of the DFN is given by
the states of the nodes and the number of tokens in the chan-
nels.

To avoid to deal with all changes in the state of the net-
work we are interested only in the states which exist for
nonzero time (tangible states). Accordingly, thecomputa-
tion (operation) of the network is defined as the series of
tangible states of the network together with the time values
when the state changed. (Note that tangible states of the net-
work are the ones when start events of enabled firings were
executed and the nodes are either in working state or in idle
state waiting for tokens in the input channels. If all nodes
are in idle state then a deadlock is detected.) The end events
of a firing and the successive start events of (other) firings
triggered by this end event are grouped into a compound
event which changes the tangible state of the net.

2.2. The device handler example

Our example is a device handler in a computer system
which controls the data access of a disk subsystem. It con-
sists of a disk, a cache unit, a cache controller, the handler
software and two user processes (the environment). The
data flow network is presented in Figure 1. The boxes rep-
resent the nodes, the arcs represent the unidirectional chan-
nels between the nodes. The net can be composed easily
using a data flow editor [2].

The application processes can initiate read and write re-
quests independently. The device handler software (split
into two parts, handlers of the read and write requests) col-
lects the requests and selects the one being served. At a
given time, one application task can be served. The re-
quests are forwarded to the cache controller which selects
an activity again and sends the corresponding signal to the
cache. The cache organizes the data transfer. If necessary,
the cache initiates a read or write operation of the disk. In
the example, the disk always performs the requested opera-



USER 1 USER 2

CONTROLLER

CACHE DISK

HANDLER_READ HANDLER_WRITE

Figure 1. The device handler

tion and sends back the data or an acknowledge signal.
Both write-through and copy-back cache strategies were

implemented (in two models), in order to compare them.
The write-through cache works in the following way. Write
requests refresh the content of the cache but are also for-
warded to the disk. Read requests are served either using the
content of the cache (cache hit) or first accessing the disk
and then updating the cache. The operation of the copy-
back cache is more difficult. If the requested data is in the
cache (cache hit) then the request can be served without ac-
cessing the disk. If the data is not in the cache, first it has
to be examined whether the cache contains only dirty data
(data which has a valid copy only in the cache). If the cache
is full of dirty data, first some part of it has to be written to
the disk to free some space for the new data. Consequently,
if the cache is full, write requests are served including a disk
write then a cache write operations, otherwise only a cache
write has to be performed. If the cache is not full, read re-
quests mean a disk read then a cache write operation (enter
the new data into the cache), if the cache is full, an addi-
tional phase is required to write the disk (free some space,
Figure 2).

If the handler returns an error message indicating that the
requested operation cannot be performed (since the device
is busy due to the request of the other user process) then it
has to be retried later. Similarly, if the controller returns an

error signal then the handler will retry the request.
Each node is described in an uninterpreted data flow lan-

guage. It defines the name of the node, the input channels,
the output channels, the set of states and the set of firings.
As an example, let consider the simple node representing
the operation of the disk:

NDISK
Xi [read_disk, write_disk]
Xo [read_ok, write_ok]
St [idle]
r1 idle,[1,0],idle,[1,0],e1,1
r2 idle,[0,1],idle,[0,1],e2,1
EDISK

The node name is DISK, it has two input channels
(read disk and write disk) and two output channels
(read ok andwrite ok). The number of states is one. The
firings are given as 6-tuples of the state and the vector of
tokens in the input channels required by the firing, the state
reached after the firing and the vector of tokens put into the
output channels of a node, and at the end the time and pri-
ority parameters. E.g. firingr1 changes the stateidle of the
node toidle again while removing 1 token from the channel
read disk and inserting 1 token into the channelread ok

(modeling that the disk served the request in a given time
then returned to its idle state). Its time parameter ise1 (pa-
rameter of the negative exponential distribution function),
its priority is 1.

The states and firings can be graphically represented in
a form similar to the one of state machines. In Figure 2 the
firings of the simplified CACHE node are presented (copy-
back, read access).

hit no hitidle

cache
read

full

cache
write

cache
test

disk
read

not full

disk
write

Figure 2. Read operations of the copy-back
cache



2.3. The Petri net notation

Our goal is to analyze the data flow networks indirectly,
by transforming them into a proper type of Petri nets. Since
our DFN is timed, with deterministic constant or nega-
tive exponentially distributed firing delays, a class of timed
stochastic Petri nets, the Deterministic and Stochastic Petri
Nets (DSPN, [8]) was selected.

