
A Combination of Petri-Nets and

Linear Programming in

Design for Dependability

A. Pataricza

P. Urb�an

5/95, 12/97

Contents

1 Motivation 4

2 Basic models of fault diagnostics 7

2.1 Mathematical formulation . 7

3 Petri net based diagnostics 11

3.1 Background mathematics . 11

3.1.1 De�nition of the Petri net . 11

3.1.2 Quantitative characterization of �ring sequences 12

3.1.3 Estimation of T-invariants . 13

3.2 Modeling of predicates . 14

3.3 Diagnostic problem formulation and solution 16

3.3.1 The Portinale method . 17

3.3.2 Evaluation of the method . 18

4 The re�ned mathematical model 19

4.1 Basic requirements . 19

4.1.1 Stationarity . 19

4.1.2 Fault model . 19

4.1.3 Constraint handling . 20

4.2 Modeling of dichotomy . 21

4.2.1 Binary choice . 21

4.2.2 Multiple choices . 23

4.2.3 Embedded transitions . 24

4.2.4 Multiple simultaneous consequences 24

4.2.5 Uncertain fault manifestation . 26

4.2.6 Unknown and don't care values 26

5 Automatic transformation of data
ow networks 28

5.1 Data
ow networks . 28

5.2 Transformation to a Petri net . 28

5.3 Transformation of a higher level data
ow network 31

5.4 Implementation performance . 32

1

6 Linear algebraic reformulation 34

6.1 Problem structure . 34

6.2 The basic idea . 35

6.2.1 Estimation of the basis . 35

6.2.2 Reduction of the variable set . 36

6.2.3 Formulation of the occurance vector 39

6.2.4 The solution algorithm for the extended model 40

6.3 Implementation . 41

6.3.1 Model sizes . 41

6.3.2 E�ciency . 42

7 Re�ned model for diagnostics 44

7.1 Model of the system behavior . 44

7.2 Diagnostic problems . 46

7.2.1 Known input and fault state, unknown syndrome 46

7.2.2 Known input and syndrome, unknown fault state 47

7.2.3 Known fault state and syndrome, unknown input 48

7.3 Further possibilities for model re�nement 49

8 Optimal solutions of diagnostic problems 50

8.1 Linear integer programming . 50

8.1.1 Solution . 51

8.1.2 Modeling . 52

8.1.3 Preprocessing . 52

8.2 Formulation of diagnostic problems . 53

8.3 Maximum likelihood diagnosis . 53

8.3.1 Minimal number of faulty elements 53

8.3.2 Probabilistic diagnosis . 54

8.3.3 Practice oriented objective function 55

8.4 Validation of fault tolerance . 55

8.5 Model compactness . 56

8.5.1 The measurement method . 56

8.5.2 Results . 57

8.6 Performance measurements . 58

2

9 The software system 61

9.1 Design goals and choices . 61

9.2 File formats . 61

9.2.1 Overview . 61

9.2.2 Models of data
ow components 62

9.2.3 Fault models of data
ow components 62

9.2.4 Descriptions of Petri nets . 63

9.2.5 Optimisation problems . 63

9.3 Programs . 63

9.3.1 df2petri . 63

9.3.2 genfmf . 64

9.3.3 multipetri . 64

9.3.4 petri2opbdp . 64

9.3.5 CPLEX . 64

9.3.6 OPBDP . 64

9.3.7 opbdp2cplex . 64

9.3.8 Tools for the programs . 65

10 Use of high-level descriptions 66

10.1 Coloured Petri nets . 66

11 Conclusion and future work 68

3

1 Motivation

In this report a new approach to system diagnosis is investigated which is mainly based

on operation research methods and the theory of Petri nets. It will be incorporated into a

framework aiming the creation of an integrated hardware-software codesign environment.

The plans for the framework, HIDE, were proposed as an ESPRIT Open LTR project and

are currently under evaluation. HIDE will expose practitioning designers only to a stan-

dardised system modelling paradigm, UML, while it will allow them to use more formal

methods capable of analysing and validating the quality of services and the dependability

aspects of the design. These formal methods make heavy use of di�erent, highly abstract

mathematical formalisms which prevent non-expert designers from applying them and

necessitate a workload intensive manual re-modelling of the system. HIDE will deal with

this problem by automatic transformation of the UML model into the formal models.

The one origin of the results presented here is the �eld of operation research, widely

used since WW II in modeling large scale systems, before all in di�erent economics

problems. This �eld of the science o�ers well-proven methods for handling extremely large

systems of constraints and optimization algorithms for a large �eld of objective functions.

One of the most well-developed topics in this �eld of science is the so-called linear integer

programming dealing with the search of optimal solutions of linear inequality systems

over positive integers with a linear objective function.

Models based on this formalism might be the only computationally feasible alternative in

cases where a dependability aspect is investigated which requires the handling of the entire

fault set. They deliver relatively short answers to questions, thus their main use will be

to verify certain properties and tune certain parameters of the design; such are checking

the existence of a single point of failure, delivering maximum likelihood diagnostics and

compute the coverage of a test set, for instance. These questions would necessitate an

exhaustive search in the case of fault oriented methods.

The other apparatus this approach relies on is the theory of Petri nets, which is one of

the rising stars in modeling of computer systems. They are primarily used to reduce the

problem size during the transformation to an optimisation problem. A great advantage

of this formalism is that it o�ers a broad spectrum of modeling possibilities even for par-

allel and non-deterministic system | and in the �eld of diagnosis, diagnostic uncertainty

plays a key role, partially to express random fault e�ects. These properties have made it

a frequently used technique in order to keep the model complexity relatively low. Some

papers were published in the most recent years on the modeling simple diagnostic prob-

lems with the help of Petri nets and solving them with the help of integer linear algebra.

The report generalizes the known methodology in order to cover realistic problems as

well.

The paper focuses on the problematic of formulating diagnostics problems with the help

of this apparatus, as having relatively small and well structured models is a prerequisite

4

for solving the problems e�ciently. It was not the intention of the paper, however, to

be fully self contained by summarising all the standard solution methods within these

�elds, as they are used only as a toolbox for diagnostics, and are published already in

numerous excellent textbooks. Similarly, pure technical proofs of mathematical theorems

and lemmata are omitted too for an easier readability. This is in accordance with one of

the main guidelines of HIDE: extensive re-use of existing | commercially available and

academic | tools, in particular those used for the evaluation of mathematical models.

A special emphasis was given to the automatic construction of the formal models from the

ones used in the engineering practice, like data-
ow models which has gained a rapidly

increasing importance in hardware-software co-design. Details and an experimental im-

plementation of such a transformation is presented.

The implementations of the algorithms were extended by conversion tools and tools of

other kind. Together they form a system of loosely interconnected software components.

This software system interfaces to optimisation software and | in future | the rest of

the framework.

The report is structured in the following way:

� The �rst section summarises some basic de�nitions used in the �eld of diagnostics.

� The next section summarises the basics of the mathematics of Petri nets used in

the further parts of the report, along with an overview on the previous results of

their use in the �eld of diagnostics.

� Subsequently, the re�ned mathematical model is presented, allowing for a broader

spectrum of diagnostics rules to be used.

� An automatic transformation of data
ow models to the re�ned Petri net models is

discussed. Modeling aspects are dealt with and an experimental implementation is

presented.

� In the following section the new solution algorithm of the much more complex model

is described in details, along with the implementation and its analysis.

� A re�ned model is introduced in the subsequent section and it is shown that the

overwhelming majority of typical problems in the diagnostics can be formulated by

means of this model.

� A summary on the most important applications of optimization in the diagnostics

follows the previous discussion. Examples are given and the viabiliy of the approach

is investingated by performance measurements of an implementation.

� The software system is presented in the next section. Only the main design decisions

and components are described.

5

� An investigation of the possibility in using other modeling formalisms and thoughts

on their automatic transformations close the report.

6

2 Basic models of fault diagnostics

The process of diagnostics is in the general sense a backward inference process, deducing

from the observed failures their potential sources, the faults. At �rst a general mathe-

matical model is presented for the information
ow of such system, while simultaneously

the most important de�nitions and categorization used in the subsequent parts of the

report are introduced.

2.1 Mathematical formulation

The general form of fault diagnostics can be de�ned in the following way:

Let us assume that the fault model of the unit under test (UUT) comprises all single

and multiple faults from the elementary fault set F = ff1; : : : ; ffg. The actual state

of the UUT can be characterized by the fault state vector ' = ['1; : : : ; 'f], composed

of indicator bits having a value of 1, if the corresponding elementary fault is present.

Note that the cardinality of the fault state space depends exponentially on the number

of elementary faults, as without further restrictions on the fault model the occurrence of

any binary f -tuple from the set IBf is allowed as fault state vector.

The basis of the diagnostics is provided by the syndrome composed of the elementary test

outcomes, like test results, observed failure modes etc. This observation is described in

the form of the syndrome vector sf = [s1; s2; : : : ; so]. A 1 denotes a failure indication, a 0

its absence. In the case of a partial observation (some test results are still not available)

the value u =unknown is allowed too to appear in sf .

It can be assumed that no false alarms will be generated in the overwhelming majority of

technical diagnosis systems, especially in the �eld of digital diagnostics, i.e. a fault-free

system delivers the deterministically determined proper results and no failures will occur.

This way the fault-free state '
0
= 0 will be always mapped to the fault-free syndrome

s0 = 0.

s|2

'
0

'
1

'
{

s|1

s0

Figure 1: The model of fault to failure mapping

7

However, the correlation between the fault states and syndrome is expressed typically

only by relations in a faulty system, instead of the stronger category of functions. There

is no deterministic mapping in many practical cases between the fault and the relevant

failure due to the following reasons:

� Inactive faults can remain without any manifestation as error during the entire

testing or observation phase, thus producing a syndrome identical with the fault-free

case.

� Latent errors produce the syndrome corresponding to the fault-free case, as well.

For instance, the incomplete coverage of the tests delivering the syndrome elements

may result in a conditional error detection. If the syndrome element s` is con-

ditionally detected only for the fault state vector ' = f'1; : : : ; 'fg, then both

[s1; : : : ; s`�1; 0; s`+1; : : : ; so] and [s1; : : : ; s`�1; 1; s`+1; : : : ; so] can appear as its syn-

drome image. Note that in the general case this uncertainty in the detection relates

to each elementary test outcome individually, i.e. to each syndrome element inde-

pendently of the others. Thus, if a given fault is conditionally detected by multiple

tests, then anyone of them can either detect it or even not, independently of the

outcomes of the others.

� Transient faults manifesting in the form of temporal errors are another important

factor resulting in a conditional error detection. This can even appear and vanish

during the evaluation of the failure indicators transforming the diagnostic task to

a crucial time dependent one.

The di�erent cases of the fault state to syndrome mapping will be referred in the subse-

quent description as:

� Deterministic fault manifestation denotes the case, when this mapping is a function,

i.e. to each fault state only a single syndrome can appear as image.

� Uncertain fault manifestation can occur, if the mapping is a relation, but not a

function.

