
1

System Diagnostics in HW-SW Codesign 1

Gy. Csert�an

Department of Measurement and Instrument Engineering

Technical University of Budapest, Hungary

E-mail: csertan@mmt.bme.hu

Abstract

In this paper a novel approach is presented, which can successfully be used for the underlying

hierarchical modeling of HW-SW codesign during the whole design cycle. This new method

combines the conventional, performability evaluation oriented description of the functional units

of the system with the description of fault e�ects and error propagation.

Various dependability measures can be extracted from the extended system model. This work

deals with diagnostic design, that is the iterative process of model construction, test generation,

concurrent fault simulation and integrated diagnostics. The result is an optimized, ordered test

set of the system.

1 Introduction

One of the most promising design automation methods is HW-SW codesign (Figure 1 unshaded

area), that denotes "the joint speci�cation, design, and synthesis of mixed HW-SW systems" [3].

Unfortunately existing HW-SW codesign implementations (like Ptolemy, COSMOS, SpecSyn

[7]) lack of integrated support for diagnostic design (test generation, testability analysis). This

becomes crucial in safety related applications, like process control and automation. In [8] a method

is presented for testability analysis as part of integrated diagnostics, but the problems of generating

the input model of this method, designing of the test set and dealing with diagnostic uncertainty

remain still unsolved.

The aim of our work is the development of a tool-box for model-based diagnostics and de-

pendability evaluation in the form of an extension of the existing functional design tool Ptolemy.

The basic models and technologies developed are fully coherent with those used in the original

tools in order to keep the integrity of the design environment and to avoid unnecessary model

transformations.

In this paper a novel approach is presented, that uses the dataow notation as the modeling

methodology of HW-SW codesign. Using this approach the behavior of the functional units of

digital computing systems can be hierarchically described and aspects of faults, their e�ects, and

error propagation can be handled during the design process. As it is shown in [4] the following

problems can be solved concurrently with system design:

� fault simulation

� test generation

� estimation of optimal diagnostic strategies

� testability analysis for both built-in and maintenance tests

� failure modes and e�ects analysis (FMEA), risk analysis

1This research is supported from: EC Research Project #CP94:9624 FUTEG; Hungarian-German Joint Scienti�c

Research Project #70; German Scienti�c Research Project SFB-182

2

database

component

specification editor

component

editor

evaluation

model

refinement

system

system

tools

system

interactive

simulator

technology

test

generator

assignment

set

hardware

model

verified

parallel

fault simulator

model

results

test

interfaces

integrated

diagnostics

other

testability

measures

components

diagnostics

system

software
components

model

test

Figure 1: HW-SW codesign process

The work consists of four parts. After the introduction in Section 2 the modeling approach is

presented: �rst a general description, then the selected dataow notation is introduced, �nally the

theoretical background of model re�nement is described. In Section 3 a simple example is given.

Finally Section 4 presents an overview of the implemented design environment and gives a few

concluding remarks.

2 The Modeling Approach

Since the application area of HW-SW codesign is very broad, no general solution can be given. We

restrict our activities to the �eld of digital computing and control systems, where dependability is

of primary concern. Within this �eld we will focus on the �rst step of HW-SW codesign (shaded

area in Figure 1). This is the iterative process of model construction, model evaluation and model

re�nement, that is executed until the parameters of the model meets the requirements.

In the �rst step of HW-SW codesign the system is modeled by extended dataow networks. At

this level of abstraction only the ow of data is modeled in the form of token ows without any

description of the data transformation performed by the components (uninterpreted modeling).

Primarily performance analysis and formal analysis are aimed at.

Through stepwise re�nement more and more structural and functional details are incorporated

into the initial model. As the system's structure and the data processing functions of the com-

ponents are increasingly exactly de�ned the inherent uncertainty of the model decreases, leading

to more exact analysis results. Test generation and testability analysis can be done in this phase.

Test generation at this level delivers the system-level diagnostic tests set of the system.