A Deterministic and Stochastic Petri Net (as an exten-
sion of regular Petri nets [9]) is composed of places, transi-
tions and arcs directed from a place to a transition or from a
transition to a place. Places connected to a given transition
form its input places, places connected from the transition
are its output places. The state of the net (called a marking)
is given by the number of tokens in the places. Activities
of the net are represented by firings of transitions removing
tokens from their input places and adding tokens to their
output places, the number of transferred tokens is given by
the weight of the corresponding arcs. Conditions of firings
are represented by the number of tokens in the input places:
a transition is enabled if its input places contain the neces-
sary number of tokens (to be removed by the transition).

The DSPN is a tuple of

� set of places
� set of transitions
� set of directed arcs (flow relation) between places and

transitions including inhibitor arcs (not used in our
model)

� weight function of the arcs
� priority and time function of the transitions
� initial marking of the net.

In DSPN, transitions are immediate or timed ones.
Timed transitions are associated with deterministic or ex-
ponentially distributed firing delays. Timed transitions
have zero (lowest) priority while immediate transitions have
higher priorities. An immediate transition fires if it is at the
highest priority level among the ones being enabled (if there
are more, one of them is selected using random switches as-
signed to the transitions), a timed transition fires if it is con-
tinuously enabled during its firing delay sampled according
to the given distribution.

The firing policy israce with enabling memory. Each
transition is associated with a timer. If the transition be-
comes enabled then it samples a firing delay using its dis-
tribution function and sets the timer to the sampled value.
When the transition is enabled, the timer counts down, if it
reaches zero then the transition can fire. If the transition is
disabled (by the firing of a conflicting transition) then the
timer is reset (a new delay has to be sampled when it be-
comes enabled again).

To find the correspondence between the DFN and DSPN
models, the behavior of the DSPN is represented in a simi-

lar way like the behavior of the DFN. We define thecompu-
tation of the network as the series of tangible markings of
the network together with the time values when the marking
changed. In this case, the computation is a modified form of
the firing sequence of the DSPN hiding the firings of imme-
diate transitions (which were executed at the same system
time). Namely, the firing of a timed transitions and the fir-
ings of immediate transitions enabled by this firing of the
timed transition are grouped into a compound event which
results in a new tangible marking of the net.

2.4. The transformation

Our model transformation maps a DFN to a DSPN. The
nodes, channels and firings of the DFN are mapped to sub-
nets of the DSPN, the initial state of the DFN is mapped to
the initial marking of the corresponding DSPN.
The transformation is detailed as follows:

Channels: Each channel of the DFN is mapped to a single
place. The number of tokens in the channel is repre-
sented by the number of tokens in the corresponding
place.

Nodes: Each node of the DFN is mapped to a subnet of
the DSPN. The non-working states of the node are
mapped to unique places. If the node is in a given
state then the corresponding place will contain a to-
ken. The working state of the DFN node is mapped
to a set of places such that each firing of the node is
associated with a place. If the node is in the working
state after the execution of the start event of a firing
then the corresponding place will contain a token.

The start events of firings are associated with immedi-
ate transitions with priority inherited from the firing
(the value of the random switch is fixed). The end
events of firings are mapped to timed transitions with
zero priority; the time parameter is inherited from the
firing.

The flow relation of the resulting subnet is defined
as follows. The input places of an immediate transi-
tion corresponding to the start event of a firing are the
places representing the input channels and the non-
working state of the node required by the firing. The
output place is one of the places corresponding to the
working state of the node. This place is also the input
place of the timed transition corresponding to the end
event of the firing. The output places of this timed
transition are the ones representing the output chan-
nels and the non-working state (result of the firing).
The weights of the arcs connected to/from the places
representing the channels are given by the number of
tokens transferred by the corresponding firing of the



idle

read_disk

TTr1

Pr1

Tr1

TTr2

Pr2

Tr2

write_disk

write_okread_ok

Figure 3. DSPN representation of the DISK
node

data flow node, the arcs connected to the places rep-
resenting the states of the node have the weight 1.

Initial state: The initial marking of the DSPN is defined
using the initial state of the DFN. The places corre-
sponding to the initial states of the nodes contain a
token, the places corresponding to the channels con-
tain the same number of tokens as the channels.

As an example, let consider the data flow node of the
disk (described in the previous subsection). The transfor-
mation results in a Petri net shown in Figure 3. The non-
working state is represented by the placeidle, the chan-
nels were transformed to the places with the correspond-
ing name. The firingr1 (r2) is transformed to the subnet
consisting of the transitionsTr1, TTr1 (Tr2, TTr2) and
placePr1 (Pr2, respectively). The initial state of the node
is idle, thus the corresponding placeidle contains a token
in the initial marking.