The problem of diagnostics can be formulated in the following form:

The set of fault states consistent with the eventually only partial syndrome is to be

estimated1. There are basically two kinds of basic steps applied during the evaluation of

the syndrome [7]:

� Positive inference estimates the fault state subspace T + potentially activating the

particular fault indication. The candidate diagnostic hypotheses must lie in the

intersection of these inferred subspaces of the di�erent syndromes, if available.

1Some syndrome elements can be of a still unknown value.

8

� Negative inference drawn from an inactive fault indication in the form of a rejec-

tion of all diagnostic hypotheses T � from the further investigations, which would

deterministically activate at least one of the actually inactive failures. Note that

a negative inference can be drawn from a particular syndrome, only if the corre-

sponding fault states would be unconditionally detected by it.

We speak on a symmetrical test in the speci�c case, if both sets included in the set of

candidate diagnostic hypotheses by positive inference and excluded from it by negative

inference coincide. If these two sets di�er, then the test is said to be asymmetrical.

Example: If the fault-to error mapping is a single-output function, then T + corresponds

to the sub-domain F1 of the fault space mapped into the syndrome s1 = 1. All

remaining fault states in F n F1 = F0 are mapped into s0 = 0, under a closed

world assumption. This way, if a s0 = 0 was observed, then the entire subspace F0

can be excluded from the set of fault hypotheses, restricting the set of candidate

hypotheses to the complementary fault subspace T � = F n F0 = F1 identical with

T +.

However, when the fault-to error mapping is only a relation, then the fault space is

partitioned into three disjunct subspaces: F1 and F0 for those states, which result

surely in a 1 and 0 syndrome value, respectively, and Fu, which can produce a

syndrome 0 or 1. Thus, when the observation was s1, then the set of its potential

sources is T + = F1 [Fu. If 0 was observed, then the set of incompatible fault

states, which can be excluded as hypothesis consists only of T � = F1, as any

non-manifested fault in Fu can potentially produce this 0 value as well.

Example: The property of symmetry depends basically on the level of abstraction and

diagnostic granularity used by the modeler. Let us assume that our UUT is a

memory protected by an error detecting code.

In the roughest model, the fault space consists only the states "GOOD" and

"FAULTY".

An error detecting code of a low error detection probability, like a simple parity

code has to be modeled as a relation, if multiple faults can occur, as an odd number

of faults in the same word are detected by it, but an even number of errors remains

undetected. This way parity checking is an asymmetrical test. On the other hand,

a good EDC of a high error detection probability can be treated as a symmetric

test in an idealized view by assuming that all single and multiple errors included

into the fault model will be detected it.

However, when all fault combinations are modeled by a separate fault state, then

the mapping becomes to a function, and the test is be symmetrical in both cases of

EDC application.

9

F

F0

b/ Uncertain fault manifestation

a/ Deterministic fault manifestation

F0

F

S0

S1

S0

S1

F1 = T +

F1

Fu

Figure 2: Symmetrical and asymmetrical tests

Example: The Preparata-Metze-Chien model of system level testing uses an asymmet-

rical test model, as if the fault state vector is described in the form of

' = ['tester; 'UUT] (1)

� from the test outcome of a value 0 we can exclude the combination

T � = f[0; 1]g (2)

from the set of candidate diagnostic hypotheses but

� from a test outcome of 1 we have to keep the hypotheses

T + = f[0; 1] ; [1; 0] ; [1; 1]g (3)

as candidates.

10

3 Petri net based diagnostics

Petri nets are favorite candidates for problem modeling in a wide variety of di�erent

sub�elds in computer science, thanks to their great expressive power in describing con-

currency and non-determinism.

In this chapter a short overview on the application of Petri net based formulation and

solution of diagnostic problems is given, without any intention to serve as a comprehensive

overview on the theory of Petri nets, published already in numerous publications, like

[3, 2].

3.1 Background mathematics

3.1.1 De�nition of the Petri net

A Petri net structure is a directed bipartite graph with vertex subsets P and T named

places and transitions, respectively. Pictorially, places are represented by circles and

transitions by bars.

Places and transitions are joined by directed arcs, forming the edge set E � (P � T) [

(T � P). The predecessors and successors of a vertex are de�ned as follows:

� the set of input places of the transition t 2 T : �t = fpj(p; t) 2 Eg

� the set of output places of the transition t 2 T : t� = fpj(p; t) 2 Eg

� the set of input transitions of the place p 2 P: �p = ftj(t; p) 2 Eg

� the set of output transitions of the place p 2 P: p� = ftj(p; t) 2 Eg

The de�nition given above can be generalized in a straightforward manner for vertex

subsets S � P [T ., in the form of �S =
S
x2S

�x and S� =
S
x2S

x�, respectively.

A source (sink) transition is a transition without input (output) places, i.e. �t = ;, and

t� = ;, respectively.

Places are marked with nonnegative integers, referred as token count. The actual state of

a Petri net is characterized by the distribution of the tokens at the places. This marking

of the Petri net is described in the form of the marking vector M = [m0; : : : ; mr]
T , where

r = jPj.

A Petri net is de�ned by its structure and its initial state M0.

The edges of a Petri net structure are labeled by nonnegative integers. Place to transition

arcs (p; t) 2 E are labeled by input weights w�(p; t) 2 IN , while output weights w+(t; p) 2

IN are associated to arcs (t; p) 2 E joining a transition with a place. A Petri net is

11

said to be ordinary if for every edge the weight is 1. By convention, if (p; t) 62 E , then

w�(p; t) = 0 and if (t; p) 62 E , then w+(t; p) = 0.

A transition t 2 T is enabled, if each of its input places p 2 �t contains at least w�(p; t)

tokens. An enabled transition can �re, but must not do it anyway. If the transition t 2 T

�res, then the �ring removes w�(p; t) tokens from all of its input places p 2 �t and adds

w+(t; p) tokens to all of its output places p 2 t� (�ring rule), thus the token count of a

place p 2 �t [t� adjacent to t changes by w+(t; p)� w�(t; p).

The incidence matrix of a Petri net is an jPj � jT j matrix W = kw+(t; p)� w�(p; t)k.

A �ring sequence � = hM i0ti1M i1 : : : tinM ini or in a shorter notation � = hti1 ; : : : tini is

executable, if each of its �rings ful�lls the precondition of the actual �ring rule. In this

caseM in is said to be reachable fromM i0 by the sequence �, abbreviated asM i0 [� > M in.

3.1.2 Quantitative characterization of �ring sequences

The �ring count vector � of dimension q = jT j consists of the number of occurrences of

the individual transitions in the �ring sequence � ordered according to some �xed order

of the transitions. The individual elements of � , i.e. the number of times that transition

ti �res in � will be referred as the �ring count of ti in �, and denoted by �i.

The support sup(�) of a �ring sequence is the subset of transitions activated by it, i.e.

the subset of transitions, with strictly positive �ring count in �. The occurance vector

X(�) of � is the characteristic vector of its support, i.e. it contains a value of 1 in exactly

those positions, where the �ring count vector has a positive value, while in the remaining

positions the support vector element is 0. By introducing the sign function restricted for

non-negative integers z 2 IN0 in the form of

sig (z) =

(
1 : z > 0

0 : z = 0
(4)

this de�nition becomes

X(�) =
h
sig (�1) : : : sig

�
�q

�iT
: (5)

The domain of the sign function will be extended for a notational simplicity to vectors

over the non-negative integers z = [z1; : : : ; zn] 2 INn
0 in the form of:

sig (z) = [sig (z1) ; : : : ; sig (zn)] (6)

This way, Equ. (5) becomes to

X(�) = sig (�) : (7)

Theorem 1 (State equation) If M i0 [� > M in, then the so-called state equation of the

Petri net de�nes a necessary condition for the corresponding �ring count vector

M in �M i0 =W T�; (8)

where the subscript T denotes transposition.

12

In the very special case, if

W T � = 0 (9)

the execution of the corresponding �ring sequence -if possible- does not alter the marking

of the Petri net. Such a nonempty �ring sequence � is called transition invariant or

shortly T-invariant.

It must be noted that the conditions formulated in Equ. (8) and as special case in Equ.

(9) are only of a su�cient type, accordingly their ful�llment does not guarantee the

�reability.

0

p1

0

p2

t1t2

Figure 3: Sample net

For instance, the �ring count vector � = [1; 1]T is a T-invariant of the net depicted in Fig.

(3), but it is not �reable from the initial markingM 0 = [0; 0]T . Moreover, the �ring count

vector contains less information, as the �ring sequence itself. For instance, �0 = ht1; t2i

is �reable from M = [1; 0]T , but �1 = ht2; t1i not, despite the fact that their joint �ring

count vector is � = [1; 1]T .

A T-invariant � is of a minimal support, if there exist no T-invariant � 1 having a support

as a true subset of it, or of and identical subset, but less of �ring count(s), i.e.

6 9� 1 : X(�) 6= 0 ^X(� 1) � X(�) (10)

.

3.1.3 Estimation of T-invariants

Obviously, T-invariants form a vector space, as any linear combination of T-invariants is

itself a T-invariant, if its elements lie all in IN0. The basis -or in other terminology the

generators of the subspace- depend on the set of the allowed coe�cients, when forming

the linear combination. The most important characteristics of the di�erent possibilities

are summarized in Table 1.

13

Level Domain Coe�cient Linear Uniqueness Solution algorithm

domain independence

1 x 2 ZZ QQ Yes No Gauss elimination

2 x 2 ZZ ZZ Yes No Reduction to

Hermite normal form

3 x 2 IN0 QQ0 Not assured Yes Martinez-Silva

Memmi

Alawain-Toudic

Pascoletti-Jaxy

4 x 2 IN0 IN 0 Not assured Yes Pascoletti

5 x 2 IB IB Not assured Yes Jaxy

Table 1: Invariants and bases

3.2 Modeling of predicates

T-invariants analysis provides an adequate means for the solution of (negation-free) clause

systems, composed of implications of the form A1; A2; : : : ; A` ! B, where ` � 0. Here

A1; A2; : : : ; A` and B are ponate logic variables and implication means that if every pred-

icate variable A{ (1 � { � `) is TRUE, then the consequence B holds.

In the special case of ` = 0, i.e. the implication is of the form ! B, then B is a fact, or

primary input logic variable. A goal statement has the form of A1; A2; : : : ; A` ! .

An ordinary Petri net model of such logic programs can be constructed in the following

way (Fig. (4)):

� Logic variables of the system of clauses are represented by places. A token at a

place corresponds to a TRUE logic value of the corresponding logic variable.

� A source transition is associated to each fact connected to a single place storing the

value of the variable.

� An implication is mapped to a transition with input arcs from the premise variables

and an output arc to the consequence variable 2.

� Goal statements are modeled by a sink transition.

An input combination implying the target statement corresponds to the

� �ring of the relevant input transitions the
ow;

2Note that as the precondition of the �ring is the presence of a token at each input place denoting

a TRUE value, the transition implements simply a logic AND function. A logic OR relation can be

represented by multiple input arcs to the place of the result from the transitions realizing the operands.

14

A1

B

A`

c/ Goal statement

B

a/ Clause

: : :

b/ Fact

A2A1A2 A`

: : :

Figure 4: Modeling of clauses by Petri net elements

� the
ow of these tokens across the Petri net;

� a �nal �ring of the goal transition leaving the Petri net empty.

