
1. INTRODUCTION

Applying computer-based systems in safety-
critical areas poses high reliability requirements
against their software. Programs running on
these systems must be proven correct i.e. free
from design and implementation faults. Elimina-
tion of design faults is addressed by model
checking, possibility of inducing errors in the
implementation and maintenance phase can be
reduced by automatic code generation.

The focus of this article is the control core of
event-driven embedded computer systems.
These applications can be specified by finite
state-transitions systems. A state of the system
represents a situation during which some invari-
ant condition holds. The system responds to ex-
ternal stimuli with actions and transitions in the
state space. There are several formal and non-
formal facilities for describing the behavior of
such systems. One of the most popular of them
is the statechart package of the Unified Modeling
Language (UML) (OMG, 2001).

Most of UML modeling environments aim at
only providing a visual design environment, their
code generation capabilities are modest, they can
implement typically the static parts of the soft-
ware (class headers, function prototypes etc.)
barely, only the most advanced tools (I-Logix
Rhapsody, IAR Visual State) are capable of gen-
erating the code of the control core (i.e. event

dispatcher, state machine implementation etc.).
Although these systems provide facilities for in-
vestigating the response of the system to external
stimuli in a visual (statechart-level) debugging
environment, code generation based on formally
analyzed models remains an open issue.

UML is a semi-formal language, the syntax
and static semantics is defined precisely but the
dynamic semantics is defined only informally.

A formal operational semantics of UML
statecharts is presented in Latella et. al. 1999b.
In that approach statechart diagrams are first
mapped to the intermediate format of extended
hierarchical automata (EHA) and the formal se-
mantics is defined for these automata based on
Kripke structures. This formal behavioral speci-
fication forms the basis of automatic verification
of the model by using the SPIN model checker as
described in Latella et. al. 1999a. In this latter
approach the EHA model is translated into
PROMELA, the specification language of SPIN.

The goal of this paper is providing an effi-
cient implementation pattern for source code
level instantiation of the extended hierarchical
automata, the formal description language used
as an intermediate representation of UML state-
charts, therefore presenting a way for automatic
code generation based on formally analyzed
models. Since statecharts can automatically be
mapped to extended hierarchical automata, a
code generator based on this pattern could be

AUTOMATIC CODE GENERATION BASED ON FORMALLY
ANALYZED UML STATECHART MODELS

Gergely Pintér , István Maj zik
Budapest University of Technology and Economics
Department of Measurement and Information Systems
Address: Magyar tudósok körútja 2., Budapest, Hungary, H-1111
Phone: + (36-1) 463-3582, Fax: + (36-1) 463-2667, E-mai l: pinterg@mit.bme.hu, majzik@mit.bme.hu

Abstract: This paper aims at providing an efficient implementation pattern for source code level
instantiation of UML statcharts. The code generation is based on extended hierarchical automata, the
formal description method used as an intermediate representation of statecharts for model checking
purposes, this way enabling automatic implementation of formally analyzed models.

Since statecharts can automatically be mapped to extended hierarchical automata, a code generator
based on our pattern could be used as a module that can be inserted into any UML modeling tool
equipped with model export capabilities. This approach enables the modeler to use the usual design
environment and hides the transformation required for model checking and code generation steps.
Keywords: UML, statechart, Extended Hierarchical Automaton, code generation.

used as a module that can be inserted into any
UML modeling tool equipped with model export
capabilities (i.e. implementing the XML Meta-
data Interchange (XMI) format). This approach
enables the modeler to use the usual design envi-
ronment and hides the transformation required
for model checking and code generation steps.

The idea of the suggested pattern is quite
simple: (i) provide a compact representation
(data model) of the extended hierarchical
automaton and (ii) implement an efficient “ inter-
preter” for this model. The interpreter can be de-
scribed as a programming language level repre-
sentation of the PROMELA code as generated in
Latella et. al. 1999a in a generalized form. The
hardware requirements of the pattern are low,
therefore applicable even in small embedded sys-
tems.

Although the idea is quite simple, the code
generation this way is not only a next transfor-
mation step from extended hierarchical automata
to a programming language. Since the original
EHA model does not represent some parts of the
UML statechart concepts extensions are pro-
posed to enable the implementation of state entry
and exit actions. These extensions are required
by the code generation only, their introduction
does not interfere with the mathematical model
therefore the analysis results achieved on the
original model apply to the extended one as well.

