
Abstract

The paper introduces a method to model embedded
dependability−critical systems as AND−composition
of Guarded Statecharts which are special UML−
statecharts. With Guarded Statecharts we can model the
reactive behavior of embedded systems so that their
quantitative analysis can be performed. First, we present
our motivation for using Guarded Statecharts to express
the interaction between hardware and software compo−
nents of embedded systems, and to model faults and
errors as state perturbations. Then we discuss how these
models are transformed into Stochastic Reward Nets
amenable to a quantitative dependability analysis.
Finally, our approach is illustrated by an example.

1. Introduction

A central requirement for dependability−critical systems
is the ability to cope with faults. It is important that this
non−functional property can be validated before the
system is licensed for use in applications that affect, for
instance, human life. This requires a quantitative
dependability analysis, which deals, for instance, with
error coverage, mean duration of a recovery cycle, the
probability of tolerating certain state perturbations, or the
probability of a failure. For such an analysis, it is not
only necessary to model the system’s behavior; e.g. the
embedded control algorithm. Also the system’s interac−
tion with its environment via sensors and actuators has to
be modeled (closed−loop modeling), since the environ−
ment can be a source of faults which can give rise to
errors in the system’s behavior. Thus, dependability
evaluation of embedded systems tends to be very com−
plex causing the modeling problem to be notoriously
elusive and error prone. 

Therefore, when modeling embedded systems a trade−off
has to be made between the degree of details in modeling
and the degree of possible automation of the analysis.
This lead us to define a sub−class of statecharts
comprising so−called Guarded Statecharts (GSC) [6].
Statecharts or state diagrams [10] represent finite state
machines and describe the behavior of objects in
response to external stimuli, such as sensor signals.
Statecharts model reactive, state−driven system behavior.
They are, however, not directly amenable to a
quantitative analysis. Therefore, a method has to be
introduced which transforms a set of concurrent
statecharts into a mathematical model that can be
evaluated quantitatively. Suitable mathematical models
could be a directly generated transition system or a Petri
Net. In this paper we present a technique for
transforming Guarded Statecharts, consistent with UML
semantics, into a set of interacting Stochastic Reward
Nets (SRN) [4]. Stochastic Reward Nets are extensions to
Generalized Stochastic Petri Nets (GSPN) [1]. GSPNs
generalize Petri Nets by assigning a firing rate to each
transition.  
On the one hand, this gives us the possibility to employ
the elaborate and well established Petri Net tools for the
quantitative analysis of UML−models. On the other
hand, this integrates the use of Petri Nets into the object−
oriented modeling paradigm of UML. For example, the
generated Petri Nets models can be extended by model−
ing aspects, difficult to express directly in UML, like the
loss or spurious generation of signals (cf. Section 4).

We proceed as follows. In Section 2, we introduce the
notion of Guarded Statecharts. In Section 3 it is shown
how faults and errors can be modeled by defining
appropriate fault/error models. The transformation to
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SRN is presented in Section 4. Our approach is illustrated
by an example in Section 5 and some results are given in
Section 6. An alternative approach to evaluate GSC−
models is discussed in Section 7. 

2. Guarded Statecharts

The main objects of a Guarded Statechart are states
(container states, basic states, initial states, etc.) and
transitions with guards. In addition, labels of transitions
describe timing information, e.g. arrival distribution of
signals, or static information, e.g. probabilities of
possible outcomes.

Guarded Statecharts: Given a set E ofexternal event
variables, a Guarded Statechart (GSC) is a finite set A of
actions and a finite set S of states. Each state and each
event has a name. Actions denote state transitions. 

Actions are of the form:
    <guard>&& <trigger>*<set_of_target_states>; 
• The trigger is a boolean expression of atomic

predicates over events. 
• Guard is a boolean expressions of predicatesin(state)

where in(state) evaluates to true, ifstate is the
(actual) initial state (i−state) of the GSC or of some
concurrent GSC. 

When state transitions are depicted graphically, they are
labeled with labels of the form [guard]/tr, whereguard is
(the name of ) a guard and tr (the name of) a trigger. 

For instance,
in(s5) AND in(RHW_off) OR
in(s6) AND in(RC_loads) AND
in(PRC_unloaded)&&TRUE*{s6}; 
State s6 is the target state of this action. The trigger is the
constant expression TRUE, not mentioned in Figure 1.