This way, a solution of the clause system executes a �ring sequence corresponding to a

T-invariant. Moreover, the estimation of the T-invariants provides a su�cient condition

in this special case, as by a theorem of Murata [4]:

Theorem 2 (Murata) IF 8t 2 T : jt � j � 1 in a Petri net, then any �ring sequence �

corresponding to a T-invariant is �reable from the empty marking M 0 = [0 : : : 0]T .

i.e. the ful�llment of the state equation is a su�cient condition of �reability for this

restricted special class of Petri net structures.

The preconditions of this theorem are satis�ed in the Petri net model of a clause system, as

facts and implications are mapped to transitions with one, goal statements to transitions

with no output edges.

Theorem 3 (Murata) A goal statement in a logic program can be deduced, i� it is �red

by a sequence corresponding to a T-invariant.

15

Accordingly, after estimating a basis for all T-invariants, the clause system can be solved

in the following way:

Algorithm 1 (Murata) The algorithm solves the clause system by estimating the sup-

ports of the minimal T-invariants and re-mapping these to the values of the logic variables,

by applying the following steps:

1. The set of all T-invariants of minimal support are estimated, for example by the

Martinez-Silva algorithm [6]. Minimality is required for the avoidance of unneces-

sary bindings of don't care primary variables.

2. All T-invariants with supports covering sink transition(s) of the goal statement(s)

�red are selected.

3. All primary input logic variables with source transitions included in the support

of the T-invariant are set TRUE in a solution corresponding to a particular T-

invariant. In a simpler form, the value of the support vector of the T-invariant is

assigned to the logic variable.

This way the clause system can be reduced to the solution of the Diophantine equation

system generating the T-invariants of the Petri net.

Remark: Note that negation-freedom is essential for the application of the algorithm

described above. The (not necessarily minimal) T-invariants form a vector space,

so the sum of two T-invariants is a T-invariant too. If the algorithm is applied for

instance on the simple implication A1�A2!B or in an equivalent form: A1
�A2 +

�A1A2!B, the two T-invariants of minimal support correspond obviously A1
�A2 and

�A1A2, respectively. The logic expression A1
�A2

�A1A2 � 0 corresponding to the sum

of the T-invariants, however, is obviously not a true solution of the clause system.

3.3 Diagnostic problem formulation and solution

When formulating diagnostics problems in the form of a clause system:

� The primary inputs correspond to the -typically unobservable- internal fault states

of the system under test;

� the clauses describe the error propagation mechanism;

� the goal statements denote the observable failure e�ects.

The diagnostic task is in this sense nothing else, then a search for those primary input

combinations, i.e. source transitions that would trigger the sink transitions justifying the

actual pattern of active failures.

16

3.3.1 The Portinale method

Symmetric tests are implicitly assumed in the method published by Portinale [5]. The

algorithm builds the Petri net model of the fault) error) failure syndrome propagation

chains using the algorithm described in Section 3.2.

As this model includes only the e�ects of active faults and errors, negative inferences

(i.e. typically exclusion of some fault hypotheses based on the inactivity of some failure

indications) are handled in an indirect way. The di�culties originate in the facts that

� a "transition is �red in the T-invariant"-like result has di�erent interpretations at

the di�erent parts of the Petri net modeling the logic program;

� multiple goal statements are to be handled simultaneously;

In more details, the interpretation problem is the following one:

� At the sink transitions a simple binary logic is valid, thus a �ring is made absolutely

identical with the active failure indication, its missing with the inactive indication.

� However, at the source transitions a �ring and the associated logic value of 1 means

de�nes only the necessary conditions for the �ring of the goal transitions. A missing

�ring can cover both of the cases that the actual logic variable must be set to 0,

or it can have optionally a value of 1 in a non-minimal T-invariant covering the

actual minimal one (don't care variable). This way a two-valued logic is used for

representing a ternary problem.

Portinale uses a separate phase for solving these problems:

Sink transitions representing failure observations are grouped into two sets: T + denotes

the set of sink transitions corresponding to active failure indications during the actual

diagnosis, while the set T � denotes those belonging to inactive failure signals. T + and

T � correspond to the transitions, which associated support vector element is of a value

of 1 and 0, respectively.

Now, there are three disjunct cases for any T-invariant � estimated by the algorithm

described in Section 3.2 :

� The T-invariant would trigger both active and inactive failure signals, i.e.

[sup(�) \ T + 6= ;] ^ [sup(�) \ T � 6= ;] (11)

leading to a contradiction with the actual syndrome. Such T-invariants do not

deliver a diagnosis and are rejected from the further investigation.

17

� The T-invariant triggers only sink transitions associated with active fault signals, i.e.

sup(�)\T � = ;. This delivers a partial diagnosis consistent with the active failure

indications by setting all primary input logic variables, which source transition

belongs to sup(�) TRUE, as described already above.

� In a similar way if the T-invariant triggers only sink transitions associated with

inactive fault signals, i.e. sup(�) \ T + = ;, a partial diagnosis consistent with the

inactive failure indications is provided by setting all primary input logic variables

with source transition belonging to sup(�) to FALSE.

Any intersection of a pair of partial solutions from the sets of active and inactive partial

diagnoses provides a diagnosis compatible with the syndrome.

3.3.2 Evaluation of the method

The major advantage in the T-invariant based modeling results from the reduction of

diagnostic problems to the solution of a linear Diophantine equation system. The major

insu�ciencies of the approach result from the following basic limitations:

� The method presented is capable only of handling symmetric failure indications and

requires external post-processing for negative inferences.

� There is no way to express don't care and unknown values, thus a failure indication

not known yet can not be handled in an integrated way.

� The main reason of the limited capabilities of the model described above results

from the insu�cient representational power of the state space handling only the

TRUE/FALSE logic values without allowing the use of negate variables.

� A simple introduction of the negate variables, however, would not guarantee a

mutual exclusion of the �rings of the transitions representing the ponate and negate

variables, thus it would result in a potentially inconsistent diagnosis. Similarly,

the introduction of the notation of inhibitor arcs would prohibit the use of the

T-invariant analysis methodology.

18

4 The re�ned mathematical model

In Section (3.3.1) the basic idea of the model introduced by L. Portinale was presented.

In this section the previous models will be re�ned in order to come much more close to the

typical needs in computer system diagnostics. The basic requirements for the modeling

technique will be summarized at �rst. The solution methodology of the model class will

be described in the next section. The diagnostic model will be further re�ned to include

all important factors involved in (pure) logic diagnosis. The last section in this chapter

examines an experimental implementation and its performance.

4.1 Basic requirements

4.1.1 Stationarity

It is assumed that the system is a stationary fault state. The terminology of stationarity

is used here for a clear distinction of the notion of permanent faults. The meaning of

this limitation prohibiting changes in the fault state during diagnostics is the reduction

of the problem complexity. Note that temporal faults can be still modeled by diagnostic

uncertainty, as test manifestation relations can be handled too.

4.1.2 Fault model

The mathematical model should be able to properly handle multiple valued logic, due to

the following reasons:

� Single and multiple faults: The importance of diagnosing simultaneously ap-

pearing independent faults is rapidly decreasing due to the increasing reliability of

electronic components, thus many diagnostic algorithms take the advantage of the

use of a single, or few faults assumption. However, when coping with correlated

faults, like those resulting from a single defect in the form of follow-up defects with-

out a detailed knowledge of the defect propagation chain, the system has to take

the pessimistic approach to allow any combination of faults.

� Handling of arbitrary test manifestation classes: The limitation to han-

dling symmetrical test manifestation models is too restrictive for many practical

applications. The mathematical model should be able to describe arbitrary test

manifestation models, inclusive asymmetrical and conditional ones.

� Handling of uncertain fault manifestation e�ects: Diagnostic uncertainty

plays an important role in the simpli�cation of the fault model, as this o�ers an

appropriate means to avoid the use of over-detailed models.

19

� Unknown value handling: The number of potential failure indicators exceeds

the limit of a reasonable simultaneous observation in numerous practical applica-

tions. Moreover, as testing is always a time-requiring process, diagnostics on-the-
y

o�ers the single possibility for keeping the recovery time in systems su�ciently low,

where testing related time redundancy is costly either in the terms of �nancial-like

costs (e.g. the computing time in massively parallel systems), or the risk of an

uncontrolled, or ill-functioning equipment (safety relevant real-time process control

applications). However, the processing of such partial information necessitates an

e�cient processing of unknown values. A similar requirement arises, when using

adaptive diagnostics in large scale systems.

� Model compactness: Beyond doubt, modern computers allow the processing

of huge models, but the computational complexity of the solution algorithms of

Petri-net based diagnostic models depend by a high exponent on the model size,

as it will be described later on. Thus, a model size reduction by a factor of two

results typically a decrease in the computing time by one-two orders of magnitude.

Obviously, a key factor in assuring the compactness of the entire model is a compact

representation of the domain of the faults. If di�erent fault modes can be associated

with a component of the UUT, or with the entire system, which form a disjunct

event space, then the corresponding representation in the Petri-net should e�ectively

utilize this kind of reduction as well.

� Interfacing to high level descriptions: One of the key problems in the use of

formal methods, like Petri-nets originates in the requirement for a very special de-

scription methodology strange for practitioner engineers. Moreover, manual model

transformations are a major source of human errors in the design of diagnostics.

Thus, a Petri-net based methodology must be able to process other kinds of models

automatically generated by usual design methodologies, like data-
ow models in

hardware-software co-design, for instance.

4.1.3 Constraint handling

When describing a diagnostic problem in the form of a Petri net, two basic classes of

constraints can be distinguished:

� Internal constraints express requirements for the consistency of the model. A

key factor is the description of mutual exclusion and deterministic dependence re-

lations between di�erent states of the search space. For instance, in the case of a

fully deterministic fault manifestation complementary failure modes can not occur,

at least so far as the diagnostic model properly describes the reality. Thus, the

model has to express that only a single one from the disjunct failure events can oc-

cur simultaneously, additionally to the causal fault-failure relations embedded into

20

the unconstrained Petri net model of the fault propagation. This problem will be

examined in details in the subsequent section.

� Problem depending external constraints limit the solution space further on typ-

ically by using a priori information on the distribution of the faults. A typical

representative of such a constraint is the t-limit, widely used in the system level

diagnostics of multiprocessor systems. Such a limitation reduces the search space

implicitly to those fault combinations, which have an occurrence probability above

a prede�ned threshold.

The modeling methods which need a homogeneous mathematical apparatus for solution

will be preferred for both classes of constraints.

4.2 Modeling of dichotomy

When using a clause system consisting of both ponate and negate variables, or more gen-

erally, multiple valued domains, at most a single one from the corresponding transitions

has to �re in a consistent solution.

As �rst step, a model is built neglegting all internal constraints For instance, mutually

excluding variables are used, as if they were independent ones. This model will be referred

further on as the unconstrained model of the problem. The generated solutions, e.g. the

set of all T-invariants of this model form a superset of the consistent solutions, thus a

further restriction expressing mutual exclusion have to be applied on the solution space

as a second phase.

