
1. INTRODUCTION 
 
Applying computer-based systems in safety-
critical areas poses high reliability requirements 
against their software.  Programs running on 
these systems must be proven correct i.e. free 
from design and implementation faults.  Elimina-
tion of design faults is addressed by model 
checking, possibility of inducing errors in the 
implementation and maintenance phase can be 
reduced by automatic code generation. 

The focus of this article is the control core of 
event-driven embedded computer systems.  
These applications can be specified by finite 
state-transitions systems.  A state of the system 
represents a situation during which some invari-
ant condition holds.  The system responds to ex-
ternal stimuli with actions and transitions in the 
state space.  There are several formal and non-
formal facilities for describing the behavior of 
such systems.  One of the most popular of them 
is the statechart package of the Unified Modeling 
Language (UML) (OMG, 2001). 

Most of UML modeling environments aim at 
only providing a visual design environment, their 
code generation capabilities are modest, they can 
implement typically the static parts of the soft-
ware (class headers, function prototypes etc.) 
barely, only the most advanced tools (I-Logix 
Rhapsody, IAR Visual State) are capable of gen-
erating the code of the control core (i.e. event 

dispatcher, state machine implementation etc.).  
Although these systems provide facilities for in-
vestigating the response of the system to external 
stimuli in a visual (statechart-level) debugging 
environment, code generation based on formally 
analyzed models remains an open issue. 

UML is a semi-formal language, the syntax 
and static semantics is defined precisely but the 
dynamic semantics is defined only informally. 

A formal operational semantics of UML 
statecharts is presented in Latella et. al. 1999b.  
In that approach statechart diagrams are first 
mapped to the intermediate format of extended 
hierarchical automata (EHA) and the formal se-
mantics is defined for these automata based on 
Kripke structures.  This formal behavioral speci-
fication forms the basis of automatic verification 
of the model by using the SPIN model checker as 
described in Latella et. al. 1999a.  In this latter 
approach the EHA model is translated into 
PROMELA, the specification language of SPIN. 

The goal of this paper is providing an effi-
cient implementation pattern for source code 
level instantiation of the extended hierarchical 
automata, the formal description language used 
as an intermediate representation of UML state-
charts, therefore presenting a way for automatic 
code generation based on formally analyzed 
models.  Since statecharts can automatically be 
mapped to extended hierarchical automata, a 
code generator based on this pattern could be 
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used as a module that can be inserted into any 
UML modeling tool equipped with model export 
capabilities (i.e. implementing the XML Meta-
data Interchange (XMI) format).  This approach 
enables the modeler to use the usual design envi-
ronment and hides the transformation required 
for model checking and code generation steps. 

The idea of the suggested pattern is quite 
simple: (i) provide a compact representation 
(data model) of the extended hierarchical 
automaton and (ii) implement an efficient “ inter-
preter”  for this model.  The interpreter can be de-
scribed as a programming language level repre-
sentation of the PROMELA code as generated in 
Latella et. al. 1999a in a generalized form.  The 
hardware requirements of the pattern are low, 
therefore applicable even in small embedded sys-
tems. 

Although the idea is quite simple, the code 
generation this way is not only a next transfor-
mation step from extended hierarchical automata 
to a programming language.  Since the original 
EHA model does not represent some parts of the 
UML statechart concepts extensions are pro-
posed to enable the implementation of state entry 
and exit actions.  These extensions are required 
by the code generation only, their introduction 
does not interfere with the mathematical model 
therefore the analysis results achieved on the 
original model apply to the extended one as well.  

An introduction to the syntax and semantics 
of UML statecharts and extended hierarchical 
automata is presented in Sect. 2, the suggested 
pattern is outlined in Sect. 3.  Finally conclusions 
are drawn in Sect. 4. 