An introduction to the syntax and semantics
of UML statecharts and extended hierarchical
automata is presented in Sect. 2, the suggested
pattern is outlined in Sect. 3. Finally conclusions
are drawn in Sect. 4.

2. ABSTRACT MODELS

This section introduces UML statecharts (OMG
2001) the description methods used for high-
level modeling and extended hierarchical auto-
mata (Latella et. al. 1999b) the abstract model
for mathematical analysis. Both introductions
define the syntax first then outline the opera-
tional semantics.

2.1 UML Statecharts

The State Machine package of UML specifies a
set of concepts that can be used for modeling
discrete behavior through finite state-transition
systems.

The syntax is well defined by the metamodel
(i.e. a class diagram of the model) of the state-
chart package in the standard (OMG 2001). Be-
sides the fundamental building elements (states
and transitions) it provides several sophisticated
constructs that make the high-level description of
the control flow easier:

• States model situations during which
some invariant condition holds. Optional entry
and exit actions can be associated to them to be
performed whenever the state is entered or ex-
ited.

• Transitions are directed relationships be-
tween a source and a target state. An optional
action can be associated to them to be performed
when firing the transition.

• States can be refined into substates result-
ing in a state hierarchy. The decomposition can
be simple refinement (only one of the substates is
active at the same time) or orthogonal division
where all the substates (called regions) are active
at the same time. Join and fork vertices can be
used to represent transitions originating from or
ending in states in different orthogonal regions.
Transitions are allowed to cross hierarchy levels.

• Shallow and deep history pseudostates are
available as shorthand notations to represent the
most recent active substate or configuration of
the containing composite state.

• Transitions can be guarded by boolean
expressions that are evaluated when an event in-
stance is dispatched by the state machine. I f the
guard is true at that time, the transition is en-
abled, otherwise it is disabled.

The operational semantics is expressed only
informally in the standard.

The execution of state machines is driven by
events. A transition is enabled if all of its source
states are active, the event satisfies its trigger and
its guard is enabled. Two transitions are in con-
flict i f the intersection of the states they exit is
non-empty. Priority of transition t1 is higher
than the priority of t2 i f the source state of t1 is a
directly or transitively nested substate of the
source state of t2.

After receiving an event a maximal set of
enabled transitions is selected that are not in con-
fl ict with each other and there is no enabled tran-
sition outside the set with higher priority than a
transition in the set. The transitions selected this
way fire in an unspecified order.

The exact sequence of actions to be per-
formed when taking a transition is specified by
the standard: first the exit actions of all states left
by the transition are executed starting with the

deepest one in the hierarchy, next the action as-
sociated to the transition is performed finally the
entry actions of states entered by the transition
are executed starting with the highest one in the
hierarchy.

The example discussed in this article is the
traffic supervisor system in the crossing of a
main road and a country road. The equipment at
the main road consists of two sensors, a camera,
a traffic light and the controller. For simplicity
reasons only the light control of the main road is
investigated here. The first sensor signals the ar-
rival of a car to the crossing from the main road
and the second one sends a signal to the control-
ler if a car runs in the crossing from the main
road.

The controller system provides higher
precedence to the main road i.e. it does not wait
until the normal time of switching from red to
red-yellow if more than two cars are waiting at
the main road but switches immediately (the ar-
rival of a car to the crossing is indicated by one
of the sensors).

Cars running illegally in the crossing during
the red signal are detected by the second sensor
and can be recorded by the camera connected to
the controller. The camera can be switched on
and off manually.

Fig. 1. UML statechart of the traffic light exam-
ple

The statechart diagram (Figure 1) shows

only the behavioral specification of the light con-
trol at the main road. The light can be operating
(on state) or switched off (off state). The transi-
tion between them is triggered by the switch
event.

Representation of light states (red, red-
yellow, green and yellow) is obvious, transitions
between these states are triggered by time events.
State red is decomposed orthogonally into two
regions, one for the camera and one for counting
the cars waiting at the main road. The most re-
cent state of the camera (operating or switched

off) is restored when entering the red state
through the history pseudostate. The interlevel
transition from count2 to red-yellow is triggered
by the arrival of the third car from the main road.
This way the crossing is provided to the traffic
from the main road.