The DFN to DSPN transformation is performed automat-
ically by a tooldf2pn[1] which was developed at the Uni-
versity of Pisa. It reads the data flow model given in the un-
interpreted data flow language presented in Subsection 2.2.
After some checking, first a transformation to an internal
Petri net description is performed. The internal description
can be transformed by individual packages to the represen-
tations used by different tools. TheGreatSPN v1.6tool [4]
was first selected because it provided not only sophisticated
analysis but also a graphical representation of the resulted
DSPN.

Our model (which is right compact and easy to survey as
a data flow network) resulted in a DSPN model consisting
of 93 places and 88 transitions, which seems to be more
difficult to manage even in this little example.

2.5. Equivalence of the two representations

We want to derive selected properties of the data flow
model by analyzing the DSPN representation given by the
transformation. These properties are related to reachability
analysis like

� existence of dead-lock in the system,
� reachability of selected (tangible) states,
� existence of firing sequences corresponding to se-

lected behavior of the system,

or to timing analysis like

� average or maximum cycle times (if a steady state ex-
ists)

� average, maximum, minimum times between se-
lected activities of the system.

To derive these properties, it has to be shown that the
behavior of the DSPN and DFN models are equivalent (in
the sense that the mentioned properties can be derived).
The transformation results in a DSPN which can be char-
acterized by its possible computations starting from the ini-
tial marking. These computations can be mapped (using
the inverse of the transformation [7]) to supposed computa-
tions of the DFN (tangible markings are mapped to tangi-
ble states, firings of transitions are mapped to start and end
events of firings).

In [7] it was shown that – given the semantics of the
model presented in Section 2.1 – the DSPN model is equiv-
alent of the DFN model in the following sense:

A tangible marking is reachable from the initial marking
by a computation in the DSPN if the corresponding state
(given by the mapping) is reachable from the initial state by
the corresponding computation in the DFN.
Conversely, a tangible state is reachable from the initial
state by a computation in the DFN if there is a marking
reachable from the initial marking by a computation in the
DSPN where the marking is mapped to the state and the
computation of the DSPN is mapped to the computation of
the DFN.

This way, reachability problems related to tangible states
of the DFN can be solved using the DSPN model, since
the tangible reachability graph (TRG) of the DFN can be
derived using the TRG of the DSPN. Timing properties
can also be derived (note that the computations include
time labels). Additionally, the stochastic behavior of the
two models are equivalent in the sense that in a tangible
state/marking, the probabilities of the possible successor
states/markings are the same in the two models.

The transformation and the above introduced relation are
not restricted to data flow networks in which the firing de-
lays are either deterministic or exponentially distributed.
However, analysis tools are well elaborated only for this



type of networks. In the general case, evaluation of the net-
work is supported only by simulation.

3. Reachability analysis of the model

To perform reachability analysis, the tangible reachabil-
ity graph (TRG) of the DSPN model was first constructed
by the GreatSPN tool (Table 1). It was mapped to the TRG
of the DFN utilizing the following properties:

� Each non-working state of a node in the DFN is rep-
resented by a single place in the DSPN; if it is marked
then the node is in the corresponding state.

� The working state of a node is represented by a set of
places in the DSPN (corresponding to each firing of
the node); if one of them is marked then the node is in
working state. (It was shown in [7] that the transfor-
mation results in a network in which at a given time
only one of the places corresponding to the working
and non-working states of a node is marked, exactly
by 1 token.)

� Each channel is represented by a single place in the
DSPN; if it is marked withn tokens then the corre-
sponding channel containsn tokens in the DFN.

Cache strategy Tangible states Vanishing states

Write-through 436 41
Copy-back 590 44

Table 1. Size of the reachability graph

Analysis of the TRG resulted in the proof of the following
important properties of the system:

� There is no deadlock in the system (the competition
of the users for the device is resolved correctly).

� The network is live, there are no dead firings (i.e.
there are no unnecessary operations defined in the
network).

� The initial state is a home state, reachable from all
states of the network (there is no such situation that
one of the users, handlers or devices is stuck-at in a
given state for ever).

� The network is structurally bounded (the handshake
between the users, handlers and devices is correct,
there is no overflow of data or requests).