 
 

2. ABSTRACT MODELS 
 
This section introduces UML statecharts (OMG 
2001) the description methods used for high-
level modeling and extended hierarchical auto-
mata (Latella et. al. 1999b) the abstract model 
for mathematical analysis.  Both introductions 
define the syntax first then outline the opera-
tional semantics. 
 
 
2.1 UML Statecharts 

 
The State Machine package of UML specifies a 
set of concepts that can be used for modeling 
discrete behavior through finite state-transition 
systems. 

The syntax is well defined by the metamodel 
(i.e. a class diagram of the model) of the state-
chart package in the standard (OMG 2001).  Be-
sides the fundamental building elements (states 
and transitions) it provides several sophisticated 
constructs that make the high-level description of 
the control flow easier: 

• States model situations during which 
some invariant condition holds.  Optional entry 
and exit actions can be associated to them to be 
performed whenever the state is entered or ex-
ited. 

• Transitions are directed relationships be-
tween a source and a target state.  An optional 
action can be associated to them to be performed 
when firing the transition. 

• States can be refined into substates result-
ing in a state hierarchy.  The decomposition can 
be simple refinement (only one of the substates is 
active at the same time) or orthogonal division 
where all the substates (called regions) are active 
at the same time.  Join and fork vertices can be 
used to represent transitions originating from or 
ending in states in different orthogonal regions.  
Transitions are allowed to cross hierarchy levels. 

• Shallow and deep history pseudostates are 
available as shorthand notations to represent the 
most recent active substate or configuration of 
the containing composite state. 

• Transitions can be guarded by boolean 
expressions that are evaluated when an event in-
stance is dispatched by the state machine.  I f the 
guard is true at that time, the transition is en-
abled, otherwise it is disabled. 

The operational semantics is expressed only 
informally in the standard. 

The execution of state machines is driven by 
events.  A transition is enabled if all of its source 
states are active, the event satisfies its trigger and 
its guard is enabled.  Two transitions are in con-
flict i f the intersection of the states they exit is 
non-empty.  Priority of transition t1 is higher 
than the priority of t2 i f the source state of t1 is a 
directly or transitively nested substate of the 
source state of t2. 

After receiving an event a maximal set of 
enabled transitions is selected that are not in con-
fl ict with each other and there is no enabled tran-
sition outside the set with higher priority than a 
transition in the set.  The transitions selected this 
way fire in an unspecified order.  

The exact sequence of actions to be per-
formed when taking a transition is specified by 
the standard: first the exit actions of all states left 
by the transition are executed starting with the 



 

deepest one in the hierarchy, next the action as-
sociated to the transition is performed finally the 
entry actions of states entered by the transition 
are executed starting with the highest one in the 
hierarchy. 

The example discussed in this article is the 
traffic supervisor system in the crossing of a 
main road and a country road.  The equipment at 
the main road consists of two sensors, a camera, 
a traffic light and the controller. For simplicity 
reasons only the light control of the main road is 
investigated here.  The first sensor signals the ar-
rival of a car to the crossing from the main road 
and the second one sends a signal to the control-
ler if a car runs in the crossing from the main 
road. 

The controller system provides higher 
precedence to the main road i.e. it does not wait 
until the normal time of switching from red to 
red-yellow if more than two cars are waiting at 
the main road but switches immediately (the ar-
rival of a car to the crossing is indicated by one 
of the sensors).  

Cars running illegally in the crossing during 
the red signal are detected by the second sensor 
and can be recorded by the camera connected to 
the controller.  The camera can be switched on 
and off manually. 

 

 
Fig. 1.  UML statechart of the traffic light exam-
ple 

 
The statechart diagram (Figure 1) shows 

only the behavioral specification of the light con-
trol at the main road.  The light can be operating 
(on state) or switched off (off state).  The transi-
tion between them is triggered by the switch 
event. 

