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Abstract
This paper deals with the automatic dependability

analysis of systems designed using UML. An auto-
matic transformations is defined for the generation of
models to capture systems dependability attributes,
like reliability. The transformation concentrates on
structural UML views, available early in the design, to
operate at different levels of refinement, and tries to
capture only the information relevant for dependabil-
ity to limit the size (state space) of the models. Due to
the modular construction, these models can be refined
later as more detailed, relevant information becomes
available. Moreover a careful selection of those, criti-
cal, parts to be detailed allows to avoid explosion of
the size. An implementation of the transformation is in
progress and will be integrated in the toolsets avail-
able for the  ESPRIT  LTR HIDE project.

1. Introduction

Nowadays, an increasing number of critical systems are
controlled by means of digital and computer systems to ef-
fectively manage the complex control of operations and to
provide fast reactions. This pervasive deployment and the
growing complexity of computer systems call for effective
ways of designing systems and validating designs. This
need has contributed to push for the development of stan-
dardised and well specified design methods and languages.
In this respect, the Unified Modelling Language (UML)
[11] is expected to become a de-facto standard for the de-
sign of a variety of systems from small control systems to
large and complex open systems. An effective design pro-
cess requires an early validation of the concepts and archi-
tectural choices, without wasting time and resources
before realising whether the system fulfils its objectives or
needs some re-design.  The early evaluation of system
characteristics like dependability [9], timeliness and
correctness, is thus, together with other techniques, nec-

essary to assess whether the system being developed
satisfies its targets.

This is the main objective of the European ESPRIT pro-
ject HIDE. HIDE aims at the creation of an integrated en-
vironment where UML-based design toolsets are
augmented with modelling and analysis tools. Within this
paper, we present one of the activities performed in HIDE,
namely an automatic transformation from UML diagrams
to Timed Petri Net (TPN) models for model based
dependability evaluation. The TPN models output of the
transformation can be solved with already available
automated tools. To keep the size (state space) of the
model at acceptable level and to deal with designs at
different levels of refinement, the transformation
concentrates on structural UML views, available in the
early phases of the design, and tries to capture only the
piece of information relevant for dependability. The modu-
lar construction of the model favours its extension: the
rough, structural model can be refined as the design gets
refined, and more detailed, relevant information becomes
available. Failure and repair characteristics are assigned by
the designer using some extensions of UML.

This paper is organised as follows. Section 2 motivates
the need for model-based dependability evaluation, gives
the rationale of the transformation and of the opportunity
to divide it in two main steps. Section 3, assuming the
reader is familiar with UML [11], introduces the limita-
tions to be imposed and the supplementary information re-
quired to allow translating the specification into a depend-
ability model. Then, Section 4 introduces the syntax of an
intermediate representation and the derivation of the
Intermediate model. Section 5 deals with the second step:
it defines an abstract TPN syntax and the way the
Intermediate model is transformed in a TPN. Finally our
concluding remarks and indication of current work follow.

2. Rationale of the transformation

Amongst the approaches commonly adopted to evaluate
dependability attributes, analytical modelling has proven to



be very useful and versatile. Especially during design,
models show their usefulness and potentialities, allowing
to compare different architectural and design solutions and
to run sensitivity analyses identifying both dependability
bottlenecks and critical parameters to which the system is
highly sensitive.

Various methods and tools for dependability modelling
and analysis have been developed. Among these, Petri nets
have been widely accepted in the dependability community
because of their powerful representative capabilities, and
the relatively cheap solution techniques. Moreover, many
automated tools based on Petri Nets are available (e.g.
UltraSAN [12], PANDA [3], SPNP [7], GreatSPN [5],
SURF2[8]).

Dependability modelling and analysis of complex sys-
tems consisting of a large number of components including
interactions of redundant hardware and software compo-
nents as well, pose formidable problems, which arise inde-
pendently from the design methodology applied, and are
thus present in systems designed using UML toolkits. The
most important issue to deal with is complexity. The
existing tools are not able to deal with the state explosion
problems, which plague big size models.