Finally when all functional details become fully speci�ed (interpreted modeling) the second

3

step of HW-SW codesign: system partitioning and automated hardware and software synthesis

can be started. After technology assignment a backannotation step has to be done. It feeds back

information from the implemented system to the functional model, and assigns the functional

components to HW and/or SW components. As a result, common mode faults have to be taken

into account in the model (two or more functional units are implemented by the same HW or SW

component) and a re�nement step can be done, that further restricts the nondeterminism within

the model (by removing �ring rules within the nodes). Test generation and testability analysis is

still possible, and the result of test generation is the low level test set of the components, e.g. self

test of a component.

Note, that this way even the modeling of the fully designed system is possible, but there are

more e�ective approaches for the evaluation of this low level model (see later).

Our approach is based on the idea of modeling the fault e�ects and their propagation similarly

to the ow of data in the functional model. Tokens representing the data can be colored either as

correct or as faulty. A set of error propagation paths can be estimated by tracing their ow from

the fault site to the outputs of the network. Diagnostic uncertainty is introduced in order to express

conditional error propagation. This way the simulation and test generation algorithm delivers a

superset of propagated fault e�ects in the system, but in the model all potential consequences

of a fault are incorporated. In subsequent steps of model re�nement this global overview of the

system e�ectively supports test generation procedures by radically restricting the search space to

the solutions of those from the coarse model [5].

Of course the whole process of model re�nement is only useful if the results from a previous

design phase can really be used to guide the evaluation of the current phase model, leading to the

mentioned restricted search space. Therefore the rules of model re�nement has to be de�ned.

A more detailed fault model and a more precise description of the reactions of functional units

to erroneous input values can be de�ned by using multi-valued logic. For example, the tokens

and component fault states can be qualitatively grouped (colored) according to the severity of the

user-de�ned fault e�ects like:

� catastrophic (causes a damage in a component)

� fatal (blocking the further operation, e.g. an undetected wrong opcode input of a CPU-like

element)

� incorrect (may invoke only error propagation, like wrong input data to be processed by the

CPU)

It should be pointed out, that the use of other guiding attributes in this user-de�ned colorings of

the tokens and propagation rules o�ers full freedom for the analysis of di�erent user requirements.

2.1 Dataow Networks

Asynchronous dataow networks, introduced in [6] combine a graphical representation (dataow

graphs) and a formal mathematical background. The former leads to an easily edit-able and

understandable model, while the latter makes formal analysis of the model possible. In comparison

with Petri nets, dataow models are more compact, they correspond to the well known black-box

approach, the way the designer thinks during system design. On the other hand the evaluation of

dataow models is not limited by complexity problems as in case of process algebraic approaches.

4

Therefore the dataow notation is well-suitable for conceptual modeling of computing systems

in the early design phases [2], for early validation of computing systems, for performance evaluation,

and as modeling language in HW-SW codesign [4].

A dataow network N is a set of nodes PN , which execute concurrently and exchange data

(tokens) over point-to-point communication channels CN . Dataow nodes represent the functional

elements of the system and describe their signal propagation behavior by relations between input

and output, eventually depending on the previous state of the node. The use of relations instead

of input-output functions allows the modeling of non-deterministic behavior. The channels of the

dataow network symbolize the interaction between the functional elements of the system. Each

channel connects one output of a node to one input of a node.

De�nition 1 A token set M is a set of message types, including also the empty set, which means

that no message is sent, and the token x, which represents uncertainty.

De�nition 2 A dataow network is a tuple DFN = (N;C; S; s0) where:

C - set of channels (I-input, O-output, and IN-internal channels)

N - set of nodes

S - set of states, composed from the states of nodes and channels

s0 - initial state, s0 2 S

A channel may contain any sequence of tokens, the state of a channel is S =M�; s0 = ;.