2.2 Extended Hierarchical Automata

The syntactic transformation from UML state-
charts to extended hierarchical automata (EHA)
aims at the formalization of the specification and
separation of concepts obscured in the UML
model (blurred representation of hierarchy and
concurrency, interlevel transitions, etc.). It pro-
vides a clear and mathematically analyzable
model of state refinement, concurrency and tran-
sitions.

The syntax of extended hierarchical auto-
mata is described in a functional notation in
Latella et. al. 1999b. In the following a short in-
formal overview is given mainly concentrating
on the representation of UML concepts. For ex-
plained definition refer to Latella et. al. 1999a
and Latella et. al. 1999b.

An EHA consists of sequential automata. A
sequential automaton contains simple (non-
composite) states and transitions between them.
These states represent simple and composite
states of the UML model. States can be refined
to any number of sequential automata.

All the refinement automata of a state are
running concurrently, this way UML concurrent
composite states can be modeled by EHA states
refined to several automata representing one re-
gion each. A non-concurrent composite state is
refined to only one automaton.

Transitions may not cross hierarchy levels
(i.e. their source and target state are in the same
automaton). Interlevel transitions of the UML
model are substituted by labeled transitions in
the automata representing the lowest composite
state that contains all the explicit source and tar-
get states of the original transition. The labels
are called source restriction and target determi-
nation. The source restriction set contains the
original source states of the transition in the
UML statechart while the target determination
set enumerates the original target states. Both
sets contain states of the (possibly transitively)
refinement automata of the source or the target
state.

The operational semantics is expressed by a
Kripke-structure in Latella et. al. 1999b.

The execution of extended hierarchical
automata is driven by events. A transition is en-
abled if i ts source state and all states in the
source restriction set are active, the actual event
satisfies the trigger and the guard is enabled.
Priority of transition t1 is higher than the priority
of t2 i f the original source state of t1 in the UML
model is a directly or transitively nested substate
of the original source of t2. The original source
of a transition is indicated by the source restric-
tion set associated to the transition.

An enabled transition can fire if there are no
transitions enabled with higher priority. On tak-
ing the transition the target state and all states in
the target determination set are entered.

The extended hierarchical automaton of the
traffic light example (Figure 2) represents the
UML statechart in a clear refinement hierarchy.
Statechart states (simple and composite ones) are
mapped to EHA states (on, off, red, red-yellow,
green, yellow, camera-on, camera-off, count0,
count1 and count2). Concurrent and non-
concurrent refinement is expressed by automata
assigned to states. This way the non-concurrent
on state is refined to a single automaton contain-
ing the red, red-yellow, green and yellow states
while the concurrent composite state red is re-
fined to two automata representing one region
each. Note that automata can represent the inter-
nal structure of a composite state and a region of
a concurrent composite state as well.

Since the history state in the camera region
of the red state cannot be expressed directly in
EHA it was substituted by transitions targeting
the states possibly pointed by the history state

(camera-on and camera-off) guarded by the
value of a “ history variable” (RedH). Note that
this substitution aims at explaining a shorthand
notation barely, the resulting model remains to
be a well-formed UML statechart therefore this
preprocessing does not interfere with the formal
analysis possibly performed on the EHA repre-
sentation.

The original EHA model used by Latella et.
al. 1999a and Latella et. al. 1999b does not deal
with entry and exit actions since these features
do not belong to the mathematical abstraction.
In order to enable the representation of state en-
try and exit actions an extended form of the EHA
metamodel (Varró et. al. 2002) was developed
that forms the basis of the data model used by the
implementation pattern outlined in the following
section. If entry and exit actions do not generate
new events their introduction does not modify
the mathematical model.

Entry and exit actions are associated to the
State metaclass in the UML metamodel and
these associations are inherited by the descendant
simple and composite states, final states etc. (re-
gions of a concurrent composite state are com-
posite states themselves as well).