The models for small systems can be obtained by apply-
ing a transformation at the fine granularity (e.g. of the
Statechart level) of a UML description, which allows to
maintain in the model itself other system characteristics
like timing aspects and a detailed behavioural description.
However, as the systems described grow in size and com-
plexity, this approach is no more viable. To master com-
plexity, a modular modelling methodology is needed so
that only the relevant aspects are detailed, still enabling
numerical results to be computable.

Our approach aims at building first a quite abstract
model, which concentrates on the structure of the system
and takes information from the structural UML diagrams.
This allows for a less detailed but system-wide representa-
tion of the dependability characteristics of the analysed
systems offering a significant advantage in terms of con-
trolling the size of the models. Furthermore, it represents a
means to analyse dependability attributes of a system
while it is still being designed. This way preliminary eval-
uations of the system dependability during the early phases
of the design can be provided. Last, it allows to deal with
various levels of details, ranging from very preliminary ab-
stract UML descriptions, up to the refined specifications of
the last design phases. The UML higher level models, that
is the structural diagrams, are available before the detailed
low level ones, and the analysis on models derived from
the structural view provides indications about the critical
parts of the system that require a more detailed representa-
tion. By using well defined interfaces, such models can be
augmented by inserting more detailed information coming

from refined UML models of the identified critical parts of
the system and provided by other HIDE transformations
dealing with UML behavioural and communication dia-
grams (e.g. the Statechart to Petri net transformation).

This transformation is defined in more steps, where the
first has the fundamental task of extracting the relevant de-
pendability information from the mass of information
available in the UML description. In this step, an
Intermediate model is built, in which we can fix the set of
basic and derived failure events, the fault activation, prop-
agation and the repair processes. In a sense, the depend-
ability model is built in this step. The next step allows to
define a TPN general enough to postpone the choice of the
automatic tool to be used for the analysis to a later stage. A
small final step can then be easily performed to translate
the model to the specific Petri Net tools selected for per-
forming the analysis.

This multi-stage approach looks attractive for several
reasons: i) some peculiarities of UML (package hierarchy,
composite objects and nodes, different types of dependen-
cies, etc.) can be resolved resulting in a simple and flat
model, ii) the second step of the transformation can be de-
fined more easily, based on the limited and well-defined
set of elements and relations of the Intermediate model.

3. UML model elements in the transformation

The transformation derives a TPN from a UML specifi-
cation using mainly structural diagrams, i.e. use case,
class, object and deployment diagrams. Moreover, state-
chart diagrams are taken into account to deal with the
management of redundant resources. The other dynamic
diagrams are analysed (when available) to identify further
structural relations among components.

Since the information on dependability aspects is typi-
cally not included into a system design, we prescribe a set
of extensions of the UML standard language. Essentially
two types of extensions are necessary: one for identifying
redundancy (fault tolerance) structures and the other one
for defining the dependability parameters and desired mea-
sures. UML already provides standard mechanisms to in-
troduce such extensions into the model. Tagged values are
pseudo attributes assigned in the form of a pair
“tag=value”. Stereotypes classify the meaning/usage of el-
ements, usually requiring also qualification by tagged val-
ues.

One fundamental choice has been made regarding the
way redundancy has to be expressed in the UML design.
We opted for a “class based” redundancy, which prescribes
that components of a redundancy structure must be defined
as specific classes. Three basic components are allowed,
stereotyped for straightforward identification as follows:



• <<redundancy manager>>: indicates classes (objects)
being used for redundancy management and providing
the service of the redundancy structure;

• <<variant>> indicates classes of variants;
• <<adjudicator>> indicates comparators, voters, etc.

Dependability related parameters are assigned to ele-
ments of the UML diagrams as tagged values. Different
sets of parameters are associated to different kinds of UML
elements: software and hardware, as well as stateful
(having internal state), and stateless (purely functional) el-
ements are distinguished by stereotyping [4] . E.g. the
tagged values required for an element stereotyped
<<hardware>> and <<stateless>> are as follows:

- tagged value “FO = x.y“ (fault occurrence)
- tagged value “PP = x.y“ (ratio of permanent faults)
- tagged value “RD = x.y“ (repair delay)
The designer can assign a tagged value one (to be used

to instanciate the parameter), two (range for a sensitivity
analysis), or no values (the value should be derived from
the parameters of underlying elements in the hierarchy).