De�nition 3 A dataow node n is a tuple (In; On; Sn; s
0
n; Rn) where:

In - set of input channels

On - set of output channels

Sn - set of states

s0n - initial state, s0 2 S

Rn - set of �rings, rn 2 R is a tuple (s;Xin; s
0;Xout)

s; s0 - states before and after the �ring, s; s0 2 Sn

Xin - input sequence, Xin : In 7!M

Xout - output sequence, Xout : On 7!M

The functional behavior of a node n is de�ned by the set of �ring rules Rn over the input domain

and over Sn, the set of possible states of the node. A node is ready to execute as soon as the data

required by one of its �ring rules are available and the node is in a proper state. The meaning of

�ring rule r 2 Rn, denoted by r = (s;Xin; s
0;Xout) is that if the node n is in state s 2 Sn, each of

the input channels i 2 In holds at least Xin(i) data items, then �ring rule r is potentially selected

for execution. The execution of �ring rule r removes Xin(i) data items from each input channel

i 2 In and outputs Xout(j) data items on each output channel j 2 On, while the node changes its

state from s to s0.

2.2 Extension of the Model

Similarly to Petri nets, there are many ways to extend the dataow notation: Introduction of the

notion of time in order to model the duration of di�erent activities of the node. The de�nition of

5

�ring rules allows to express nondeterministic behavior of the nodes. In many cases it can lead

to undesirable e�ects. To prevent such cases priority can be added to the �ring rules. On the

contrary, when nondeterministic behavior is requested, occurance probability can be added to the

�ring rules.

Our extension is di�erent: the set of tokens (data items), set of node states, and the set of �ring

rules is extended. Thus it is possible to describe the behavior of the system even in the faulty case:

modeling of fault occurance, fault propagation, fault removal, fault detection, etc. This extension

leaves the structure of the model unaltered. Of course the previously mentioned extensions can be

combined with this behavioral extension.

2.3 Re�nement of the Model

As mentioned in the previous section, during model re�nement the designer has to meet some

rules in order to make sure, that the results gained by the evaluation of the �rst phase model are

consistent with the results gained for models from later design phases. It will be shown, that if

the second model (DFN) is a re�nement of the �rst model (DFN), the required consistence can be

assured.

Note: In the de�nitions and proves we will use the assumption, that on each channel only one

token is sent or consumed at the same time. It does not restrict the usability of the presented

method, since it can easily be generalized for the case, when more then one token is moved. In

the paper relations over sets are rather presented as functions over the power sets of the set. For

example relation R from X to Y is denoted by: R : X 7! Y �, where Y � is the power set of Y .

De�nition 4 A nondeterministic �nite-state transducer (NDFST) is a tuple NDFST = (�;�;

S; S0; �; !) where:

� - input alphabet

� - output alphabet

S - set of states

S0 - initial states, S0 � S

� - state transition function, � : S � � 7! S�

! - output function, ! : S � � 7! ��

A dataow node can be described by a NDFST using the following substitution:

� =M i, i = jInj

� =Mo, o = jOnj

S0 = s0n

� = f: : : ; (ri(s); ri(Xin); ri(s
0)); : : :g;8ri 2 Rn

! = f: : : ; (ri(s); ri(Xin); ri(Xout)); : : :g;8ri 2 Rn

Now the computation of a dataow network can be described by composition of NDFSTs, which

in turn is a composition of relations:

De�nition 5 The computation of a dataow network is a relation CP : IM � S 7! OM�, where

IM - input mapping, IM = (M�)i; i = jIj

OM - output mapping, OM = (M�)o; o = jOj

6

De�nition 6 The set of faults F contains all possible fault hypotheses under the given fault model.

F de�nes the set of faults, for which tests have to be generated, and in presence of which the

testability measures of the system have to be evaluated. For example in case of a single-fault

model, the elements of F are all possible single-faults of the system. If each component has only

one fault, the number of hypotheses in F is equal to the number of components.

De�nition 7 A test for fault i 2 F is an ordered pair ti = ((v; is); tr), where:

v 2 IM - test vector

is 2 S - initial state (with fault i)

tr 2 OM� - test result

The test set of the system is denoted by T = f: : : ; ti; : : :g, and clearly T � CP . cpx = ((v; is); tr) is

a test i� om, delivered by the fault free computation cpy = ((v; sff); om), and tr di�er. sff denotes

the fault free initial state of the system that is gained from is by removing the assumed faults of the

fault hypothesis. om and tr di�er i� 8i 2 om and 8j 2 tr i 6= j.

