
Design Pattern Based Transformation of Dynamic UML Models

for Quantitative Analysis

HUSZERL Gábor

Budapest University of Technology and Economics, Dept. of Measurement and Information Systems

(huszerl@mit.bme.hu)

Towards the dynamic analysis for performance, performability and timing constraints of Uni�ed
Modeling Language (UML) models a previous paper [1] presented the transformation of Guarded Stat-
echarts (GSC) � a type of statecharts (SC) � to Stochastic Reward Nets (SRN) � a class of Petri nets.
For performance evaluation and analysis Petri nets o�er a mathematically well-de�ned methodology
with precise semantics and a theoretical background. Now the input model of the above mentioned
transformation has been extended in special consideration of event processing, state hierarchy and
transitions. The accordingly extended transformation is de�ned by a series of design patterns.
In order to support timing analysis the original UML models are extended by timing information,

and Petri net (SRN) patterns implementing possible semantics of "timed and guarded" state transitions
are de�ned. These patterns complete the above mentioned ones.
When working with statecharts including events, one important question is the semantics of event

dispatching. Two patterns for event dispatchers are de�ned in this paper. One is selecting events from
the queue non-deterministically. It is easy to implement with SRNs, and covers all potential behavior.
An other dispatcher is elaborated also, selecting events in the order of arrival (FIFO). It is the way
how one would imagine an event "queue", but it is not trivial to implement it by SRNs.
UML statecharts are hierarchical, where states can contain substates or concurrent sub-machines.

When several transitions are enabled, some of them may �re simultaneously. SRNs have no hierarchy of
places thus the priority of transitions needs extra constructions in the patterns: The UML transitions
(triggered by the same event) are ordered by priority, and this state hierarchy is represented by a
tree-like structure. When the token representing the dispatched event leaves the tree, all selected UML
transitions of the step have already completed their �ring.
When introducing timing in UML the delays are assigned to the transitions (and not to the states).

Three di�erent patterns for transformation of guarded and timed transitions are de�ned here: the
selection of transitions is irrespective of timing, the fastest wins, or the guard has to be true during
the delay else the transition will be deselected (preempted), respectively.
The resulted SRN implements the phases of the step semantics of a UML Statechart: selecting

an event; �ring the appropriate transitions (one after the other) � i.e. exiting the actual state and
superstates (on demand), sending events and entering all target states �; exiting states, of which
superstates are no more active and updating the last stable state. The last stable state of the SC
have to be stored to the correct evaluation of the guards of later �ring transitions, and it have to be
updated after completion of all �rings. During the steps, there are states of the SRN, which have no
valid counterpart in the SC, but these are transient states vanishing before the completion of the step.
A UML Statechart model can be transformed by the help of the above mentioned patterns, and

the arising SRN can be analyzed by commercial Petri net tools. Performance measures (throughput,
utilization) can be directly derived by using these tools, while dependability analysis requires explicit
modeling of erroneous states and faulty behavior (unintended state transitions, loss of messages). The
analysis of the probability of erroneous states leads to reliability or availability �gures (without or with
modeling of repair respectively).

Reference

[1] M. Dal Cin, Huszerl G., K. Kosmidis, "Quantitative Evaluation of Dependability Critical
Systems Based on Guarded Statechart", HASE99, Fourth IEEE International Symposium
on High Assurance Systems Engineering, November 17-19., Washington DC, 1999