4. From UML to the Intermediate model

The main task of this first part of the transformation is
to project the entities and relations of the UML design into
the Intermediate Model (IM). The definition of the IM and
the transformation are inspired by the approach presented
in  [10], and by the abstraction of a dependability model
which consists of the following general parts:
• Fault activation processes, which model the fault oc-

currence in system elements and result in basic events.
• Propagation processes, which model the consequences

of basic events and result in derived failure events. The
failure of a system is one of the derived events.

• Repair processes, which model how basic or derived
events are removed from the system.

The IM is defined as an hypergraph, where each node
represents an entity described in the set of UML structural
diagrams, and each hyperarc represents a relation between
entities. IM nodes have attached a set of attributes, de-
scribing the fault activation and the repair processes for the
node, and a propagation process for a hyperarc.The
generic node of the IM is described by :

NODE <name> <type> <attributes>.
There are six distinct types of nodes, each with a partic-

ular set of attributes, as described in Table 1. The
fault_occurrence field identifies a random variable, which
represents the time needed for a fault to hit the UML entity
the node represents. For stateful entities (HW or SW), the
occurrence of faults does not immediately lead to the fail-
ure of the entity, but it first generates some erroneous in-
ternal state, which eventually brings the entity to failure

after a latency time. The field error_latency refers to the
process with which errors bring to failure.

Type Attributes
Stateless HW (SLE-HW) fault_occurrence, repair_delay,

permanent/transient
Stateful HW (SFE-HW) fault_occurrence, error_latency,

repair_delay, permanent/transient
Stateless SW (SLE-SW) fault_occurrence
Stateful SW (SFE-SW) fault_occurrence, error_latency,

repair_delay
Fault-tolerance structures
(FTS)

fault-tree

System (SYS) measure_of_interest

Table 1: Description of IM nodes

The repair_delay attribute specifies a random variable
representing the time needed to perform the repair (fault-
treatment and/or error recovery, depending on the type of
the node) of the UML entity the node represents. The per-
manent/transient field specifies the relative percentages of
permanent/transient faults affecting HW components. The
fault-tree [4] field associated to an FTS node describes the
way the failures of the elements composing the structure
propagate, possibly resulting in the failure of the whole
structure. The measure to be evaluated from the final de-
pendability model (either reliability or availability) is as-
sociated to only one out of the SYS nodes of the IM.

IM nodes are linked by hyperarcs, described as follows:
HYPERARC <type > <from_node>

<to_node1, to_node2, ..., to_nodek> <attributes>
where from_node is the originating node, and to_node1,

to_node2,..., to_nodek are the names of the destination
nodes of the hyperarc.

Type Link Attributes
Uses the service
of (U)

one-to-one propagation probability

Is composed of
(C)

one-to-many -

Table 2: Description of IM hyperarcs

There are two distinct types of hyperarcs, described in
Table 2 together with the respective type of link and the at-
tributes. The type U hyperarc represents a unidirectional
client-server relation between node_1 and node_2. Nodes
involved in such relation are coupled in terms of failure
propagation: whenever the server node_2 fails, the client
node_1 may fail with probability given by the field propa-
gation_probability. Also, the U hyperarc prescribes a con-
straint for the repair of a node. The repair of a node can not
be completed until all the used nodes are fully operational
themselves. The type C hyperarc links a FTS (or SYS)
node to the set of SWEs or HWEs it is composed of. The C
relation is used to identify the non-trivial dependencies be-
tween a FTS (or SYS) node and its composing elements.



The IM is practically built by projecting the UML enti-
ties into IM nodes, the structural UML relations into IM
hyperarcs and the tagged values into attributes. Because of
the limited space, we only give a flavour of this projection,
by sketching it for deployment diagrams and for the inter-
esting case of fault-tolerance structures. A formal and
complete definition of the projection is given in [4] in
terms of the metamodel elements of the UML.