It should be noted before describing the solution of this problem that such a constraint

exceeds the limits of the problem �eld solvable with T-invariant analysis. Remember that

the sum of two invariants, each one covering a complementary value of the same variable,

would be a T-invariant, but an inconsistent solution of the clause system.

The basic idea of the modeling of the constraints is borrowed from the theory of linear

programming. It will be presented at �rst for simple binary choice, and further extended

for an arbitrary number of alternatives.

4.2.1 Binary choice

A single variable of a binary domain and a single source transition for each state is to be

modeled (Fig. (5)) in the simplest case. A fully determined solution is consistent only in

the following disjunct cases:

� xP = 1, xN = 0, i.e. the logic variable is TRUE;

� xP = 0, xN = 1, i.e. the logic variable is FALSE.

21

The goal is now, to express this mutual exclusion constraint in the terms of linear algebra

in order to have a homogeneous mathematical background.

The dichotomy problem can be formulated in the form of a linear inequality system. Let

denote by PP and PN the places corresponding to the di�erent value assignments to

this binary variable. tP and tN are the transitions corresponding to the assignment of

the TRUE and FALSE value to a logic variable respectively. The �ring counts of these

transitions in the T-invariant are �P and �N . It is assumed for simplicity that the Petri

net model is an ordinary one, i.e. all edges have the weight of 1, the number of tokens

M+
P and M+

N supplied to the places PP and PN equal to the �ring count, i.e.

M+
P = �P (12)

M+
N = �N (13)

The variables xP ; xN 2 IB are the corresponding elements of the occurance vector.

Rule basis

W T � �=0

Figure 5: Binary choice

The mutual exclusion constraint prescribing the �ring of a single transition has the form

of

sig
�
M+

P

�
+ sig

�
M+

P

�
= sig (�P) + sig (�N) = 1; (14)

or in the terms of the occurance vector elements

xP + xN = 1: (15)

The major problem in the reformulation to a linear inequality system originates in the

fact that the sign function is non-linear in the general case. Accordingly, it is assumed

that an upper bound is known for the �ring count of each individual transition, i.e. it

is known that 8t` 2 T 2 ftP ; tNg what is the maximal number of times that transition

t` �res in a consistent solution 3. Thus expectedly a priori known upper bounds on �P

and �N are denoted by SP and SN . The inequalities describing the constraints on the

individual variables are the following ones, where ` 2 fP;Ng:

3A justi�cation of this assumption will be presented together with the complete solution algorithm in

Section (6.2).

22

� De�nition of the domains of the occurance vector elements:

x` � 0 (16)

x` � 1 (17)

� De�nition of the lower bound of the �ring counts:

�` � 0 (18)

� De�nition of the occurance vector elements of the �ring counts:

�` � x` (19)

�` � x`S` (20)

Note that Equ. (18) can be omitted, as it is a consequence of Equ. (16) and Equ. (19).

These inequalities are equivalent with the assignment x` = sig (�`), as Equ. (19) forces

x` = 0, if �` = 0 and Equ. (20) x` = 1, if �` > 0, respectively.

At the �rst glance, the use of inequalities seems to result in the use of much more so-

phisticated solution methods than those for equation systems, however, remember that

the implicit assumption on the positivity of the components of the T-invariant already

involved the use of such methods.

4.2.2 Multiple choices

A similar system of inequalities can be easily constructed not only for the case of a simple

binary choice, but for any number of disjunct alternatives as well. If the domain elements

are represented by P`, where ` = 1; : : : ; k, the mutual exclusion constraint becomes to

kX
`=1

sig
�
M+

`

�
= (21)

kX
`=1

x` = 1; (22)

by substituting the left side of Equ. (15) with the summation over all occurance vector

elements fx`j` = 1; : : : ; kg.

23

4.2.3 Embedded transitions

Naturally, places embedded in a Petri net can have multiple transitions supplying tokens

into them. Mutual exclusion has to express in such cases that if any input transition of

a place was �red, then all input transitions of all other places denoting alternative value

assignments to the same variable must remain inactive during the entire �ring sequence

�. In a much more formal fashion, let denote the input places corresponding to the

individual elements of the domain of a variable by P1; : : : Pk. (Single indices are used

here for a better readability only). The number of tokens M+

` supplied to P` by � is:

M+
` = (23)X

t2�P`

w+(t; P`) � �t = (24)

X
t2T

w+(t; P`) � �t = (25)

W+(P`)
T � �; (26)

where W+(P`) denotes the column of W+ corresponding to P`.

Remember that w+(t; P`) = 0, if t 62 �P`.

The required mutual exclusion relation can be written as:

8{; | 2 f1; : : : ; kg; ({ 6= |) :
h
W+(P{)

T � � t > 0
i
!
h
W+(P|)

T � � t = 0
i
: (27)

The binary variable x` = sig
�
W+(P`)

T � �
�
will denote now, whether � was �ring into

place P` or not. The constraints expressing mutual exclusion have the form of:

kX
`=1

sig
�
M+

`

�
= (28)

kX
`=1

sig
�
W+(P`)

T � �
�
= (29)

kX
`=1

x` = 1 (30)

4.2.4 Multiple simultaneous consequences

The very same premise may result deterministically in multiple consequences in many di-

agnostic problems. For instance, an active fault can simultaneously cause multiple errors,

like a bus error can corrupt all bus devices etc. The limitation of the use of maximally

single output transitions was postulated in the basic unconstrained Petri net model, as

one of the preconditions of the basic Murata theorem. Note that the requirement for

expressing multiple simultaneous consequences of the form

A1; A2; : : : ; A` ! (B1 ^ : : : ^Bjmath) (31)

24

exceeds even the class of clauses as well.

The simple introduction of transitions with multiple output arcs (t on the left side of Fig.

(6)) would result in theoretical troubles with a potential loss of solutions, as it would

force the number of tokens M+
1 ; : : : ;M

+
| passing through these output arcs equal in a

still unjusti�able way.

The core of the problem is that the use of independent transitions (t1; : : : ; t| on the right

side of Fig. (6)) is in itself unable to express an obligatory simultaneous �ring, as �reable

transitions �re at will, by the very basic attribute of the Petri nets.

B1

A2

B|

b/ Multi-output transition

A1 A2 A` A`

B1 B|

A1

: : :: : :

a/ Independent transitions

Figure 6: Modeling of multiple consequences

Fortunately, an external constraint o�ers an elegant way to express such deterministic

logic relations between transitions. If single output transitions having the same predeces-

sor places (premises) are used for modeling the individual conclusions, we have to assure

that if any one of them is �ring during the T-invariant �ring sequence, then all of them

have to do it at least once. But this is nothing else, then an equivalence relation over the

occurance vector elements belonging to these transitions. This can be simply formulated

by

x1 = : : : = x|; (32)

25

for all of the consequence transitions. A1; A2; : : : ; A` ! B

A similar problem arises, if the premises of a clause form a subset of another one, e.g. in

the form of:

A1; : : : ; A` ! B1A1; : : : ; A{ ! B2; (33)

with { � `. This way, if all premises of the second clause are ful�lled, then the same holds

for the �rst one, as

A1; : : : ; A{ ! A1; : : : ; A` ! B1: (34)

Consequently, if it was �red into B2, then it is required that the same happens with B1.

This can be expressed simply by the occurance vector elements in the form of

x2 ! x1 (35)

or in the terms of a linear inequality

x2 � x1 (36)

forcing x1 = 1, if x2 = 1. Note that all transitions with such a coverage relation can

be automatically extracted form the pre-incidence matrix, as the sign of its elements is

identical with the characteristic vector of the predecessors �t of a particular transition t,

thus

8t 2 T : p 2 �t$ sig
�
W�(t)

�
= 1 (37)

. Accordingly, the premises of t1 are contained in the set of premises of t2, then

sig
�
W�(t2)

�
� sig

�
W�(t1)

�
(38)

4.2.5 Uncertain fault manifestation

Relations can result in uncertain fault manifestations due to the ambiguity of the failure

e�ects related with a particular fault. Two contradictory values can appear, if rules

resulting in di�erent consequences are invoked multiple fold. In this case, the mutual

exclusion relation has to be relaxed at the corresponding transitions and places.

4.2.6 Unknown and don't care values

In the case, if unknown or don't care values can appear in a solution, the requirement

"exactly one of the alternatives has to occur" should be weakened to "at most one of the

alternatives has to occur". This can be simply expressed by reformulating Equ. (30) to

kX
`=1

x` � 1 (39)

26

This way an all-zero combination denotes a logic value, which is indeterminate.

Another problem in the handling of indeterminate values arises, when such values are

to be compared. As example, let us assume that a speci�c failure indicator was not

observed during the previous diagnostic data acquisition, but a costly model reduction

by omitting the parts related to this unobserved failure indicator is to be avoided. (E.g.

when performing an intermediate phase of an adaptive diagnostic algorithm). This case

an compatibility relation allowing both the unknown and equal value assignments to the

occurance vectors is to be used instead of the strict equation between the occurance

vectors representing the observed and derived partial syndromes.

Let us assume now that compatibility is to be checked for two characteristic vectors of

the same logic variable denoted by x = [x1; : : : ; xk] and y = [y1; : : : ; yk]. Then the allowed

compatible combinations are:

� x = 0 corresponding to an unknown value with an arbitrary y, or vica versa

� y = 0 with an arbitrary x, or

� y = x.

This is equivalent to

z = x _ y (40)

is either of a value unknown, or consists in at most a single position a 1, thus

kX
`=1

z` = (41)

kX
`=1

x` _ y` = (42)

kX
`=1

sig (x` + y`) � 1: (43)

27

5 Automatic transformation of data
ow networks

5.1 Data
ow networks

Data
ow networks belong to the most popular tools used in hardware-software co-design.

Typically, system engineering environments use di�erent forms of the data
ow paradigm

at the highest levels of abstraction for performance modeling and behavioral speci�cation

of the target system. The basic idea of using data-
ow models was already published in

[1]. Here we focus only on the aspect of automatic model transformation between data

ow and Petri net based models.

Formally, a data
ow network is a set of nodes N , which execute concurrently and ex-

change data over point-to-point communication channels C.The data
ow node represents

the functional elements of the system and describes their signal propagation behavior by

a simple relation between input and output, eventually depending on the previous state

of the node. The use of relations instead of input-output functions allows the modeling

of non-deterministic behavior. For instance in case of diagnostics this provides a proper

mean to express diagnostic uncertainty. The channels of the data
ow network symbolize

the interaction between the functional elements of the system. Internal channels link two

nodes. Input (output) channels connect a single node to the outside world representing

the primary inputs (outputs) of the system. Communication events occur when data

items (subsequently called tokens) are inserted into an input channel (input event de-

scribing the arrival of some data to the primary inputs) or data items are removed from

an output channel (output event denoting the appearance of results on a primary output

of the system).

The functional behavior of a node � 2 N is de�ned by the set of �ring rules R� over

the input domain and over Q�, the set of possible states of the node. A node is ready to

execute as soon as the data required by one of its �ring rules are available and the node

is in a proper state. The meaning of �ring rule � 2 R� , denoted by � = (q; w�; q0; w+) is

that if the node � is in state q 2 Q, each of the input channels i 2 I� holds at least w�(i)

data items, then �ring rule � is potentially selected for execution. The execution of �ring

rule � removes w�(i) data items from each input channel i 2 I� and outputs w+(j) data

items on each output channel j 2 O� , while the node changes its state from q to q0.