Since each test is a relation, the di�erence of test results, and the response of the fault free system

can only be tested by pairwise comparison. It means, that no matter which outcome a test and the

fault free system will deliver, they should be di�erent.

De�nition 8 Test ti is called a certain/uncertain test for fault i, if 8i 2 om and 8j 2 tr di�er

not only/only by x tokens. A fault is non detectable/uncertainly detectable/certainly detectable

if no test exists/an uncertain test exists/a certain test exists for it. The set of non detectable

faults/uncertainly detectable fault/certainly detectable fault is denoted by Fn, Fu, Fc. Fc � Fu,

Fu \ Fn = ;, and Fu [Fn = F .

Since uncertainty is present in the modeling, the exact value of testability measures can not be

elaborated. Instead a minimum and a maximum value can be computed, and the exact value will

be somewhere in between. In this case the set of certainly detectable faults represents the minimum

value (this is called the pessimistic case) and the set of uncertainly detectable faults represents the

maximum value (it is called the optimistic case).

Changes in the model (switching from one level of abstraction to another one) are described by

re�nement, which can be any be any of:

1. modi�cation of the structure:

� changing the connections among nodes

� adding new channels to the network

2. modi�cation of the behavior of the components:

� changing the token set and the �ring rules

� altering the set of states and the �ring rules

The re�nement of the network de�nes the rules a designer has to meet during the design in order to

have "monotonously changing testability measures". In this work we only deal with the re�nement

of the behavior of the network (point 2 in the above list).

7

De�nition 9 DFN2 is a re�nement of DFN1, if the structure of the network is unchanged, M2

is a re�nement of M1, 8n 2 N S2
n is a re�nement of S1

n, and R2
n � R(R1

n). Since the set of fault

hypotheses is closely related to the set of states, F 2 is a re�nement of F 1.

R describes the re�nement of �ring rules: Let suppose a �ring rule r1 and its re�nement r2.

r1 : (s1pre; im
1) 7! (s1post; om

1), where r1 2 R1
n; s1pre; s

1
post 2 S1

n; im1 2 (M1)i; om1 2 (M1)o.

The re�nement of tokens transforms M1 to M2 such that m1 2 M1 7! f: : : ;m2

i ;m
2

j ; : : :g � M2.

The re�nement of states transforms S1 to S2, such that s1 2 S1 7! f: : : ; s2i ; s
2

j ; : : :g � S2. Now

r2, one possible transformed of r1, is a mapping r2 : (s2pre; im
2) 7! (s2post; om

2), such that if

s1pre = s1 then s2pre 2 f: : : ; s
2

i ; s
2

j ; : : :g and if t1 2 m1 is a token consumed/produced by r1, the token

t2 2 f: : : ;m2

i ;m
2

j ; : : :g has to be consumed/produced by r2. These rules do not e�ect uncertain

states and tokens: if s1pre/s
1
post is uncertain, then s2pre/s

2
post can be any s 2 S2, and if token t1 is

uncertain, then t2 can be any t 2M2. The set of possible transformed �rings Ref(r1) is made by

combining of any possible s2pre; s
2
post; im

2; om2 and the set of transformed �rings will be a subset of

it r2 � R(r1).

Theorem 1 L1 and L2 with the corresponding dataow networks DFN1 and DFN2 are two

di�erent levels of modeling. If DFN2 is a re�nement of DFN1, then

jF 2
c j

jF 2j
�
jF 1

c j

jF 1j
and

jF 2
u j

jF 2j
�
jF 1

u j

jF 1j

Proof The theorem is proven in three steps: 1. it will be shown, that if f1 is certainly detectable,

then 8f2 j f2 2 f: : : ; f2i ; f
2

j ; : : :g is also certainly detectable. 2. if f1 is non detectable, then 8f2

is also non detectable. 3. if f1 is uncertainly detectable, then 8f2 is either non detectable, or

certainly detectable, or uncertainly detectable. If these three steps are proved, the statement of

the theorem is proved.