4.1. Projection of deployment diagrams

Deployment diagrams (Figure 1) show nodes (HW re-
sources) and the deployment of components (run-time SW
entities) on them. Nodes are projected into HW elements,
objects are projected into SW elements of the IM.
Components are projected into single SW elements or into
a set of SW elements (if the realisation is available).
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Figure 1: Projection of a deployment diagram
into the IM

Deployment and realisation relations (indicating poten-
tial error propagation paths) are projected into U hyper-
arcs. Associations indicate communication and thus poten-
tial bi-directional error propagation paths. Each of them is
projected into a pair of U hyperarcs of the IM.

4.2. Projection of redundancy

A redundancy structure (identified by the redundancy
manager, Figure 2) is projected into an FTS node of the IM
connected, using a C hyperarc, to the elements repre-
senting the redundancy manager, the adjudicators, and the
variants.
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Figure 2: Projection of a simple redundancy
structure (recovery block)

The error propagation is described by a fault tree, which
can be automatically derived as described in [4].

5. From the IM to TPNs

The second step of our transformation builds a TPN de-
pendability model, by generating a set of subnets for each
element of the IM. Due to the limited space, we only give
a flavour of the model generation. A detailed description
can be found in [4]. A TPN model is composed of set of
elements among those listed in Table 3, enclosed between
BEGIN-END delimiters.

Element Description
SUBNET a nested TPN model
PLACE <name> <initial tokens>
TRANSITION <name> <random_variable>

<memory_policy> <guard> <priority>
INPUT_ARC <from_place> <to_transition> <weight>
OUTPUT_ARC <from_transition> <to_place> <weight>

Table 3: Elements of a TPN model

Subnets are a convenient modelling notation to make
the models clearer. They encapsulate portion of the whole
net, thus allowing for a modular and hierarchical definition
of the model. The possibility of having nested subnets al-
lows the combination of models at the different levels of
detail. Places, transitions and subnets all have a name,
which is local to the subnet where they are defined in.
Transitions are described by a random_variable and a
memory_policy field, which specify the distribution of the
delay necessary to perform the associate activities, and a
rule for the sampling of the successive random delays
from the distribution, respectively. A transition has a
guard, that is a Boolean function of the net marking, and a
priority used to solve the conflict. The weights on input
and output arcs may be dependent from the marking of the
net.

Notice that the class of TPNs so defined is quite gen-
eral. It encompasses the class of Generalised Stochastic
Petri Nets  (GSPN) [1] Deterministic and Stochastic Petri
Nets (DSPN) [2] and Markov Regenerative Stochastic
Petri Nets (MRSPN) [6]. If the TPN model only contains
instantaneous and exponential transitions, then it is a
GSPN that can be easily translated into the specific
formalism for any of the automated tools able to solve it. If
deterministic transitions are included as well, then the
model is a DSPN, which under certain conditions can be
analytically solved with specific tools like UltraSAN,
TimeNET. If other kinds of distributions of the transition
firing times are included, then simulation can be used to
solve the TPN model.

We take advantage of the modularity of the TPN models
defined above, to build the whole model as a collection of



subnets, linked by input and output arcs over well-
specified interface places. For each node of the hy-
pergraph, one or two subnets (basic subnets hereafter) are
generated, depending from node type. The basic subnets
represent the internal state of each element appearing in
the IM, and model the failure and repair processes.

The basic subnets include a set of places and transitions
that are interfaces towards other subnets of the model.
Failure subnets contain places called H and F to model the
healthy and failed state of the element. Failure subnets of
stateful elements also include a place E, to represent the
erroneous (not yet faulty) state of the component. For a
stateless node, transition fault models the occurrence of a
fault and the consequent failure of the node. For a stateful
node, the occurrence of a fault generates first a corrupted
internal state (error), modelled with the introduction of a
token in E. After a latency period, modelled by transition
latency, this error brings to the failure.
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Figure 3: Basic repair subnets for HW nodes

The repair subnet of a node is activated by the failures
occurred in the failure subnet of the same node. For in-
stance, Figure 3 shows the pair of failure-repair subnets for
stateless and stateful HW nodes. The two transitions im-
plicit and explicit defined inside the repair subnets repre-
sent the two different kinds of repair which are needed as a
consequence of a transient and permanent hardware fault,
respectively. In case the node is stateless, the final effect
of the repair is the insertion of a token in place H. In case
it is stateful, the repair also removes a token from place E,
modelling the error recovery activity.