A data
ow network shows an essential structural similarity to a Mealy-automaton, with

the main di�erence of having relations in both of the next state and output mappings

instead of functions (Fig. (7)).

5.2 Transformation to a Petri net

There is a straightforward transformation between data
ow networks and Petri nets,

where input and output channels, and state storage elements are represented by places.

28

...

w+(o)

w+(1)

Input channels

...

w�(1)

w�(�)

Node �

�1 = (q1; w
�
1 ; q

0
1; w

+
1)

...

�k = (qk; w
�
k ; q

0
k; w

+
k)

Rules

Output channels

...

w+(o)

w+(1)

b/ Non-deterministic Mealy-automaton

a/ Basic view

Input channels

...

w�(1)

w�(�)

Node �

�1 = (q1; w
�
1 ; q

0
1; w

+
1)

...

�k = (qk; w
�
k ; q

0
k; w

+
k)

Rules

Output channels

State storage

q0 q

Figure 7: Data
ow networks

Rules are mapped to transitions with inputs connected to the places standing for input

channels and state storage, while the outputs of the transition �re into the places on the

output channel and state storages places, respectively, as depicted in Fig. (8).

If the data
ow node is of a combinational type without any internal states, then places

representing state storage and arcs related to the next state relation are omitted.

Note that feedback in this direct form inhibits the search for a T-invariant based solution

29

��
��
��
��

��
��
��

��
��
��

Pin1 Pout1

q0

q

...

Pouto

...

Rules

Pin�

w+(1)

Node �

w+(o)w�(i)

State storage

w�(1)

�1 = (q1; w
�
1 ; q

0
1; w

+
1)

Output channels

...

Input channels

Figure 8: Transformation of data
ow networks to Petri nets

in the case of a sequential data
ow node. The only way found till yet is the transformation

of the Petri net into an iterative array model by cutting the feedback loops and repeating

the Petri net for each time frame (Fig. (9)).

Fortunately, the search for T-invariants has to be done for a single phase only, due to the

identity of the models used in the individual frames. On the other hand, the number of

frames is usually as low as two-three according to the experiences of a current development

work aiming at the construction of a diagnostic model of the MEMSY multiprocessor [9].

Moreover, the use of data-
ow networks as input description languages o�ers an additional

advantage of a hierarchical problem decomposition. The token
ow corresponding to a

T-invariant can be partitioned into two disjunct parts: token
ow between and within of

data-
ow nodes. As a system-level T-invariant is naturally a partial T-invariant for all

data-
ow nodes, intra-node T-invariants can be estimated individually, and the system-

level T-invariant can be estimated as a composition of these partial solutions.

30

��
��
��
��

��
��
��
��

...
...

w�(1)

Rules

Pout1

Pin�

w+(1)
...

w+(o)w�(i)
Pouto

State storage

Node � at time T

Input channels at time T Output channels at time T

Pin1

q

q0

�1 = (q1; w
�
1 ; q

0
1; w

+
1)

...

q

q0

Figure 9: Iterative Petri net array model for sequential data-
ow elements

5.3 Transformation of a higher level data
ow network

The implementation of the transformation handles a more general class of data
ow

networks. In these, channels may deliver several types of tokens, as opposed to one.

Firing rules may depend on the type of the tokens: they are generally of the form � =

(q; w�; q0; w+) just like above, but w�(i) and w + (j) no longer contain the number of

tokens for the corresponding channels but a vector, the number of tokens for each token

type.

The transformation of the previous section works without change, but it produces coloured

Petri nets, Petri nets with several di�erent types of tokens. They o�er a number of ad-

vantages over simple Petri nets when used as a modeling tool; these aspects are discussed

in Section (10.1).

Coloured Petri nets are unfolded to simple Petri nets here, for this is the class on which

the algorithms of this report work. Unfolding means that a substructure of the Petri net

is repeated for each token type: input and output channels are represented by several

31

places and the marking of a place indicates the number of data items of a certain type

which
ow on the channel.

The resulting structure, shown in Fig. (10), contains transitions with multiple outputs in

case a �ring rule puts tokens on several di�erent channels or it outputs tokens of di�erent

type.

As already discussed in Section (4.2.4), this should be modelled with repeating the tran-

sition once for each output arc, so that jt � j � 1 and the T-invariant algorithm can be

used. A constraint must be added that ensures that each of the transitions either �res at

least once or does not �re at all.

In the present solution algorithm described in Section (6), constraints are formulated in

terms of the occurance vector, which indicates those places into which the �ring sequence

corresponding to a T-invariant �red. Constraints on transition �ring counts can be for-

mulated indirectly; the transition must be replaced by a transition! place! transition

structure. This way the transition has a place which no other transition �res into.

0 - 1 = -1

0

1

2

-

+

1

��
��
��
��

��
��
��

��
��
��

0

-

+

1

0
-1

operation

result

P2

P1

operand1

(occurance vector elements)

operand2

x1 = x2operation

Input channels at time T Output channels at time T

Adding / subtracting node at time T

Rules

Figure 10: Petri net equivalent of a �ring rule of a coloured data
ow network

5.4 Implementation performance

The crucial factor which determines the overall e�ciency of solving a diagnosis problem is

the size of the Petri net model built by the transformation. The running times of solution

algorithms depend on this by a high exponent. The transformation was tested with the

32

components of the data
ow models of the MEMSY multiprocessor ; there are 35 di�erent

kinds of components. Fig. (2) shows the sizes of the original and the transformed models

for the smallest, the biggest and moderate sized components.

Component Data
ow model Petri net model

Channels State Firing Place Trans. Arc Constraint

In Out rule

S arb 46 42 10 495 2543 4919 17724 1971

Cpu 6 10 20 136 782 1494 4507 594

Disc 4 2 5 33 94 167 383 28

Reset 4 14 2 8 66 110 179 56

Term 2 2 2 8 30 46 178 14

Component Description

S arb Arbitration on a VME bus with 8 memory units

Cpu CPU { read, write and fetch cycles may fail.

Disc A disc with CRC checking

Reset Reset of the system

Term A terminal

Table 2: Sizes of the data
ow and the Petri net models

As one can see, Petri net models are bigger by a large factor. On the one hand, it comes

from the fact that a higher level coloured description is unfolded. On the other hand, little

e�ort was given to eliminate unnecessary components. The reason is that the structures

which are easy to remove by extending the algorithm can also be removed by automatic

preprocessing the last model in the chain of transformations. This last model is a 0-1

optimisation problem here; the e�ectiveness of preprocessing is measured in Section (8.5)

and the results are compared to the original model size.

The e�ciency of the transformation algorithm is of low importance, it is about linear in

the size of the data
ow component. Memory consumption can be reduced in a straight-

forward manner: only channel names and the corresponding group of Petri nettransitions

must be stored in memory.

33

6 Linear algebraic reformulation

This section describes the algorithm transforming a Petri net model of the system into

a system of inequalities. Important problem reduction steps are performed during this

process.

6.1 Problem structure

Before presenting the proposed algorithm, an overview of the problem structure is given.

As depicted in Fig. (11), to each input variable V|, where | = 1; : : : ; k, a part of the

occurrence vector x is associated as characteristic vector of its domain4. The mutual

exclusion constraint assures that exactly one element is to be selected from the domain,

or if it is written in the weaker form of an inequality, then at most one. (Cf. Equ. (39)).

The occurance vector x indicates those places, in which the �ring sequence corresponding

to the T-invariant �red. This way it relates the value of the logic variables with the token

ow M+ into the places representing them. The relation between the �ring counts in the

�ring sequence corresponding to the T-invariant � and M+ is de�ned with the help of

the post-incidence matrix W+. The fault manifestation constraints embedded into the

diagnosis rules are expressed with the help of the state equation.

constraints
External

M+ �

x = sig
�
M+

�
W T � � = 0

exclusion
Mutual

...

V1

Vk

exclusion
Mutual

Rule basis
Token
ow-

place activationOccurance

P
`2I1 x` = 1

P
`2Ik x` = 1

x

M+ = (W+)T � �

Figure 11: Constraint structure

4In Fig. (11) I| denotes the index set of the element in the occurance vector belonging to V|. For

simplicity, constraints corresponding to the simultaneous �ring of multiple transitions are not included

and all mutual exclusion constraints are depicted as equations.

34

6.2 The basic idea

Before formulating the solution algorithm in a formal fashion, the most important steps

are individually presented.

6.2.1 Estimation of the basis

As the �rst step a basis f� 1; : : : ; � cg over QQ0 consisting of minimal support T-invariants

is estimated by solving the state equation for instance by the Martinez-Silva algorithm.

This way, if a total number of c independent basis vectors are found, then any one of

them � `, for ` = 1 : : : c satis�es:

W T � ` = 0: (44)

Now, as they form a basis over QQ0 any T-invariant � can be expressed in the form of

� =
cX

`=1

�` � � `; (45)

with � 2 QQc
0 or in a much more compact form:

� = B � �; (46)

where B = k� 1; : : : ; � ck and � = j�1; : : : ; �cj.

On the other hand, the selection of an arbitrary � 2 IBc results in a � satisfying the

homogeneous state equation.

constraints
External

M+ = (W+)T � �

M+ �

x

x = sig
�
M+

�

exclusion
Mutual

...

V1

Vk

exclusion
Mutual

P
`2Ik x` = 1

P
`2I1 x` = 1

Token
ow-
place activationOccurance Linear composition �

� = B � �

Figure 12: Constraint structure after estimation of the basis

35

6.2.2 Reduction of the variable set

Theoretically, as both � and M+ are determined by matrix equations by �, at the �rst

glance nothing else is necessary, than to subsequently substitute � into these equations.

However | without going into implementation details of the solution algorithms | an

e�cient solution of the inequalities expressing the internal (mutual exclusion) and even-

tually even external constraints, we aim simultaneously at a reduction of the search space

of the feasible solution by reducing the domains of the variables used.

� and M+ are playing only the role of a temporary variable and all mutual exclusion and

external constraints are formulated in the terms of the occurance vector. Thus we can

eliminate these vectors by a simple substitution of the form

M+ = (W+)T �B � �; (47)

resulting in the simpli�ed constraint structure depicted in Fig. (13).

constraints
External

exclusion
Mutual

...
x = sig (tokin)

V1

Vk

exclusion
Mutual

P
`2Ik x` = 1

P
`2I1 x` = 1

x

Basis vector-

place activation �Occurance M+

M+ = (W+)T �B � �

Figure 13: Constraint structure after elimination of the �ring count vector

As next step, a new variable �+ will be introduced instead ofM+ having a smaller domain

in such a way that

x = sig
�
M+

�
= sig

�
�+
�

(48)

still holds, i.e. the logic solution remains unaltered.