Since simple and composite states that are
not regions in the UML model are converted to
states of the EHA and regions are represented by
automata, entry and exit actions has to be associ-
ated not only to EHA states but to the automata
as well (automata that do not represent regions
should have empty entry and exit actions). This
modification can be modeled by adding the
StateRepresentation abstract metaclass

CamSwitch

CamSwitch
CameraOn CameraOff

CarStop
Count0 Count2Count1

CarStop

Switch

Off On

TgreenTred Tredyellow

Tyellow[RedH = CameraOn] <SR=0, TD={CameraOn, Count0}>

Tyellow[RedH = CameraOn] <SR=0, TD={CameraOff, Count0}>

YellowGreenRedYellowRed

Automaton
representing the
car counter region.

The target determinator
set contains the initial
substate of the
refinement automaton.

The On state is a non-concurrent
composite state in the UML
statechart, if is refined to a single
automaton in the EHA.

Automaton containing the two top-
level states of the UML statechart.

This transition represents the original
interlevel transition from Count2 to
RedYellow (Count2 is included in the
source restriction set).

The original single transition
to the history pseudostate is
represented by two
transitions guarded by the
value of the history variable.

CarStop<SR={Count2}, TD=0>

Switch <SR=0, TD={Green}>

Automaton representing
the camera region of the
Red concurrent
composite state.

Fig. 2. EHA representation of the traffic light example

to the EHA metamodel as ancestor of State
and Automaton metaclasses and two associa-
tions from it targeting the Action metaclass
with role names entryAction and exitAc-
tion (Figure 3).

Fig. 3. The EHA metamodel with extensions rep-
resenting entry and exit actions

2.3 Model checking based on extended hierar-
chical automata

Extended hierarchical automata are used as in-
termediate representation for model checking
(Pap et. al. 2001). Several properties can be in-
vestigated like safety (avoidance of hazardous
states), l iveliness (reachability of proper states)
and determinism. The formal analysis takes
place before the implementation in the early
phases of the development. The model that is
proven to be correct is ready to be implemented.

3. THE IMPLEMENTATION PATTERN

This section introduces the implementation pat-
tern developed for instantiating extended hierar-
chical automata. Since we would like to present
a solution that is usable in systems equipped with
small memory, the in-core representation of the
EHA must be efficient in terms of memory con-
sumption and processing power requirements.

Several common approaches were taken into
consideration while designing the implementa-
tion pattern l ike the object-oriented State design
pattern (Gamma et. al. 1994), the Quantum Hier-
archical State Machine pattern (Samek et. al.
2002) and other widely used solutions. However
none of them provided support for handling the
concurrency.

The pattern proposed here can be divided
into three parts: the expression of the static struc-
ture (state—automaton hierarchy), a bit pattern
for storing the configuration (active states) and
the interpreter that takes a static structure, a con-

figuration and an event and performs the neces-
sary actions and updates the configuration.

As it will be seen the static structure is a
modified, extended and preprocessed form of the
original EHA metamodel and the interpreter per-
forms corresponds to the PROMELA representa-
tion without implementing non-deterministic be-
havior.

3.1 Static structure and configuration infor-
mation

The separation of the static structure and the ac-
tual configuration information reduces the mem-
ory consumption since in an application that con-
sists of several instances of a class described by
an EHA only one instance of the static structure
description is needed. The configuration of the
instances can be expressed with bit vectors.

The static structure (Figure 4) is a modified
and preprocessed form of the EHA metamodel
(Figure 3). Modifications were taken to enable
the faster navigation and smaller memory con-
sumption.

The topmost container of the static informa-
tion is the Structure class. Its association
targeting automata, states and transitions are
stereotyped with ordered, showing that these as-
sociations must be implemented by containers
that preserve the order of elements (e.g. an ar-
ray), thus position of the objects in the list (e.g.
the array index) can be used as unique identifier
amongst objects of the same class (transitions,
states etc.).

The containing relation between automata
and states, the state refinement, transition trig-
gers and guards, entry and exit actions and ac-
tions associated to transitions are represented by
associations in the obvious way.

The operating rules are described by associa-
tions originating from the Transition class.
States that must be active to enable the transition
(the source restriction set and the source of the
transition) are collected in an association with
the enabling role. States to be entered when tak-
ing the transition are collected in an other asso-
ciation with the entered role. These associations
are marked with the stereotype ordered as well.
This way the order of states to be entered when
taking a transition can be pre-calculated and
stored. Representing the source of the transition
does not need a separate association, since it can
be stored in the first element of the ordered ena-
bling set by convention.