Representation of light states (red, red-
yellow, green and yellow) is obvious, transitions 
between these states are triggered by time events.  
State red is decomposed orthogonally into two 
regions, one for the camera and one for counting 
the cars waiting at the main road.  The most re-
cent state of the camera (operating or switched 

off) is restored when entering the red state 
through the history pseudostate.  The interlevel 
transition from count2 to red-yellow is triggered 
by the arrival of the third car from the main road.  
This way the crossing is provided to the traffic 
from the main road. 

 
 

2.2 Extended Hierarchical Automata 
 

The syntactic transformation from UML state-
charts to extended hierarchical automata (EHA) 
aims at the formalization of the specification and 
separation of concepts obscured in the UML 
model (blurred representation of hierarchy and 
concurrency, interlevel transitions, etc.).  It pro-
vides a clear and mathematically analyzable 
model of state refinement, concurrency and tran-
sitions. 

The syntax of extended hierarchical auto-
mata is described in a functional notation in 
Latella et. al. 1999b.  In the following a short in-
formal overview is given mainly concentrating 
on the representation of UML concepts.  For ex-
plained definition refer to Latella et. al. 1999a 
and Latella et. al. 1999b. 

An EHA consists of sequential automata.  A 
sequential automaton contains simple (non-
composite) states and transitions between them.  
These states represent simple and composite 
states of the UML model.  States can be refined 
to any number of sequential automata. 

All the refinement automata of a state are 
running concurrently, this way UML concurrent 
composite states can be modeled by EHA states 
refined to several automata representing one re-
gion each.  A non-concurrent composite state is 
refined to only one automaton. 

Transitions may not cross hierarchy levels 
(i.e. their source and target state are in the same 
automaton).  Interlevel transitions of the UML 
model are substituted by labeled transitions in 
the automata representing the lowest composite 
state that contains all the explicit source and tar-
get states of the original transition.  The labels 
are called source restriction and target determi-
nation.  The source restriction set contains the 
original source states of the transition in the 
UML statechart while the target determination 
set enumerates the original target states.  Both 
sets contain states of the (possibly transitively) 
refinement automata of the source or the target 
state. 

The operational semantics is expressed by a 
Kripke-structure in Latella et. al. 1999b. 



 

The execution of extended hierarchical 
automata is driven by events.  A transition is en-
abled if i ts source state and all states in the 
source restriction set are active, the actual event 
satisfies the trigger and the guard is enabled.  
Priority of transition t1 is higher than the priority 
of t2 i f the original source state of t1 in the UML 
model is a directly or transitively nested substate 
of the original source of t2.  The original source 
of a transition is indicated by the source restric-
tion set associated to the transition. 

An enabled transition can fire if there are no 
transitions enabled with higher priority.  On tak-
ing the transition the target state and all states in 
the target determination set are entered. 

The extended hierarchical automaton of the 
traffic light example (Figure 2) represents the 
UML statechart in a clear refinement hierarchy.  
Statechart states (simple and composite ones) are 
mapped to EHA states (on, off, red, red-yellow, 
green, yellow, camera-on, camera-off, count0, 
count1 and count2).  Concurrent and non-
concurrent refinement is expressed by automata 
assigned to states.  This way the non-concurrent 
on state is refined to a single automaton contain-
ing the red, red-yellow, green and yellow states 
while the concurrent composite state red is re-
fined to two automata representing one region 
each.  Note that automata can represent the inter-
nal structure of a composite state and a region of 
a concurrent composite state as well. 

Since the history state in the camera region 
of the red state cannot be expressed directly in 
EHA it was substituted by transitions targeting 
the states possibly pointed by the history state 

(camera-on and camera-off) guarded by the 
value of a “ history variable”  (RedH).  Note that 
this substitution aims at explaining a shorthand 
notation barely, the resulting model remains to 
be a well-formed UML statechart therefore this 
preprocessing does not interfere with the formal 
analysis possibly performed on the EHA repre-
sentation. 