Lemma 1 For any matrices (or as special case vectors) X and Y :

sig
�
X � Y

�
= sig

�
sig
�
X
�
� sig

�
Y
��

(49)

36

Lemma 2 () The occurance vector of the token
ow into the individual places can be

rewritten to the following form, when the T-invariant is composed as a linear combination

of basis vectors with coe�cients in �:

x = (50)

sig
�
M+

�
= (51)

sig
�
(W+)T �B � �

�
= (52)

sig
�
sig
�
(W+)T

�
� sig

�
B
�
� �
�
= (53)

sig
�
A � �

�
= (54)

sig
�
�+
�

(55)

where

A = sig
�
sig
�
(W+)T

�
� sig

�
B
��

(56)

is a binary matrix and

�+ = A � � (57)

is a vector over IN 0.

constraints
External

exclusion
Mutual

...
�+

V1

Vk

exclusion
Mutual

P
`2Ik x` = 1

P
`2I1 x` = 1

x

Basis vector-

place activation �Occurance

�+ = A � �x = sig
�
�+
�

Figure 14: Constraint structure after the �rst phase of the domain reduction

This step which seems to be a purely technical one at the �rst glance plays an important

role in the further reduction steps. Now, the occurance vector can be estimated as the

sign of the product of a binary matrix with a binary vector5(Fig. (14)).

5Note that the sign of product of matrices expression on the right hand side of Equ. (56) can be

estimated simply by performing the multiplication with the operations of logic AND as multiplication

and OR as addition over the component sign matrices, as well. This observation can help to reduce the

computation time needed.

37

It is easy to prove that

Lemma 3 If a and b are binary vectors of dimension d, i.e. a; b 2 IBd, then for their

scalar product z = aT � b =
Pd

`=1 a` � b`

sig (z) = (58)

sig
�
aT � b

�
= (59)

sig

dX

`=1

a` � b`

!
= (60)

d_
`=1

(a` ^ b`) ; (61)

where _ and ^ denote the logic OR and AND operations respectively.

Corollary 1 (Reduction of the matrix A) A simple generalization of the previous

lemma shows that x = sig
�
�+
�
= sig

�
A � �

�
is nothing else, than the logic sum (OR

operation) of the columns of A in which positions � has a value of 1. This way all

columns can be omitted from A, which:

1. can be generated as a linear combination of other columns or;

2. contradict to some of the mutual exclusion constraints;

Naturally, � has to be reduced to the proper dimension after deleting the columns from A.

Proof: 1. If a column A` of A can be written as a linear combination of the other

columns with an �0 in the form of

A` =
cX

|=1

A| � �
`
|; (62)

where �
0

` = 0, and an arbitrary x = sig
�Pc

|=1A| � �|

�
for some �, then

x = (63)

sig

0
@ cX

|=1

A| � �|

1
A = (64)

c_
|=1

�
A| ^ �|

�
= (65)

8><
>:�` ^

2
64 c_

|=1

|6=`

�
A| ^ �

0

|

�375
9>=
>; _

2
64 c_

|=1

| 6=`

�
A| ^ �|

�375 = (66)

c_
|=1

|6=`

A| ^
h�
�` ^ �

0

|

�
_ �|

i
(67)

38

2. If some column A` of A does not satisfy the constraints, no � belonging to

the feasible space can have in the corresponding position �` = 1, otherwise

the mutual exclusion constraint would be violated by the obvious property of

the logic OR relation. Thus in all solutions �` = 0, and both A` and the `-th

position of � can be omitted.

Q.E.D.

Now, after the deletion of the super
uous columns of A and positions in �, the constraint

structure remains the same, as depicted in Fig. (14), but with a new matrix A� and ��

of a reduced dimension c�. Naturally, for any �� the new

�� = A� � �� (68)

may di�er for the corresponding �+ in value, but their sign vectors remain equal.

6.2.3 Formulation of the occurance vector

As a result of the previous steps, the occurance vector can be re-written in the following

form:

x = sig
�
A� � ��

�
: (69)

The next step constitutes of the formulation of the inequality system corresponding to the

sign function. Remember that for each element of the occurance vector these constraints

are of the following form (c.f. Equ. (16)-20).

x` 2 IB (70)

��` � x` (71)

��` � x`S` (72)

In order to formulate the third inequality, the upper bound on the �ring counts is to be

estimated.

Corollary 2 Upper bound on the �ring counts

The upper bounds on the �ring counts required for inequalities 72 are de�ned by sub-

stituting �� = 1�c into Equ. (68), where 1 denotes the all-one vector of dimension c�,

i.e.

S = A� � 1�c; (73)

39

This way the constraint system to be satis�ed gains the following form:

x 2 IBq (74)

�� 2 IBc� (75)

A� � �� � x (76)

8` 2 f1; : : : ; qg :
�
A� � ��

�
`
� x` �

�
A� � 1

�
`
; (77)

where the lower index ` refers to the `-th element of the corresponding vector. This way

the structure of the inequality system to be solved becomes to that depicted in Fig. (15).

constraints
External

Simultaneous
�ring

x|1 = � � � = x|{

Domain
x 2 IBq

P
`2Ik x` = 1

exclusion
Mutual

...

V1

Vk

exclusion
Mutual

x

Sig function

A� � �� � x

` = 1; : : : ; q : Domain

�� 2 IBc�

���
A� � ��

�
`
� x` �

�
A� � 1

�
`

P
`2I1 x` = 1

Figure 15: The structure of the linear inequality system to be solved

6.2.4 The solution algorithm for the extended model

Algorithm 2 () The constrained Petri net model can be solved by the following steps:

1. Construct the uninterpreted constraint model of the system

2. Estimate the T-invariants over QQ0

3. Determine the token
ow matrix into the individual places

4. Reduce the basis

40

5. Estimate the maximal value of the �rings

6. Solve the inequality system, describing the mutual exclusion, eventual simultaneous

�ring and other external constraints.

6.3 Implementation

The constrained Petri net model is built automatically from data
ow descriptions. The

T-invariants are estimated using a C language implementation of the Martinez-Silva

algorithm[8]. The Petri net is represented by a tableau matrix. All the other steps

are implementations of the ideas of this section. The program prints the resulting in-

equality system. The solution is postponed to other programs. The solution process is

described in Section (8).

Performance measurements were conducted on the data
ow components of the MEMSY

multiprocessor (see Section (5.4)). Again, the size of the output model | the inequality

system | is most important. The running time and memory usage of the transformation

must also be considered, for the algorithm contains several non-trivial reduction steps.

6.3.1 Model sizes

Fig. (3) shows the sizes of the original and the transformed models for selected compo-

nents.

Component Petri net model Inequality system

Place Trans. Arc Constraint Variable Constraint

S arb 2543 4919 17724 1971 4919 7056

Cpu 782 1494 4507 594 1494 2157

Disc 94 167 383 28 167 215

Reset 66 110 179 56 110 187

Term 30 46 178 14 46 73

Table 3: Sizes of the Petri net models and the inequality systems

One can see from the examples that the transformation reduces the problem size indeed. It

did not seem worthwhile to conduct more measurements, for the automatically generated

Petri net description and | to a lesser extent | the generated inequality system is

redundant. Fair measurements, where the original data
ow model is compared to the

preprocessed inequality system, are given in Section (8.5).

41

6.3.2 E�ciency

The worst case e�ciency of the algorithm is exponential in both time and memory as

there can be an exponential number of minimal support T-invariants[8]. In practice,

however, this part of the algorithm performs much better.

In the following, execution times and memory usage will be measured for the MEMSY

components and bottlenecks will be identi�ed.

0.01

0.1

1

10

100

1000

10 100 1000 10000

E
xe

cu
tio

n
tim

e
[s

]

Number of Petri net model elements

Figure 16: Execution times vs. number of variables

Fig. (16) shows execution times measured on an SGI workstation with a 250 MHz IP22

processor. The �tted curve is c�x2:3044, but this value is not to be relied on when estimating

the complexity for several reasons:

� The algorithm will be signi�cantly improved (see below).

� The size of the input is a very rough estimate of the di�culty of the problem.

The components used vary greatly in the kind of their Petri net models: there are

ones with excessively high numbers of arcs and ones with \sparse" structures, for

example.

42

� The Petri net model is redundant, and the majority of reduction steps will only be

performed after the transformation.

Most of the time is spent in the Martinez-Silva algorithm and in the matrix multipli-

cation performed to obtain the matrix of the token
ow into the individual places. As

the incidence matrix of the Petri net, the T-invariant vectors and the operands of the

multiplication are sparse, the current tableau implementation is clearly ine�cient and

signi�cant improvements can be expected from a sparse implementation.

Memory usage is relatively high. This comes from the fact that the incidence matrix and

the T-invariant vectors must be stored in memory. Again, much is to be expected from

a sparse implementation.

43

7 Re�ned model for diagnostics

The method elaborated by Portinale and extended in Section (4) re
ects only the prop-

erties of fault propagation without concerning other important factors in
uencing the

behavior of the UUT.

A general purpose system model will be presented in this section at �rst. Subsequently,

the mathematical formulation the most basic questions formulated during diagnosis using

this model will be presented. Finally, some more possible extension ideas are mentioned.

7.1 Model of the system behavior

The most important factors contributing to the diagnostics are typically the following

ones:

System input, like the selection of test or operational input sequences applied during

the observation period; which error detection mechanism are enabled during this

period, etc.

The structure and fault model of the system. For simplicity, the { still general {

assumption is postulated that the system is decomposed into N components. An

own elementary fault set is associated to each individual element {. Each component

can be in one of this fault states or in the fault-free state, thus forming the fault

state subspace F{. Note that multiple physical faults can be modeled by introducing

a separate fault state for each combination. In the system any number of faults is

allowed.6

The syndrome observed serving as information source on the behavior of the system.

It can be thought of as a key to a part of the observable subset of the fault states.

The fault propagation chain can be described in several ways: by a data
ow diagram,

by its Petri net model, as described in Section (3.3.1) or by an inequality system.

In fact, the previous sections of the report are concerned with modeling with these

descriptions and transforming one into another.

Note the similarity of this system model with a data
ow component. System input

corresponds to input channels, the syndrome to the output channels and the fault states

in the fault model to the state variable. The fault propagation chain describes the system

behaviour, thus it is the counterpart of the �ring rules. All this is shown in Fig. (17).

6It should be pointed out that the restrictions on the fault model described above serve only an easier

understanding. All further results and algorithms can be extended in a straightforward way to incorporate

any fault combinations within a component and correlated faults a�ecting multiple components as well.

44

System input Structure

Fault states

and
fault model

Syndrome

Internal fault states

xI xS

xE

xF

Figure 17: The system model as a data
ow component

The system variable descriptors can be subdivided into the same form groups as described

above, by selecting a proper index ordering of the model elements of the fault propagation

chain. They should be called

x = [xI; xF ; xE; xS] (78)

respectively in the above order. For instance, in the �nal inequality system model they

are the elements of the occurance vector of the token
ow into the individual places

belonging to a T-invariant of the Petri net model.

The subsets of the occurance vector allowed by the system model are denoted by XI , XF ,

XE and XS, respectively.