Step 1: According to De�nition 9, if a �ring rule at L1 delivers a non x token, the corresponding

�ring rules at L2 will also deliver a non x token. Exploiting the composition of nodes, it can be

proven by induction, that if DFN1 produces some non x tokens (t1 is a certain test by De�nition 8),

than DFN2 also produces non x tokens, thus 8t2 corresponding to t1 is certain test and f2 is

certainly detectable.

Step2: The detailed prove is omitted since it can be done similarly than in Step 1, except that

here we have to exploit the the similarity of computations without and with the fault hypothesis

(De�nition 7) and we have to argue about the absence of x tokens in the response of the DFN.

Step3: If f1 is uncertainly detectable, then the test result and the result of fault free computation

di�er only by x tokens (see De�nition 8. If �ring r1 delivers x tokens, then according to De�nition 9

the �rings r2 can deliver both x and non x tokens. Again using the composition of nodes it can

be shown by induction, that when x tokens in r1 are re�ned to non x tokens in r2, f2 gets either

certainly detectable (test and fault free computation results di�ers by not only x tokens), or non

detectable (test and fault free computation results do not di�er anymore) When x tokens in r1

remain x tokens in r2, f2 remains uncertainly detectable. 2

Informally, the theorem states, that after re�nement of the model, the relative number of detectable

faults under pessimistic assumptions will be larger, while the relative number of detectable faults

8

under optimistic assumptions will be smaller. It means, that by adding more and more information

to the model (removing uncertainty), the testability measures of the system can be evaluated more

and more precisely.

3 An Example

Because of space limitation the example is kept very simple. It is a single node, with one input and

one output. It represents a reference signal generator. The input comes from a power supply, and

the output delivers the reference signal. First the normal behavior is described, then the extended

behavior is given under a very simple fault assumption. The graphical representation of the node

is given in Figure 2.

reference signal generator

power_in ref_out

Figure 2: DF graph of the reference signal generator

3.1 Basic Component (fault-free)

In the fault-free case the dataow node receives a single token on its input and delivers a single

token to its output. It has only one state, s0. The behavior is described by the �ring:

r0=fs0,power in,s0,ref outg

The meaning of the �ring is, that from s0, if a token is received on the input channel power in,

the node goes into s0 and produces a token on the output channel ref out.

3.2 Extended Component (faulty)

In the faulty the tokens are colored as follows:

ok { denotes fault-free information

fty { denotes faulty information

unc { denotes uncertainty (information is either faulty or fault-free)

The only fault related functional extension of the component is fault propagation in fault-free (state

s0) and in faulty (state s1) states. Thus the set of �rings is the following:

r0=fs0,power in=ok,s0,ref out=okg r2=fs1,power in=ok,s1,ref out=ftyg

r1=fs0,power in=fty,s0,ref out=uncg r3=fs1,power in=fty,s1,ref out=ftyg

The meaning of the �rings is: r0 denotes the original function. r1 describes the behavior of

the fault-free component if faulty supply voltage is received from the power supply; the reference

signal might be correct or incorrect. r2 describes the behavior of the faulty component in case of

fault-free inputs; the reference signal is incorrect. Finally r3 describes the behavior of the faulty

component in the case if the input voltage is faulty; the reference signal is incorrect.

9

Remember that the structure of the model remains unchanged, but the cardinality of the token

set increases from 1 to 3, the size of the state space of the node increases from 1 to 2, and the

number of �ring rules increases from 1 to 4.