The original EHA model used by Latella et. 
al. 1999a and Latella et. al. 1999b does not deal 
with entry and exit actions since these features 
do not belong to the mathematical abstraction.  
In order to enable the representation of state en-
try and exit actions an extended form of the EHA 
metamodel (Varró et. al. 2002) was developed 
that forms the basis of the data model used by the 
implementation pattern outlined in the following 
section.  If entry and exit actions do not generate 
new events their introduction does not modify 
the mathematical model.  

Entry and exit actions are associated to the 
State metaclass in the UML metamodel and 
these associations are inherited by the descendant 
simple and composite states, final states etc. (re-
gions of a concurrent composite state are com-
posite states themselves as well). 

Since simple and composite states that are 
not regions in the UML model are converted to 
states of the EHA and regions are represented by 
automata, entry and exit actions has to be associ-
ated not only to EHA states but to the automata 
as well (automata that do not represent regions 
should have empty entry and exit actions).  This 
modification can be modeled by adding the 
StateRepresentation abstract metaclass 
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Fig. 2. EHA representation of the traffic light example 

 



 

to the EHA metamodel as ancestor of State 
and Automaton metaclasses and two associa-
tions from it targeting the Action metaclass 
with role names entryAction and exitAc-
tion (Figure 3). 

 

 
Fig. 3. The EHA metamodel with extensions rep-
resenting entry and exit actions 

 
 

2.3 Model checking based on extended hierar-
chical automata 

 
Extended hierarchical automata are used as in-
termediate representation for model checking 
(Pap et. al. 2001).  Several properties can be in-
vestigated like safety (avoidance of hazardous 
states), l iveliness (reachability of proper states) 
and determinism.  The formal analysis takes 
place before the implementation in the early 
phases of the development.  The model that is 
proven to be correct is ready to be implemented. 

 
 

3. THE IMPLEMENTATION PATTERN 
 

This section introduces the implementation pat-
tern developed for instantiating extended hierar-
chical automata.  Since we would like to present 
a solution that is usable in systems equipped with 
small memory, the in-core representation of the 
EHA must be efficient in terms of memory con-
sumption and processing power requirements. 

Several common approaches were taken into 
consideration while designing the implementa-
tion pattern l ike the object-oriented State design 
pattern (Gamma et. al. 1994), the Quantum Hier-
archical State Machine pattern (Samek et. al. 
2002) and other widely used solutions.  However 
none of them provided support for handling the 
concurrency. 

The pattern proposed here can be divided 
into three parts: the expression of the static struc-
ture (state—automaton hierarchy), a bit pattern 
for storing the configuration (active states) and 
the interpreter that takes a static structure, a con-

figuration and an event and performs the neces-
sary actions and updates the configuration. 

As it will  be seen the static structure is a 
modified, extended and preprocessed form of the 
original EHA metamodel and the interpreter per-
forms corresponds to the PROMELA representa-
tion without implementing non-deterministic be-
havior. 

 
 

3.1 Static structure and configuration infor-
mation 

 
The separation of the static structure and the ac-
tual configuration information reduces the mem-
ory consumption since in an application that con-
sists of several instances of a class described by 
an EHA only one instance of the static structure 
description is needed.  The configuration of the 
instances can be expressed with bit vectors. 

The static structure (Figure 4) is a modified 
and preprocessed form of the EHA metamodel 
(Figure 3).  Modifications were taken to enable 
the faster navigation and smaller memory con-
sumption. 

The topmost container of the static informa-
tion is the Structure class.  Its association 
targeting automata, states and transitions are 
stereotyped with ordered, showing that these as-
sociations must be implemented by containers 
that preserve the order of elements (e.g. an ar-
ray), thus position of the objects in the list (e.g. 
the array index) can be used as unique identifier 
amongst objects of the same class (transitions, 
states etc.). 

The containing relation between automata 
and states, the state refinement, transition trig-
gers and guards, entry and exit actions and ac-
tions associated to transitions are represented by 
associations in the obvious way. 