[RC_loads AND PRC_unloaded]

[RHW_off]

s6 s5

Figure 1 Action

With GSCs also non−deterministic behavior can be
modeled. This is important, since although the software
of embedded systems is completely deterministic, the
system can not know if and when external events or
faults will occur. For instance, a task can be requested at

any time and peripherals may react to controls with
unpredictable delays due to faults. 
We restrict guards of an action by stipulating that, if a
guard contains more than one state of S, the predicates of
these states are OR−connected. The action is executed
atomically and instantaneously, if its trigger and its
guard evaluate toTRUE. The execution effects the
nondeterministic choice of exactly one state of
<set_of_target_states> as next i−state of the GSC. A
guard expression of a GSC M may not contain predicates
of states of M. If such a guard evaluates toTRUE, M
takes one of the target states irrespectively of its actual i−
state. That is, the OR−connection of all state predicates
of M always evaluates to TRUE. 
Guards can be considered as high−level abstractions of
synchronization mechanisms. Outputs are considered to
be part of the state in which they occur. 

Using GSCs we can abstract continuous signals to
discrete signals assuming a finite set of critical values.
For example, it is only important to observe whether a
robot arm is directed in a position allowing for
unloading, or pointing toward a press; all intermediate
positions can be collapsed into a single third value. This
way, we model sensor and actuator signals via states
(Figure 2). A state representing an actuator signal being
active means that the actuator is set to a certain discrete
value. Analogous, if a component is in a state which
represents a sensor signal, it means that this sensor is set.
In GSC−models, hardware and software components are
only allowed to communicate via such sensor and
actuator states. This interaction is expressed by guard
expressions containing predicates over sensor or actuator
states (public states). Likewise, interactions between
tasks of the control software are also modeled by guarded
state transitions. This corresponds to an asynchronous
synchronization pattern between tasks. This pattern is
inherently multithreaded, because it models a message
being passed to another object without the yielding of
control [9].

Figure 2 Modeling view



The following steps lead to a model of an embedded
system and its environment which comprises controllers
and the controlled units interacting by sensors and
actuators. 

1. Produce the component models.Specific states (so−
called public states) describe the events, system com−
ponents (controllers and controlled units) generate or
respond to. These states represent, for example, sen−
sor and actuator signals. The controllers manage dis−
joint sets of actuator signals. The modeling of con−
trolled units, usually, needs not to be very detailed,
since its only purpose is to restrict the state space of
the controllers to reasonable state transitions, and to
inform the controllers about faults, e.g. sensor or ac−
tuator failures.

2. Specify guards for state transitions.These guards
represent the component’s inferred knowledge about
its environment, i.e. about the actual public states of
certain system components, and determine the
response of the components to this knowledge.

3. Specify the state transition rates and branching
probabilities (weights).Transition rates label timed
transitions and specify the mean transition time.
Weights label immediate, time−less transitions. They
can specify alternatives. 

4. Specify the performance and dependability measures.
These measures can be expressed in terms of reward
functions [4].

3. Modeling Faults and Errors

Truly dependable systems are able to cope with faults.
Following types and locations of a fault can be
distinguish. Design faults can exist in hardware and
software. In fact the co−design paradigm is gradually
making hardware and software indistinguishable. Certain
physical faults occur inside a single component of the
system and can be handled by that component. Some
physical faults occur inside a component but must be
handled by another component. External faults occur in
the environment and are often transient (Figure 3). Faults
can give rise to errors, that is to undesired system states,
which in turn can lead to the failure of the system [13]. 

Augmenting the system model with a realistic fault
model is the basis for the dependability analysis. Faults
are modeled, for instance, by message losses or loss of
synchrony. Errors can be modeled by so−called state
perturbations. State perturbations include distinguished
states corresponding to degraded performance of the
modeled system, paths leading to such states, erroneous

state transitions, trigger events due to external faults
giving rise to erroneous state transitions and the use of
guards to express fault−tree like failure conditions. Thus,
a wide spectrum of possible errors can be modeled. 