Note that for the diagnostic engineer only the occurance vector has a direct meaning,

as the constraints in the model of the fault propagation chain are only necessary to the

solution of the constraint system, and are more or less illegible to humans | the more

automatic transformations were performed, the more illegible they are. Similarly, the

internal variables xE | corresponding to internal error manifestations | are only of a

secondary importance, as they are used only in a detailed analysis of the fault e�ect

propagation mechanism.

Accordingly, in the external view of the system, its behavior is de�ned by the mapping

(xI ; xF)! xS (79)

or more precisely the logic diagnosis constraint

<L (xI ; xF ; xS) (80)

45

describing the relation between them.

The notion introduced in Equ. (79) can be extended for subsets as well in the following

form:

Let X
0

I�XI ;X
0

F�XF ; and X
0

S�XS.

<L

�
X

0

I ;X
0

F ;X
0

S

�
i� 8xI 2 X

0

I ; 8xF 2 X
0

F ; 8xS 2 X
0

S : <L (xI ; xF ; xS) (81)

is satis�ed.

7.2 Diagnostic problems

The major diagnostic problems one can investigate with the help of this model can be

grouped according to which ones of the three vectors or their subsets are known in the

logic diagnosis constraint. This is summarised in Fig. (4).

Input Faults Syndrome Operation

xI xF ? Fault simulation

xI XF ? Parallel fault simulation

xI ? xS Fault diagnosis

xI1; : : : ; xIy ? xS1; : : : ; xSy Sequential diagnosis

xI ? xS (partial) Partial diagnosis

xI ? xS0 (fault free) Estimation of non-detected faults

? xF xS Test generation

Compensation of error latency

Fail safe testing

Table 4: Applications of the system model

7.2.1 Known input and fault state, unknown syndrome

Fault simulation estimates the maximal X
0

S satisfying <L

�
xI ; xF ;X

0

S

�
.

The syndrome set X
0

S � XS compatible with the given input xI and fault xF is

determined by using the logic diagnosis constraint in the forward direction. After

substituting these vectors into the Diophantine inequality system all its solutions

can be estimated. This process corresponds to the simulation of a single fault in

logic testing.

46

Parallel fault simulation searches for X
0

S : <L

�
xI ; xF ;X

0

S

�
When xF is unbounded, i.e. any xF 2 XF can occur, then the entire subset of

syndromes is to be estimated, which can occur, when applying the input xI in a

similar fashion, as parallel fault simulation 7 does it at the logic level.

7.2.2 Known input and syndrome, unknown fault state

Fault diagnosis: The most typical diagnostic task is the estimation of the fault hy-

potheses consistent with the given input xI and syndrome xF . The Petri net based

model delivers all feasible hypotheses, as described earlier.

Sequential diagnosis: A very frequently used approach performs diagnosis in a sequen-

tial way, thus multiple tests are successively applied to the UUT, and the corre-

sponding syndrome sequence is processed. It is assumed that the inputs applied

during di�erent measurement time frames do not interfere, i.e. the syndrome result-

ing in a particular observation time frame is independent of the actions taken during

the previous frames. When assuming the stationarity of the fault state during the

entire measurement series of a length of y observations, the set of the resulting fault

hypotheses H consistent with all syndromes is the intersection of the hypotheses

H1; : : : ;Hy consistent with the individual syndromes x1S; : : : ; x
y
S.

H =
y[

`=1

H` (82)

This case has a simple formulation by using the model developed before.

For each observation time frame ` 2 f1; : : : ; yg the input and syndrome vectors x`I ,

and x`S are known. The elements of the error occurance vector x`E are free variables.

Due to the assumed stationarity of the fault state in each time frame the same fault

occurance vector is to be assigned8. The �nal diagnosis is the joint solution of the

system constraint

<L (x1I; xF ; x
1
S)

...

<L (x{I; xF ; x
{
S)

...

<L (xoI ; xF ; x
o
S) ;

7The adjective "parallel" expresses here the simultaneous processing of the e�ects of all faults and it

is not intended to refer to a particular simulation technique, like parallel deductive or concurrent fault

simulation.
8If don't care variables can appear in the occurance vector, then the constraint has to be constructed

according Section (4.2.6).

47

containing y times as much inequalities, as a single frame logic system constraint.

Note that the number of free variables is

dim(xF) + y � [dim(xI) + dim(xE)] : (83)

The resulting e�ect shows a virtually nearly quadratic increase in the problem size,

however many steps, like the estimation of the solution of the unconstrained system

are still identical during the necessary calculations.

Partial diagnosis In numerous technical applications not all the syndromes are col-

lected in each time frame, thus the diagnosis process has to deal with incomplete

information as well. This can be performed by a simple relaxation of constraints

belonging to unobserved syndrome elements. Note that the simple assignment of

the unknown value to such syndrome variables were too restrictive, as it would ex-

clude from the set of candidate fault hypotheses such a fault, which would de�nitely

trigger a failure indication, even if that remains unobserved.

Estimation of non-detected faults A crucial task of the test design process is the

determination of the set of faults still undetected by the till yet generated test

input sequence. Such an examination controls not only the test generation process,

but it delivers some basic qualitative characteristics such as the fault coverage.

Exactly those faults remain undetected by an input sequence hx1I ; : : : ; x
`
Ii, which

result in the same syndrome sequence hx1s0; : : : ; x
`
s0
i, as the fault-free system char-

acterized by the occurance vector xF 0. As a deterministic behavior of the fault-free

system is assumed, the syndrome sequence is unique. This way the same algorithm,

as used for sequential diagnosis, applied for this syndrome sequence delivers the set

of all undetected faults.

7.2.3 Known fault state and syndrome, unknown input

At the �rst glance, this case seems to be a not very meaningful one, as usually it can be

assumed that the environment is known during the observation of the failures. However,

there are three important cases, where this model �nds an important use:

Test generation Here one intends to �nd those combinations of input which trigger the

activation of a certain type of fault, so that its presence can be observed in the

syndrome.

Compensation of error latency Frequently, the e�ects of an error appear as failures

on after such a long latency that an inference from the failure mode to the fault

becomes rather di�cult. For instance, if the use of a fault produces a latent error

stored in the system somewhere, then the failure can appear already in such a phase

of the operation, where the faulty resource is not used anymore. In such cases the

48

estimation of the set of input combination can be used as a guiding heuristics for

the fault isolating test strategy.

Fail safe testing When diagnosing faulty systems, one of the main requirements is that

the diagnostic process should avoid further catastrophic failures both in the sense of

follow-up physical defects or data losses. For instance, in a faulty computer usually

no test action can be started after a crash, which involves a danger of losing disk

data which is not backed up yet. The inhibited test combinations can be estimated

with the diagnostic model described above, by including into the set of syndromes

those, which correspond to the initiation of a fatal action.

7.3 Further possibilities for model re�nement

The diagnostic model described above can be further re�ned by introducing any additional

factor in
uencing the diagnostic process. For instance, when introducing the notion of

resources, the mutual exclusion relation limiting the use to a single test at a time can

be easily included in to model as an external constraint. Similarly, complex interferences

between faults and test can be modeled as well. A test invalidation relation, like that

used in the Russel-Kime type of model requires not even the introduction of a new model

attribute at all.

49

8 Optimal solutions of diagnostic problems

The formulation of the diagnostic problem in the form of Diophantine equations or in-

equalities describing the constraints between the system structure and observations allows

for an e�cient estimation of all solutions. However, the set of all candidate diagnostic hy-

potheses grows frequently so large that it becomes practically unmanageable. In this case,

typically a single or a few of solutions are searched for, which ful�ll some optimization

criteria.

The introduction of such decision criteria o�ers new possibilities allowing optimization of

the diagnostic process as well, using standard methods of the operation research allowing

for the solution of problems of a huge dimension.

This special chapter of operation research | integer programming | plays a key role in

integer and combinatorial optimization. The basic de�nitions used in this �eld will be

summarised �rst. The formulation of some basic diagnostic problems in the form of linear

integer programs will be presented in the following sections. Finally, measurements on the

compactness of the formulation and the performance of the experimental implementation

are presented.

8.1 Linear integer programming

The general linear integer programming problem has the form of:

maxfcTx : Ax � b; x 2 INn
0 ; c 2 IRn; A 2 IRn�m; b 2 IRmg (84)

The set de�ned in Equ. (84) over which the maximum is searched for is called the feasible

region, and an x in it a feasible solution. The function cTx is called the objective function.

Note that an equality constraint can be described by simultaneously introducing two

inequalities for the "less or equal" and the "greater or equal" constraint. A minimiza-

tion problem can be formulated as the maximization of the negate objective function.

The modeler may use certain non-linear constructs in his model, those which can be

transformed to some linear constructs so that the problem size does not increase in an

unacceptable manner.

An important subclass of integer programming problems are the 0-1 IP problems. Here

variables are constrained to be equal to 0 or 1; in the de�nition, x 2 INn
0 is replaced

by x 2 IBn. For combinatorial optimization problems there is no generally accepted

de�nition, but most such problems are 0-1 IPs that deal with �nite sets and collections

of subsets.

50

8.1.1 Solution

This section only aims at providing an overview. For more thorough handling of the

subject numerous textbooks are available, such as [15] or those mentioned in [16].

Linear integer programs are hard to solve, in general they are in the class of NP-complete

problems, in contrast to linear programs, which are in P. Most general-purpose large-scale

IP codes use a procedure called branch-and-bound to search for an optimal integer solution

and to prove its optimality. This procedure works by solving a sequence of related linear

programming relaxations of the original problem, problems from which the integrality

constraint x 2 INn
0 was removed. Good codes distinguish themselves primarily by solving

shorter sequences of LPs, and secondarily by solving the individual LPs faster. They also

exploit that the similarities between successive LPs in the search tree can speed up the

LP solution process considerably.

A di�erent solution approach known generally as constraint logic programming has drawn

increasing interest of late. Having their roots in studies of logical inference in arti�cial

intelligence, CLP codes typically do not proceed by solving any LPs. As a result, they

search \harder" but faster through the tree of potential solutions. Their greatest ad-

vantage lies in their ability to tailor the search to many constraint forms that can be

converted only with di�culty to the form of an integer program; their greatest success

tends to be with \highly combinatorial" problems such as scheduling, sequencing, and

assignment, where the construction of an equivalent IP would require the de�nition of

large numbers of 0-1 variables.

Another burden to solving IPs is that the di�culty of any particular IP problem is hard

to predict in advance. Problems in no more than a hundred variables can be challenging,

while others in tens of thousands of variables solve readily. The best explanations of

why a problem is di�cult often rely on some insight into the modeled system and tend

to appear only after running a lot of computational tests. A related observation is that

the way of model formulation can be more crucial than the choice of the algorithm and

the solver. Thus a large scale IP problem should be approached with a certain degree of

caution and patience. A willingness to experiment with alternative formulations and with

an IP code's numerous search options often pays o� in greatly improved performance.

In the hardest cases, it may be worthwhile abandoning the goal of a provable optimum.

By terminating a IP code prematurely, one can often obtain a high-quality solution along

with a provable upper bound on its distance from optimality. Indeed, it may be an optimal

solution,as procedures for IP may not be able to prove optimality of a solution until long

after it has been found9. This choice also opens up a broad area of approximate methods,

probabilistic methods and heuristics, as well as modi�cations to branch-and-bound.