The operating rules are described by associa-
tions originating from the Transition class.  
States that must be active to enable the transition 
(the source restriction set and the source of the 
transition) are collected in an association with 
the enabling role.  States to be entered when tak-
ing the transition are collected in an other asso-
ciation with the entered role.  These associations 
are marked with the stereotype ordered as well.  
This way the order of states to be entered when 
taking a transition can be pre-calculated and 
stored.  Representing the source of the transition 
does not need a separate association, since it can 
be stored in the first element of the ordered ena-
bling set by convention. 



 

Transitions that have higher priority than the 
actual one are collected in the disabling set.  The 
transition is fireable only if none of these transi-
tions are enabled. 

The class structure can be effectively im-
plemented in ANSI C.  State, Transition 
and Structure classes can be represented by 
C structures, events and guards can be imple-
mented as functions.  Associations targeting 
functions (Action}  and Guard classes) can be 
function pointers while other associations can be 
implemented by storing the identifier of the 
pointed object.  Storing IDs instead of pointers 
can greatly reduce the memory requirements 
since an identifier can be much shorter than a 
pointer (e.g. if there are no more than 256 states, 
transitions and automata then the identifiers can 
be bytes that are four times shorter than the 
memory addresses in a 32 bit architecture). 

The actual configuration (active states) is 
represented by the Configuration class.  
The association targeting the State class can be 
implemented by an ordered bit vector (i.e.  ith 
element of the vector is true if and only if the 
state with ID i is active) providing this way an 
extremely compact representation of the object 
state.  Note that only this bit vector should be 
stored for each instances of the class described 
by the statechart, the static representation is read-
only therefore can be stored in a single instance.  

 
 

3.2 Dynamic behavior 
 

The interpreter function is based on the formal 
semantics (PROMELA code) as described in 
Latella et. al. 1999a.  In that approach a step of 
the process consists of the following phases: 

1. Selection one of the available events.  The 
storage method of events (FIFO, LIFO, set, mul-
tiset etc.) is not fixed by the model. 

2. Selection of enabled transitions.  A transi-
tion is enabled if and only if its source state and 
all states in the source restriction set are active, 
the selected event is the trigger and the associ-
ated guard evaluates to true. 

3. Conflict resolution based on priority rela-
tions (i.e. selection of “ fireable”  transitions).  A 
transition is fireable if there are no enabled tran-
sitions with higher priority. 

4. Non-deterministic selection of a maximal 
set of fireable transitions. 

5. Firing the selected transitions (calculating 
the resulting state configuration and performing 
actions associated to the transition). 

The programming language level representa-
tion follows the same algorithm with minor 
modifications.  The interpreter can be imple-
mented as a function parametrized by the static 
structure description, the actual configuration 
and the event to be dispatched (therefore the 
event selection method is out of the scope of the 
interpreter). 

The UML statechart model enables the exis-
tence of conflicting transitions even after apply-
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Fig. 4. Class diagram of the proposed pattern 
 
 



 

ing priority rules (e.g. there are two transitions 
originating in the same state with the same trig-
ger event and overlapping guards). In these cases 
the selection of the maximal set of transitions to 
fire is non deterministic.  This obscurity is ac-
ceptable in the design phase indicating non-
elaborated parts but must be eliminated from the 
final model especially in case of safety critical 
systems where non-deterministic behavior can 
lead to catastrophic consequences.  This way the 
model instantiated by our pattern is required to 
be free from non-determinism in the sense that 
all the conflicts amongst transitions must be re-
solved by priority relations.  Thus the non-
deterministic selection does not take place, all 
the fireable transitions fire. 

The original model does not deal with entry 
and exit actions associated to states.  These ac-
tions are obviously essential in the implementa-
tion therefore the interpreter must ensure their 
execution. 