Our error−model for GSCs is based on the notion of state
perturbations. For example, unintended state transitions
are state perturbations. An unintended transition from
states to stateq may be due to a permanent or temporary
fault and q may be an erroneous state. An unintended
state transition due to a temporary fault occurs at most
once in the considered period. An unintended state
transition caused by a permanent fault can occur
whenever the system is in the state that gives rise to the
erroneous transition. Such state perturbations can be
modeled by binary and reflexive relation over the state
space of a GSC [5,7,8,12].

 

Figure 3 Faults

Signal losses can cause that guards are not observed. For
example, the guardin(RHW_off) may not be observed by
the robot control. The guard then always evaluates to
TRUE. This way, also sensor and actuator faults or loss
of messages can easily be modeled by state perturbations.

Finally, using guards also dependability requirements,
expressed as negations of fault trees over component
states, can be integrated into GSCs. This way, depend−
ability requirements, resulting from the requirement
analysis, can directly be integrated into the system
model. For instance, a fault tree defining possible colli−
sions of certain devices, that could lead to the failure can
be specified as guard expression, see Figure 4.

4. From  Statecharts to Stochastic 
    Reward Nets

For a dependability analysis the GSC−models must be
transformed to models amenable to mathematical
analysis. Guarded Statechart can easily be transformed
into Stochastic Reward Nets (SRN). State transitions



with time delay are transformed to timed Petri Net
transitions and time−less transitions to immediate Petri
Net transitions. Guards and triggers become guards of
Petri Net transitions. These SRNs can then be evaluated
with a PN/SRN tool.

            OR

    

   Press.bussy     RobotArm.extended   Press.failure

[NOT((RobotArm.extended AND Press.bussy) 
     OR(RobotArm.extended AND Press.failure)]

Figure 4 Fault tree and its representation as guard
  expression

PANDA [2], our Petri Net analysis tool,allows to
annotate transitions with guards and to use state
dependent capacities for arcs. Moreover,PANDA
accepts not only exponential distribution functions,
but also non−exponential ones (Erlang−k, Gamma,
Weibull, Normal, Lognormal, Hyperexponential, etc.).
Dependability measures can be specified by reward
functions. To this end, a stringent and clear reward
concept has been developed based on reward rates and
impulse rewards combining knowledge of the net model
and the state space. (The net view is not lost when
defining reward functions on the state space). Reward
functions are built from so−called characterizing
functions like: Mark(place). This function delivers the
number of tokens in a place.PANDA computes the
expectation value of a reward function at a point in time
(e.g. availability or throughput) as well as accumulated
rewards. PANDA is available for shared and distributed
memory platforms.

GSCs are not hierarchic − rather, all hierarchy levels
(except the bottom level) describe concurrent behavior.
The transformation neglects all these concurrent con−
tainer states, since they have no counterparts in the Petri
Net structure of an SRN. The basic states are represented
as places. The PN−place holds the name of the GSC−
basic state. The initial marking of the place is 1, if there
is an initial transition in the GSC leading to the corre−
sponding state. Otherwise the initial marking is 0.
Additional PN−transitions are generated for loss or gen−
eration of spurious signals. The modeler has only to
specify the rates. 

The main transformation steps are:

1. Private states,i. e., states which do not appear in
guard expressions are transformed to places.

2. Public states,e.g. sensor and actuator states, are
transformed into a pair of places, see Figure 5. The
arc annotation 1xMark(...) determines a state
dependent capacity of the arc. For example, if
Mark(State_PUB) = 0, then firing of the output−
transition S depends only on the marking of place
State.The duplication of public states serves mainly
to model − within the Petri Nets − communication
faults, e.g. lost or spurious sensor or actuator signals.
A fault occurs when placesStateandState_PUBhave
different markings (see below).

e1×(1−Mark(State))×
(1−Mark(State_PUB))

  F1

State        State_PUB
e2×Μark(State)

    F2
1×Mark(State_PUB)

S

Figure 5 Modeling fault injection
 

3. State transitions labeled with ratesare transformed to
timed Petri Net transitions with the same rates. 

4. State transitions labeled with weightsare transformed
to immediate PN−transitions with the same weight.
Immediate transitions have priority over timed transi−
tions. The weights of conflicting immediate transi−
tions are normalized such that they become branching
probabilities. (At present, weighted transitions can
not have guards. In fact, they are mainly used to
model state perturbations.)