For each FTS and SYS node, a basic failure subnet con-
taining two interface places, namely H and F, is generated
in the TPN model. Indeed, FTS and SYS nodes represent
composite elements, and their internal evolution is mod-
elled through the subnets of their composing elements. The
markings of places H and F for the SYS node at the top
level of the IM define a partition between proper and im-
proper service: whenever a token reaches place F, the
UML element object of the dependability evaluation is
considered failed.

Notice that all the parameters needed to define the sub-
nets are found in the IM in the obvious fields. If a parame-
ter is not found in the IM, then a more refined submodel is
to be included in the final TPN. The nested subnet must

exhibit a proper structure for the inclusion to be possible,
that is it must show explicit interface elements.

Up to now, the basic subnets of a node are completely
separate from the subnets of other nodes. By examining
the hyperarcs of the IM, the transformation generates a set
of propagation subnets, which link the basic sub-nets. For
instance, suppose node A is linked by a U hyperarc to node
B in the IM. In this case, we want to model the fact that a
failure occurred to the server B may propagate to the client
A, corrupting its internal state. The propagation subnet B-
>A shown in Figure 4 models this phenomenon.

Subnet

B_fail

F

E

H

F

H

E p

1-p

Subnet B->A

prop

no_prop
New

Used

restart

Choice

t1

Subnet
A_fail m(B.H)=1

Figure 4: Error of A from the failure of B

The propagation subnet becomes enabled only after el-
ement B has failed. At that time, a token is put into place
B.F, and the failure propagation subnet is activated. The
subnet moves with probability p the token which might be
in place A.H to place A.E. This models the introduction of
an error in element A. A single token circulates among the
two places New and Used, to allow the propagation subnet
to be activated only once for each failure of B.

Consider now a type C hyperarc, linking a FTS node P
with its composing elements. The fault-tree associated
with the arc expresses the logic with which the failures of
the composing elements propagate towards the failure of P.
Also, the dual of the fault-tree (obtained by exchanging
each AND gate with an OR gate and vice versa) represents
the way the composed element P gets repaired when the
composing elements are recovered. Thus, the fault-tree is
translated into a failure propagation subnet, and its dual
counterpart is translated into a repair propagation subnet.
These two propagation subnets are linked to their duals as
well as to the basic failure subnets of all the elements con-
nected by the C hyperarc. Notice that the SYS nodes do
not have associated fault-trees, therefore we implicitly
associate to them a simple fault-tree representing the OR
relation of the failures of all the composing elements.

6. Conclusions

In this paper we described a transformation from struc-
tural UML specification to TPN models for the quantita-
tive evaluation of dependability attributes.

Our transformation is an attempt to define the guidelines
for the automated generation of models with tractable di-
mensions, where only those features relevant to depend-



ability are included, and all other information is left aside.
We utilised mainly the structural views of UML specifica-
tions, to build at first quite abstract models, which can be
subsequently refined and enriched by substituting the
coarse representation of some elements with a more de-
tailed and precise one, obtained, maybe later in the design
process, by some other transformation or analysis tech-
nique.

At present, the transformation is being implemented and
integrated with the other transformations on a prototype
version of the HIDE environment, using Panda [3] for
model solution. Experimental evaluations are being con-
ducted on some case study, to assess the efficiency in
terms of the computation time needed for the model solu-
tion. From a preliminary estimate we can claim that the
size of the models automatically generated is proportional
to that of the hand-made ones, and proportional to the size
of the UML specification representing the input of the
transformation as well.

The results of this experimental phase are expected to
provide the indications for possible refinements of the
transformation, pointing out the parts which need a more
accurate treatment. The back-annotation of the results into
the UML specification is a matter of our future work, and
represents a relevant step towards the complete automation
of the transformation. Another point that deserves a deeper
investigation is the optimisation of the transformation pro-
cedure, particularly the stage of the TPN model solution.
Many tools, e.g. [5, 12] could be conveniently employed to
efficiently solve TPN models, by exploiting specific repeti-
tive structures that often arise in the models.
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