Entering a composite state requires entering 
one of its substates (in each one of concurrent 
regions in case of concurrent composite states).  
Since a composite state can be entered in several 
ways (default entry, explicit entry into a substate, 
shallow or deep history, entry through a fork 
pseudostate or directly into a region etc.) runtime 
calculation of the states to be entered and the or-
der in entry actions to be called would be very 
time-consuming.  The implementation pattern 
suggests the pre-calculation of this entry chain 
and storing it in the ordered association between 
the Transition and State class (entered 
role).  This solution greatly simplifies the im-
plementation of performing the state entry ac-
tions at the cost of a little redundancy in the 
model.  This way the interpreter can simply walk 
through this (ordered) list and call the entry ac-
tions associated to the states and their containing 
automata in the list. 

States to exit from cannot be calculated dur-
ing the code generation since it depends on the 
actual configuration of the object when receiving 
the event triggering the transition.  As OMG 
2001 specifies, when exiting from a composite 
state its active substate is exited recursively.  
This means that the exit actions are executed in 
sequence starting with the innermost active state 
in the current state configuration.  When exiting 
from a concurrent state, each of its regions are 
exited.  After that, the exit actions of the regions 
are executed. 

The simplest solution for implementing this 
behavior is a recursive function that traverses the 

refinement tree and calls the appropriate exit ac-
tions of states and their containing automata.  
This function can be described with the follow-
ing pseudocode: 

 
recursiveExit(State s) 
 
  // r is an automaton, refinement of s 
  forEach s.refinement as 
    recursiveExit(activeSubstateOf r); 
 
    // Exit action of the automaton 
    r.exitAction(); 
 
    // Exit action of the state 
    s.exitAction(); 
 
    markInactive(s); 

 
The complete pseudocode of the interpreter 

function can be described by the following pseu-
docode: 

 
step(Structure str, Configuration cfg, 
     Event e) 
 
  // Collect enabled transitions 
  enabled = collectEnabled(); 
 
  // Collect fireable transitions 
  fireable = collectFireable(); 
 
  // t is a fireable transition 
  forEach fireable as t 
    // Recursive exit from the source 
    recursiveExit(t.source); 
 
    // Action associated to the transition 
    t.associatedAction(); 
 
    // The container automaton of the target 
    // state is not entered so it is handled 
    // separately 
 
    // Entry action of the target state 
    t.entered[0].entryAction(); 
 
    // Mark the target state active 
    markActive(t.entered[0], cfg); 
 
    // s is a state to be entered 
    forEach t.entered[1...] as s 
      // Entry action of the containing 
      // automaton 
      s.container.entryAction(); 
 
      // Entry action of s 
      s.entryAction(); 
 
      // Mark the state active 
      markActive(s, cfg); 

 
Here the pseudo function collec-

tEnabled stands for collecting the enabled 
transitions (i.e. source states are active, the trig-
ger is the actual event and the guard evaluates to 
true) while collectFireable represents the 
selection of enabled transitions that are not dis-



 

abled by any other transition with higher priority 
(disabling set). 

 
 

3.3 Example 
 

The prototype of the interpreter function and the 
static structure was implemented in C.  The 
memory consumption of the static structure de-
pends on the length of identifiers and the word 
size of the architecture.  In the case of the traffic 
light example according to our calculations the 
static description should fit in about 1 kB on a 
machine with 32 bit long word size when choos-
ing 32 bit long identifiers and should fit in less 
than half kB on a machine with 16 bit long ad-
dresses when choosing 8 bit long identifiers.  
Since there are 11 states in the model the con-
figuration information of an object fits in 11 bits 
(two bytes).  

 
 

4. CONCLUSIONS AND FUTURE WORK 
 

Formal analysis of abstract models addresses the 
elimination of design faults in the early phases of 
the development.  Automatic code generation 
based on checked models reduces the possibili ty 
of inducing errors in the implementation and 
maintenance phase. 

In this paper an efficient implementation 
pattern was proposed for source code level in-
stantiation of UML statecharts after transforming 
them to extended hierarchical automata.  Extend-
ing the pattern with runtime self checking capa-
bili ties and testing support are the subject of our 
future work. 
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