This way we obtain a set of topologically isolated Petri
Nets which interact by guards. This approach requires
fewer modeling elements than a single Petri Net without
guards and, thus, makes the model more comprehensible.

As mentioned, our fault model includes corrupted actua−
tor and sensor signals. A guard can sense an active signal
state as being inactive and vice versa. We duplicate,
therefore, the places corresponding to signal states (pub−
lic states). PlaceStatemodels the state of the signal and
placeState_PUBmodels the presence of the signal (Fig−
ure 5). There are four cases: 1) Both places are empty,
the transition S can not fire. 2) Both places contain

Robot_Pos1 Robot_Pos2

AND AND



tokens, the transition S can fire. 3) OnlyStatecontains a
token, i.e. the fault ’signal is lost’ has been injected. 

Figure 6 Hardware of robot

Then the transition S can fire. 4) OnlyState_PUB
contains a token, i.e. a spurious signal has been injected.
Then the transition S can not fire. However, the
corresponding guard evaluates toTRUE. The faults are
injected by the transitions F1 and F2. The modeler has
only to provide the corresponding failure (firing) rates e1
and e2.

The transformation and the SRN−analysis tool are part
of the projectHigh−Level Integrated Design Environ−
ment HIDE developed under EU contract LTR27439
[11]. This project aims at an extension of modern
CASE−tools by model−based mathematical analysis and
validation techniques.

5. An Example

We illustrate our approach by a small example of a
fault−tolerant system. The example is a variation of a
production cell model [14, 16]. The system contains a
press that processes metal blanks, a robot with an
extensible arm (with a electromagnet) for loading and
unloading the press, and a repair console. The feed belt
as well as the deposit belt are not modeled explicitly.
The breakdown of the press can be sensed by the repair
console. Then the repairman (worker) can repair the
press. Also the robot arm may stuck and then be repaired
by the repairman. 

According to our modeling approach, each device model
consists of a hardware behavioral model and the corre−

sponding control charts. The control charts specify either
the behavior of a single, central cell controller or that of
several distributed device controllers. The complete
GSC−model comprises 5 statecharts (with 9 state
transition diagrams and 34 basic states, of which 8 are
sensor states and 8 are actuator states). These statecharts
have to be transformed to SRNs for analysis [6]. Figures
6 and 7 show the statecharts of the robot. We use the
UML−modeling tool INNOVATOR [17].

The HW−statechart contains 4 sensor states representing
the positions of the robot arm and the on/off−state of the
magnet. The 5th sensor state represents a perturbation:
the failure of the robot arm to retract (Figure 6). The
GSC of the robot control (Figure 7) contains 2 state tran−
sition diagrams: a diagram specifying the communication
with the press control and the repair console, and a
diagram specifying the control of the robot arm. The
states RC_si are actuator states. Also a loss rate for signal
s6 is specified. The robot control repeats sending this
signal until it is received by the hardware.

The complete UML−model of an extended version of
this example is given in [11]. It comprises a requirement
model, an object model, a deployment model and
packages. 

• The requirement model describes the requirements to
the modeled system. It contains use case diagrams
and sequence diagrams.

RobotHW@RobotHW

RHW_failure

RHW_extendedRHW_retracted

RHW_onRHW_off

Robot Hardware

[RC_repaired]/ rate=1

[!W_repairs_robot]
/ rate=0.001

[(RC_s3)||(RC_s6)]/ rate=1

[(RC_s1)||(RHW_s4)]/ rate=1

[RC_s5]/ rate=1

[RC_s2]/ rate=1



Figure 7 Robot control

The static view of the system is captured in class, object
and deployment diagrams. 

• The object model of the production cell is organized
around the four object diagrams:ProductionCell,
Controllers, Environment, and Machines. 

• The deployment model consists of several deploy−
ment diagrams of the system. A deployment diagram
describes a possible architecture of the system and
shows a given assignment of the components to the
nodes; e.g. centralized or distributed control.  

• The package model of the production cell consists of
three packages and a package diagram. TheMachines
package includes the nodes of the system that repre−
sent the physical machines. TheControllerspackage
contains the nodes of the system that represent the
physical controllers. The third package contains the

components of the system that describe the system’s
functionality. 

The dynamic view of the system is given by the
statecharts.