3.3 Re�ned Component

The re�nement rules state, that during re�nement the structure of the model must not be altered

and for each node of the network the sets (tokens, states, and �ring rules) after the re�nement step

have to be a re�nement of the corresponding sets before the re�nement step. Of course replacing a

node by a subnetwork, does not count as a structural modi�cation, thus it is an allowed operation

during the re�nement. The impact of these rules is shown on the simple example. In the re�nement

step the set of tokens is changed:

ok { correct signal value

low { signal value is lower than correct

high { signal value is higher than correct

The set of faulty tokens is now split, and the token for expressing uncertainty is no more needed

(uncertainty vanished from the model). The states of the nodes changed similarly: s0 denotes the

fault-free state, in state s1a the component delivers low reference signal, and in state s1b it delivers

high reference signal. Therefore the new �ring rules are the following:

r0'=fs0,power in=ok,s0,ref out=okg r5'=fs1a,power in=high,s1a,ref out=lowg

r1'=fs0,power in=low,s0,ref out=lowg r6'=fs1b,power in=ok,s1b,ref out=highg

r2'=fs0,power in=high,s0,ref out=okg r7'=fs1b,power in=low,s1b,ref out=lowg

r3'=fs1a,power in=ok,s1a,ref out=lowg r8'=fs1b,power in=high,s1b,ref out=highg

r4'=fs1a,power in=low,s1a,ref out=lowg

After re�nement, �ring r0 remained unchanged and it is denoted by r0'. Firing r1 is split

into r1' and r2' and the uncertainty is vanished. Firings r3', r4', r5' originates from r2 and

describe the incorrect output more precisely. The same is true for r3 and r6', r7', r8'.

4 Conclusion and Future Work

In this work we presented a modeling approach and a design environment, that can be used in the

early phases of HW-SW codesign. It supports diagnostic design as an integral part of the design

process, since in the proposed dataow model both the functional and error propagation/fault

e�ects information are incorporated.

The prototype of the toolboxes (shaded area in Figure 1) is implemented, and the �rst credibility

studies are executed. As model editor the graphical editor of Ptolemy [7] is used. A graphical,

interactive dataow simulator supports the work of the designer during model construction and

veri�cation. For test generation an adaptation of the well known PODEM ([1] algorithm is used.

A concurrent fault simulator extracts the input model of integrated diagnostics [8] from the test

set of the system. Finally the diagnostic measures can be evaluated by means of the integrated

diagnostic tool. Current work incorporates the modeling and analysis of some very complex digital

computing systems (evaluation of MEMSY is nearly �nished).

10

Future work involves the integration of the test generator, fault simulator and integrated diag-

nostics modules into Ptolemy. Theoretical work has to be done on the �eld of a possible automatic

extension of the basic description of the nodes and we want to identify and examine the constraints

imposed by the various testing criteria on HW-SW separation.

Acknowledgments

The author wants to express his gratitude to Prof. M. Dal Cin and Mr. W. Hohl, whom hosted him

for a period at the University of Erlangen, Germany. The helpful comments of Prof. A. Pataricza

are also acknowledged.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing and Testable

Design. Computer Science Press, New York, 1990.

[2] A. Bondavalli and L. Simoncini. Functional Paradigm for Designing Dependable Large-Scale

Parallel Computing Systems. In Proceedings of the International Symposium on Autonomous

Decentralized Systems, ISADS '93, pages 108{114, Kawasaki, Japan, 1993.

[3] G. Boriello, K. Buchenrieder, R. Camposano, E. Lee, R. Waxman, and W. Wolf. Hard-

ware/Software Codesign. IEEE Design and Test of Computers, pages 83{91, March 1993.

[4] Gy. Csert�an, A. Pataricza, and E. Sel�enyi. Dependability Analysis in HW-SW codesign. In

Proceedings of the IEEE International Computer Performance and Dependability Symposium,

IPDS'95, pages 316{325, April Erlangen, Germany, 1995.

[5] Technical REPORT FUTEG-4/1995. Contract number CP93:9624.

[6] B. Jonsson. A Fully Abstract Trace Model for Dataow Networks. In Proceedings of the 16th

ACM symposium on POPL, pages 155{165, Austin, Texas, 1989.

[7] J. Rozenblit and K. Buchenrieder, editors. Codesign. IEEE Press, 1995.

[8] W. R. Simpson and J. W. Sheppard. System Test and Diagnosis. Kluwer Academic Publishers,

1994.