In the TRG, existence (or absence) of given states (e.g.
crash) or situations (e.g. loss of messages) can be checked.
For example, in our network we checked that there is no
such situation in which the user is in the state waiting for the
acknowledge of its write request and the handler is still busy
serving the read request of that user (the user was provided

earlier by an illegal message terminating its read request).
To do this, the TRG of the network was examined looking
for a state in which the node USER1 is in the statewrite

and the node HANDLERREAD is the state serving request
of USER1 (handle1). The search was performed using the
textual representation of the TRG.

4. Timing analysis of the model

In our measurements, the timing parameters of the net-
work were set to express the differences between the speed
of the control, cache and disk operations. The control opera-
tions (performed by the handler and cache controller) were
associated with unit time, the cache read/write operations
were defined to be 10 times slower. The disk operations
are the most time consuming (100 times slower). The firing
delays are exponentially distributed with the above given
parameters. Our goal was not to measure the exact times of
the operations rather to compare the advantages of different
cache controlling strategies in given workloads.

To get the desired results, transient or steady-state anal-
ysis of the network can be performed. Steady-state analysis
provides the values of the average throughput of transitions
and the distribution of tokens in the places. Based on the
set of reachable states (given by the TRG), starting from a
reachable state transient analysis of the net can also be done.

The relation of the two networks (Section 2.5) enables to
derive some measures of the DFN using the results obtained
by the analysis of the DSPN, in the following way:

� Each firing of the DFN is represented by two succes-
sive transitions in the DFN (an immediate one repre-
senting the start event and a timed one representing
the end event of the firing). The throughput of these
transitions is exactly the throughput (i.e. the number
of executions in unit time) of the corresponding firing
of the DFN.

� Each non-working state of a node is represented by
a single place in the DSPN. The probability that the
place is marked is exactly the probability that the
node is in the corresponding state. The probability of
the working state can be computed by summarizing
the probabilities that one of the places corresponding
to the working state of the node is marked.

� Channels of the DFN are represented by single places
in the DSPN. The distribution of tokens in these
places is exactly the distribution of tokens in the cor-
responding channel of the DFN.

We derived various properties of the network perform-
ing the steady-state analysis of the DSPN. The results were
available in the GreatSPN environment (an integrated de-
sign environment, in which the results of the indirect anal-
ysis are propagated back to the original data flow editor, is



under construction). The results were combined to gain the
proper measures of the system. Average execution times
of the operations, average access time of the device were
computed using different cache strategies and workloads.

4.1. Single user access

First the average times required to perform the disk read
and write operations were measured. The model of the
user process was changed to perform the given operation
continuously, this way using the throughput of the corre-
sponding firing the average access time could be directly
derived (1/throughput). The 9 different situations were set
by changing the priorities of the firings in the model of the
cache. The results are presented in Table 2.

Operation Cache parameters Av. time

Write Write-through 118
Copy-back, hit 17
Copy-back, no hit, full 119
Copy-back, no hit, no full 18

Read Write-through, hit 17
Write-through, no hit 118
Copy-back, hit 17
Copy-back, no hit, full 220
Copy-back, no hit, no full 119

Table 2. Average access times

Note that the most time consuming operation is the read-
ing of the copy-back cache when it is full. The disk has to
be accessed two times (to free some space in the cache for
the new data, and read the new data itself). Writing a full
copy-back cache with no hit requires the same operations
as writing the write-through cache (the examination of the
full state of the copy-back cache needs an additional cycle
which explains the small difference).

The average access times depend on the full and hit ratios
of the cache. Thehit ratio is defined as the probability that
the data is found in the cache. Thefull ratio is the probabil-
ity that the copy-back cache contains only dirty data (data
which have a valid copy only in the cache), i.e. before enter-
ing new data to the cache (by a write or read request) some
part of it has to be written to the disk. (Of course, in given
applications these parameters are usually not independent.
Both depend on the locality of the data accesses and on the
size of the cache.)

To highlight the dependences, the average write access
time of the user was measured setting different cache pa-
rameters (the switching probabilities of the firings corre-
sponding to the selection of the cache operations were
changed accordingly). The results are depicted in Figure 4.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

U
S

E
R

1 
av

er
ag

e 
ac

ce
ss

 ti
m

e

Cache hit (percent)

write-through
copy-back 90% full
copy-back 50% full
copy-back 10% full

Figure 4. Write access by a single user

Note that the measures of the write-through cache are
worse than that of the copy-back cache. If the hit ratio of
the copy-back cache increases, the dependence of the ac-
cess time on the full ratio of the cache decreases (a time-
consuming disk access is only needed if there is no hit and
the cache is full).