6. Quantitative Results

Some measurements with the transformed models were
performed which provided useful experiences [11]. For
the quantitative analysis our SRN−toolPANDA was
used. The transformed GSC−model of our small example
has 63000 states. However, the components are strongly
coupled by the guards; 9316 states are reachable from
the initial configuration. 

With PANDA we can
• detect absorbing states of the system or of its

components, 

RobotC@RobotC

signal lossrate

RC_s6 RC_s5

RC_s3

RC_s4

RC_s2RC_s1RC_start

RC_repaired

RC_unloads

RC_crash

RC_loads

RC_idle

Robot Controller

[((RC_loads)&&(PRC_unloaded))||((RC_unloads)&&(PRC_loaded))]
/ rate=1

[RC_idle]/ rate=10 [RHW_off]/ rate=10

[RHW_retracted]
/ rate=10

[RHW_extended]/ rate=10

[RHW_on]/ rate=10[RHW_extended]/ rate=10
[(RC_unloads)||(RC_loads)]

/ rate=10

[(!W_repairs_robot)&&(!RHW_failure)]/ rate=10

[(!RHW_failure)&&(PRC_unloaded)]
/ rate=10

[RHW_failure]/ rate=5

[W_repairs_robot]/ rate=0.01

[(!RHW_failure)&&(PRC_loaded)]
/ rate=10 [RHW_failure]/ rate=5

[PRC_busy]/ rate=10

[PRC_ready]/ rate=10



• determine the number of reachable states of the
system,

• determine the expected number of firings of a
given transition until an given point in time,

• determine the expected time the system spends in
a given state until a given point in  time.

• etc.
From these data performance and dependability measures
(defined by reward functions) like throughput, utiliza−
tion, mean turn−around time, reliability, availability, etc.
can be derived. Figures 8 and 9 show the utilization of
the repairman as function of elapsed time and the
throughput of the production cell as function of the signal
loss rate. The throughput is the mean number of forged
blanks per time unit (1 sec).

Figure 8 Repairman utilization

Figure 9 System throughput

7. Scenarios

The analysis of GSC−models needs either high perfor−
mance computers or is very time consuming, and even a

little more realistic model then that of [11] would cause
problems. But in practice the complexity of our
(extended) model is near the maximal complexity
modern tools can handle. Thus, we have, most probably,
to concentrate our quantitative analysis on certain system
components such as the embedded controllers. The
controllers are modeled in greater details whereas the
devices need not be modeled with details. For a
dependability analysis it may only be necessary to
specify how they  develop state perturbations.
Another way to reduce complexity is to deduce from the
GSC−model certain scenarios and to model them by se−
quence diagrams. Usually these sequence diagrams are
much less complex than the GSC−model itself. We
transform then the sequence diagrams to SRNs (Figure
10) and, first, check whether the scenario works, e.g. we
check whether it is deadlock−free. Then we determine
the probability, that the scenario terminates after a given
time. For example, the sequence diagram which de−
scribes the break−down of the robot arm and its repair is
given in Figure 11. The corresponding SRN has only 51
places, 31 transitions,  and 15 reachable states. 

Figure 13, derived from this scenario, shows the distri−
bution function of the time it takes to load the press again
after the breakdown of the robot arm. Figure 12 shows
the scenario where the signals from the robot control are
lost twice and Figure 14 presents the distribution func−
tions of the duration of the fault−free scenario (1) and
the faulty scenario (2).

Figure 10 A sequence diagram and its transformation

8. Conclusion

We presented a modeling paradigm for dependability−
critical embedded systems and an approach to evaluate
the models quantitatively. Our starting point is an
object−oriented UML−model of the embedded system.
The target are analytical Stochastic Reward Nets
amenable to a quantitative analysis. This way the
possibility of UML to model and analyze error−prone
and fault−tolerant system behavior is greatly enhanced.
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Figure 11 Scenario 1

Figure 12 Scenario 2

Failure/Repair Worker

:Worker
RobotHW

:RobotHW
RobotC

:RobotC
RobotC

:RobotC

[rate=1] W_repairs_robot
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[rate=1] RHW_retracted
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Figure 13 Distribution function for the duration of 
  scenario 1

           

Figure 14 Distribution function for the duration of  
   scenario 2
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