Transitions that have higher priority than the
actual one are collected in the disabling set. The
transition is fireable only if none of these transi-
tions are enabled.

The class structure can be effectively im-
plemented in ANSI C. State, Transition
and Structure classes can be represented by
C structures, events and guards can be imple-
mented as functions. Associations targeting
functions (Action} and Guard classes) can be
function pointers while other associations can be
implemented by storing the identifier of the
pointed object. Storing IDs instead of pointers
can greatly reduce the memory requirements
since an identifier can be much shorter than a
pointer (e.g. if there are no more than 256 states,
transitions and automata then the identifiers can
be bytes that are four times shorter than the
memory addresses in a 32 bit architecture).

The actual configuration (active states) is
represented by the Configuration class.
The association targeting the State class can be
implemented by an ordered bit vector (i.e. ith
element of the vector is true if and only if the
state with ID i is active) providing this way an
extremely compact representation of the object
state. Note that only this bit vector should be
stored for each instances of the class described
by the statechart, the static representation is read-
only therefore can be stored in a single instance.

3.2 Dynamic behavior

The interpreter function is based on the formal
semantics (PROMELA code) as described in
Latella et. al. 1999a. In that approach a step of
the process consists of the following phases:

1. Selection one of the available events. The
storage method of events (FIFO, LIFO, set, mul-
tiset etc.) is not fixed by the model.

2. Selection of enabled transitions. A transi-
tion is enabled if and only if its source state and
all states in the source restriction set are active,
the selected event is the trigger and the associ-
ated guard evaluates to true.

3. Conflict resolution based on priority rela-
tions (i.e. selection of “ fireable” transitions). A
transition is fireable if there are no enabled tran-
sitions with higher priority.

4. Non-deterministic selection of a maximal
set of fireable transitions.

5. Firing the selected transitions (calculating
the resulting state configuration and performing
actions associated to the transition).

The programming language level representa-
tion follows the same algorithm with minor
modifications. The interpreter can be imple-
mented as a function parametrized by the static
structure description, the actual configuration
and the event to be dispatched (therefore the
event selection method is out of the scope of the
interpreter).

The UML statechart model enables the exis-
tence of conflicting transitions even after apply-

Automaton

Transition GuardEvent

Action

container 1

trigger

entryAction

*

refinement *

*

*

State

disabling
1 guard

associatedAction 1

State
Representation

Structure

exitAction
1

1

Configuration
active

*substate
*

enabling
<<ordered>>

entered
<<ordered>>

<<ordered>>

<<ordered>>

Fig. 4. Class diagram of the proposed pattern

ing priority rules (e.g. there are two transitions
originating in the same state with the same trig-
ger event and overlapping guards). In these cases
the selection of the maximal set of transitions to
fire is non deterministic. This obscurity is ac-
ceptable in the design phase indicating non-
elaborated parts but must be eliminated from the
final model especially in case of safety critical
systems where non-deterministic behavior can
lead to catastrophic consequences. This way the
model instantiated by our pattern is required to
be free from non-determinism in the sense that
all the conflicts amongst transitions must be re-
solved by priority relations. Thus the non-
deterministic selection does not take place, all
the fireable transitions fire.

The original model does not deal with entry
and exit actions associated to states. These ac-
tions are obviously essential in the implementa-
tion therefore the interpreter must ensure their
execution.

Entering a composite state requires entering
one of its substates (in each one of concurrent
regions in case of concurrent composite states).
Since a composite state can be entered in several
ways (default entry, explicit entry into a substate,
shallow or deep history, entry through a fork
pseudostate or directly into a region etc.) runtime
calculation of the states to be entered and the or-
der in entry actions to be called would be very
time-consuming. The implementation pattern
suggests the pre-calculation of this entry chain
and storing it in the ordered association between
the Transition and State class (entered
role). This solution greatly simplifies the im-
plementation of performing the state entry ac-
tions at the cost of a little redundancy in the
model. This way the interpreter can simply walk
through this (ordered) list and call the entry ac-
tions associated to the states and their containing
automata in the list.