4.2. Results of different workloads

To examine the effects of the workload, three different
scenarios were measured.

In the first scenario, both users perform write accesses.
USER1 writes the device continuously, while USER2 per-
forms a write access and then spends time with computation
(working time). It was investigated how the average access
time of USER1 depends on the average working time of
USER2. Write-through cache and copy-back cache with
50% hit and 50% full ratios were investigated (Figure 5).

0

50

100

150

200

250

0.1 1 10 100 1000 10000

U
S

E
R

1 
av

er
ag

e 
ac

ce
ss

 ti
m

e

USER2 working time

write-through
copy-back

Figure 5. Write access of a user depending on
the working time of the other user



If the average working time of USER2 is low then the
average access time of USER1 is approx. double of the ac-
cess time corresponding to the scenario when it is the single
user accessing the device (i.e. the handler selects one of the
users randomly). If the working time is extremely high, the
single-user access time is approximated.

The next two scenarios present two workload situations.
In the first (Figure 6) USER1 writes the device continuously
while USER2 performs read accesses. In the second case
(Figure 7) USER1 reads the device, USER2 reads or writes
(selecting randomly). In these scenarios, the performance
of the write-through cache is sometimes better than that of
the copy-back cache, especially if the hit ratio of the copy-
back cache is small, the full ratio is high and the cache is
read in the majority of the accesses (second scenario).

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

U
S

E
R

1 
av

er
ag

e 
ac

ce
ss

 ti
m

e

Cache hit (percent)

write-through
copy-back 90% full
copy-back 50% full
copy-back 10% full

Figure 6. USER1 writes, USER2 reads

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

U
S

E
R

1 
av

er
ag

e 
ac

ce
ss

 ti
m

e

Cache hit (percent)

write-through
copy-back 90% full
copy-back 50% full
copy-back 10% full

Figure 7. USER1 reads, USER2 reads/writes

5. Conclusions

Data flow networks have advantageous properties like
modularity, compactness, support of direct implementation,
which make them attractive to system designers in the early
design phases. We showed by an example that the lack of
widely used analysis tools can be avoided by an automatic
model transformation and indirect model evaluation. The
equivalent Petri net preserves the timing and reachability
properties of the model (which are of utmost interest) and
ensures the validation supported by sophisticated analysis
packages. Performance measures as average access time,
execution time and safety measures as liveness, existence
of deadlocks, unreachable states can be derived.

We restricted our investigations to the early phases of
system development when the application of uninterpreted
data flow networks provides satisfactory results for the sys-
tem designer. In further phases, by stepwise refinement,
interpreted networks can be introduced in which data de-
pendences can be modeled. The elaboration of a similar
transformation and indirect model analysis for interpreted
networks (e.g. by using colored Petri nets, process algebras)
is one of the tasks of future research and development.

References

[1] B. Antal. User's Manual for the df2pn Package. University
of Pisa, 1995.

[2] A. Bondavalli, A. Buzzi, and F. Tarini. Uno strumento grafico
per la strutturazione di applicazioni tolleranti i guasti. InProc.
Congresso annuale A.I.C.A. 95, Cagliari, Italy, pages 979–
986, 1995.

[3] A. Bondavalli, L. Strigini, and L. Simoncini. Dataflow-
like languages for real-time systems: Issues of computational
model notations. InProceedings of SRDS-11, Houston, Texas,
1992.

[4] G. Chiola. A graphical net tool for performance analysis.
In Proceedings of the 3rd International Workshop on Model-
ing Techniques and Performance Evaluation, March AFCET,
Paris, France, 1987.

[5] G. Csertán, C. Bernardeschi, A. Bondavalli, and L. Si-
moncini. Analysis of temporal properties of data flow net-
works. InProceedings of the 12th IFAC Workshop DCCS95,
Toledo, Spain, pages 153–158. Elsevier Science Ltd., 1994.

[6] K. M. Kavi, B. P. Buckles, and U. N. Bhat. Isomorphism
between Petri nets and dataflow graphs.IEEE Transactions
on Software Engineering, 13(10):1127–1134, 1987.

[7] I. Majzik. On semantics and temporal analysis of data flow
networks. Internal report IR-1/94-L.S./I.M., University of
Pisa, July 1994.

[8] M. A. Marsan and G. Chiola. On Petri nets with deterministic
and exponentially distributed firing times. In G. Rozenberg,
editor, Advances in Petri nets, volume 226 ofLecture Notes
in Computer Science, pages 132–145. Springer Verlag, 1987.

[9] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.