States to exit from cannot be calculated dur-
ing the code generation since it depends on the
actual configuration of the object when receiving
the event triggering the transition. As OMG
2001 specifies, when exiting from a composite
state its active substate is exited recursively.
This means that the exit actions are executed in
sequence starting with the innermost active state
in the current state configuration. When exiting
from a concurrent state, each of its regions are
exited. After that, the exit actions of the regions
are executed.

The simplest solution for implementing this
behavior is a recursive function that traverses the

refinement tree and calls the appropriate exit ac-
tions of states and their containing automata.
This function can be described with the follow-
ing pseudocode:

recursiveExit(State s)

 // r is an automaton, refinement of s
 forEach s.refinement as
 recursiveExit(activeSubstateOf r);

 // Exit action of the automaton
 r.exitAction();

 // Exit action of the state
 s.exitAction();

 markInactive(s);

The complete pseudocode of the interpreter

function can be described by the following pseu-
docode:

step(Structure str, Configuration cfg,
 Event e)

 // Collect enabled transitions
 enabled = collectEnabled();

 // Collect fireable transitions
 fireable = collectFireable();

 // t is a fireable transition
 forEach fireable as t
 // Recursive exit from the source
 recursiveExit(t.source);

 // Action associated to the transition
 t.associatedAction();

 // The container automaton of the target
 // state is not entered so it is handled
 // separately

 // Entry action of the target state
 t.entered[0].entryAction();

 // Mark the target state active
 markActive(t.entered[0], cfg);

 // s is a state to be entered
 forEach t.entered[1...] as s
 // Entry action of the containing
 // automaton
 s.container.entryAction();

 // Entry action of s
 s.entryAction();

 // Mark the state active
 markActive(s, cfg);

Here the pseudo function collec-

tEnabled stands for collecting the enabled
transitions (i.e. source states are active, the trig-
ger is the actual event and the guard evaluates to
true) while collectFireable represents the
selection of enabled transitions that are not dis-

abled by any other transition with higher priority
(disabling set).

3.3 Example

The prototype of the interpreter function and the
static structure was implemented in C. The
memory consumption of the static structure de-
pends on the length of identifiers and the word
size of the architecture. In the case of the traffic
light example according to our calculations the
static description should fit in about 1 kB on a
machine with 32 bit long word size when choos-
ing 32 bit long identifiers and should fit in less
than half kB on a machine with 16 bit long ad-
dresses when choosing 8 bit long identifiers.
Since there are 11 states in the model the con-
figuration information of an object fits in 11 bits
(two bytes).

4. CONCLUSIONS AND FUTURE WORK

Formal analysis of abstract models addresses the
elimination of design faults in the early phases of
the development. Automatic code generation
based on checked models reduces the possibili ty
of inducing errors in the implementation and
maintenance phase.

In this paper an efficient implementation
pattern was proposed for source code level in-
stantiation of UML statecharts after transforming
them to extended hierarchical automata. Extend-
ing the pattern with runtime self checking capa-
bili ties and testing support are the subject of our
future work.

REFERENCES

Gamma, E., R. Helm, R. Johnson, and J. Vlis-
sides. (1994) Design Patterns Elements of Re-
usable Object-Oriented Software. Addison
Wesley.

Latella, D., I . Majzik, and M. Massink. (1999)
Automatic Verification of a Behavioural Sub-
set of UML Statechart Diagrams Using the
SPIN Model-checker. In Formal Aspects of
Computing, volume 11. Springer Verlag, 637-
664.

Latella D., I. Majzik, and M. Massink. (1999)
Towards a Formal Operational Semantics of
UML Statechart Diagrams. In Proc.
FMOODS’99, the Third IFIP International

Conference on Formal Methods for Open Ob-
ject-based Distributed Systems. Firenze, Italy
331-347.

OMG. (2001) Unified Modeling Language
(UML) Version 1.4.

Samek, M. (2002) Practical Statecharts in
C/C++. CMP Books.

Varró, D., G. Varró and A. Pataricza. (2002) De-
signing the Automatic Transformation of Vis-
ual Languages. Science of Computer Pro-
gramming, 44(2):205-227.

Pap, Zs., I. Majzik, and A. Pataricza. (2001)
Checking General Safety Criteria on UML
Statecharts. In Lecture Notes in Computer
Science, number 2187. Springer Verlag, 46-
55.