9The problem of determining whether an IP has an objective value less than a given target is NP-

complete.

51

Subclasses of IP problems may be much easier to solve. There are certain models whose

LP solution always turns out to be integer, assuming the input data consists of integers10

The best-known and most widely used models of this kind are the pure network
ow

models. The network linear programming problem is to minimize the | linear | total

cost of
ows along all arcs of a network, subject to conservation of
ow at each node, and

upper and/or lower bounds on the
ow along each arc. It is a subclass of LPs. They can

be solved much faster than general LPs of the same size, by use of specialized optimization

algorithms, such as the network simplex method. Latter has the property that | if given

integer data | it will return integral optimal
ows.

Unfortunately, many di�erent network problems of practical interest do not have a for-

mulation as a network LP. Contrary to many people's intuition, the statement of a hard

problem may be only marginally more complicated than the statement of some easy

problem.

8.1.2 Modeling

As already highlighted in the previous section, formulating a \good" model is of crucial

importance to solving the model. What \good" means is dealt with in several books[15,

14]; here only some aspects of the problem are shown.

Usually, there is a huge number of choices of formulating a model for a given problem.

Typically, de�ning the variables and the objective function is the �rst question addressed.

This often derives from the unknown parameters of the desired solution. Thus the most

important choice is de�ning the constraints, i.e. A and b, in an appropriate way. Two

observations are presented here:

� Most integer programming algorithms require an upper bound on the value of the

objective function, and their e�ciency is very dependent on the sharpness of the

bound. An upper bound is determined by solving the LP relaxation of the IP. Thus

the closer the objective value of the IP to that of the LP, the better.

� It is instinctive to believe that computation time increases as the number of con-

straints increases. But trying to �nd a formulation with a small number of con-

straints is often a bad strategy. In fact, one of the main algorithmic approaches

involves the systematic addition of constraints, so-called cutting planes.

8.1.3 Preprocessing

Preprocessing refers to elementary operations that can be performed to impove or simplify

a formulation. It can be thought of as a phase between formulation and solution. It can

greatly enhance the speed of a sophisticated solution algorithm.

10In general these models have a "unimodular" constraint matrix of some sort.

52

Sometimes, small problems can be solved with just preprocessing or preprocessing com-

bined with a kind of enumeration. It has been the general opinion of researchers, though,

that usually there is a need for both a preprocessing phase and a sophisticated solution

phase.

8.2 Formulation of diagnostic problems

Some recurring problems in diagnostics are presented in this section along with their

integer programming formulations. They are summarized in Fig. (5). The comparison

with Fig. (4) might be interesting. Note that the constraints of the problems can be

produced with the algorithm of Section (6) and by formulating the ideas of Section (7);

here only objective functions are added and explained.

Input Faults Syndrome Objective

function

Operation

xI ? xS
X

u2Ffault free

xF u Maximum

likelihood

diagnosis

Minimal number

of faults

X
u2F

P (t)�xF u Probabilistic di-

agnosis

� checking

costs

Practice ori-

ented testing

? ?X
u2F

xF u � t

? Deviation

from the

reference

Validation of fault tolerance

Table 5: Diagnostics with optimization problems

8.3 Maximum likelihood diagnosis

8.3.1 Minimal number of faulty elements

The probability of the occurrence of a fault state decreases with the number of faults

within. In the case of independent faults, each of them is assumed to have a probability

less than 0:5. Upon this assumption, the maximum likelihood diagnosis is achieved by a

fault hypothesis, which is

� consistent with the syndrome assured by imposing the constraints;

� minimal in the terms of the number of faults involved into the generation of the

syndrome.

53

The objective function consists simply the complement of the total number of faults.

This can be expressed as the sum of the support vector bits of the source transitions

corresponding to faults, i.e. X
t2FnG

xF (t); (85)

where G � F denotes the set of the fault-state sink transitions corresponding to the

fault-free states.

8.3.2 Probabilistic diagnosis

A further re�ned diagnosis optimization can be performed if the probabilities of the

individual states in the fault state space are known. Maximal likelihood diagnostics is

achieved in this case by simply selecting the fault state with maximal probability which

is also consistent with the system constraints.

� If the system is not decomposed into units, then the fault occurance vector xF
describes directly the occurrence of the candidate faults (or fault combinations).

Probabilities P (f`) are assigned directly to each individual fault f` 2 F and source

transitions tf representing them. The objective function to be maximized is the

probability itself, thus X
t2F

xF (t) � P (t): (86)

� If the system is decomposed to into disjunct fault state components, e.g. by de-

composing the system into N components each one having its own fault state fell

` = 1 : : :N independently of the other ones, then the probability of a particular

fault pattern (f1; : : : ; fN) is

Pf1;:::;fN =
NY
`=1

Pf` (87)

The negative logarithm of the probability will be used instead of the probability

itself in order to have a linear objective function. These two functions have their

maxima simultaneously. Obviously,

� logPf1;:::;fN = �
NX
`=1

logPf` (88)

The objective function is simply the scalar product of the occurance vector and a

vector containing the negative logarithms of the individual faults. Note that the

mutual exclusion constraints assure that for each component only a single element

in the fault occurance vector has the value 1.

54

8.3.3 Practice oriented objective function

Both measures described above aim at the expression of the costs of testing in terms

of some theoretical cost estimators. Di�erent, explicitly �nancial cost oriented measures

are used in the testing practice. Without recapitulating this to the full extent11, some

representative examples are the following ones:

� Average execution time of a test

� Costs of a test originating in instrumentation, working time of skilled personnel etc.

Note that all these costs can be expressed as a linear objective function weighted with

the particular �nancial cost and the fault occurrence probability, thus an optimization

can be performed using the very same method, as for the theoretical measures.

8.4 Validation of fault tolerance

Optimization methods are also an e�cient means for verifying some properties of the

entire fault set. It must be possible to guess whether the property holds from the objective

value or the feasible solution belonging to the objective value. The latter can be used to

identify elements violating the property.

Note that this is not a \classical" optimization problem in which the choice of the objective

function is more or less �xed by the problem statement. In most cases, one can change

the objective function, for instance to speed up the solution process. In other words, there

is now yet another tunable parameter of the model and one has the choice of modelling

parts of the model with either constraints or the objective function. This is the reason

why the entries of the tasks in this section in Fig. (5) contain mostly generalities.

In the �eld of diagnostics, an important task is to validate the fault tolerance in the

system. Interesting subproblems are e.g. to prove that no single point of failure exists or

that the fault coverage of the test set used in a diagnosis algorithm is 100% under certain

conditions.

A modeling possibility is to de�ne the objective function as a measure of deviation from

some reference, derived from the fault tolerance requirements of the speci�cation. The

fault set should be constrained by conditions that hold when the system is supposed to

function properly. An example of such an assumption is the diagnostic t-limit :

X
t2F

xF (t) � t

The input and the syndrome should not be constrained and the fault set should not be

constrainted further as it might be interesting to know

11A comprehensive overview of the modeling of the economic aspects in diagnostics can be found in

[7].

55

� which occurance of faults cannot be tolerated;

� how to reproduce the inacceptable behavior;

� what is the reaction of the system to the situation.

Note that the implementation of a complicated objective function may require signi�cant

extensions to the model. In this example, \deviation from the reference" would probably

be expressed partly by allowed value combinations of input and syndrome, by introducing

additional variables and constraints.

8.5 Model compactness

8.5.1 The measurement method

Parts of the data
ow model of the MEMSY multiprocessor are under investigation once

again; see Section (5.4). The system structure and fault model are built according to

the algorithm in Section (6). An objective function and some more constraints must be

added so that the power of the optimization approach can be investigated with the help

of the components.

Let us �nd a suitable diagnostics task. It will be the estimation of non-detected faults in

a system S; see Section (7.2.2). The inequality description of the system | the structure

and fault model | is copied. The fault state variables of the copy SR, xFR, are forced to

the fault free state. This way, SR acts as a fault-free reference, its input and output is

only allowed to have legal combinations. Let the inputs and outputs of the two systems

be equal. The objective function is maximizing the number of faults in S. The problem

structure is shown in Fig. (18).

The system S is always a single data
ow component of the multiprocessor. Let the

state variable of the component is taken as the only fault state. The �rst element of

its domain is the fault free state. The higher the number of a state, the more severe is

the related fault supposed to be. (One often has a state variable like fcpu ok data ok,

cpu ok data faulty, cpu faulty data ok, cpu faulty data faultyg.) The following

objective function will maximize the severity of the fault:

maxf1 � x1 + 2 � x2 + 3 � x3 + : : :+ k � xkg

where the domain of the state variable is S = fs0; s1; : : : ; skg and xi = 1 if and only if

the component is in state si.

The model is sincerely not the most relevant one when performing some diagnostics of

the multiprocessor. It is believed, though, that the choice of the task is not of great im-

portance at this early stage of measurements, therefore a simple, automatically generated

56

System Input Syndrome

Maximize severity of faults

(copy of S)

Fault free

xIR

Sr

xSR

xF

S

xI xS

xFR

Figure 18: Integer programming model of the problem of non-detected faults

task is chosen. Also, the task does not have to be highly realistic. Note also that the

task dependent additions form a relatively small part of the problem, compared with the

formulation of the fault model, hence they are not expected to render the measurements

useless. This is especially true when looking at the preprocessing phase, where only a

small part of the problem is considered at a time.

The next sections measure the compactness of the model, by preprocessing the problem

and comparing its size with that of the original data
ow model and the intermediate

models. The problems will be solved in the section on performance measurements, Section

(8.6).

As IP preprocessor and solver, the codes OPBDP and CPLEX are used. They are de-

scribed in Section (9.3.6) and Section (9.3.5).

8.5.2 Results

Fig. (6) shows the e�ect of preprocessing on the model sizes for selected components { see

Section (5.4). \Term" is the number of terms in both the constraints and the objective

function. The running time is also shown.

On the way from the data
ow formulation to the integer programming formulation, the

automatic model transformations introduced a lot of redundancy. This prevented mean-

ingful comparisons of model sizes. But the comparison of the sizes of the original data
ow

models with the sizes of the preprocessed integer programming models can be done now,

57

Component Original model OPBDP preprocessed model

Var. Constr. Term Var. Constr. Term Time [s]

S arb 9838 14262 76087 N/A

Cpu 2988 4347 18715 396 765 2634 27.82

Disc 334 444 2330 172 265 1223 1.75

Reset 220 295 1191 212 432 1208 0.71

Term 92 159 459 48 108 248 0.36

Quantity Percentage of OPBDP preprocessed / original

Number of variables 56:2418� 21:3035

Number of constraints 68:2409� 23:8061

Number of terms 58:5825� 22:7967

Table 6: IP model sizes before and after preprocessing

as preprocessing removed of the easily removable part of the redundacy. The number

of �ring rules in the data
ow model and the constraints in the IP model is taken as a

measure of model size, respectively. Results are shown in Fig. (19)

The number of constraints is approx. 12 times as much as the number of �ring rules.

Model growth can be accounted to several factors:

� The original description is higher-level, data
ow tokens are of several kinds. For

this reason, one �ring rule has more expressive power than one constraint.

� Tranformations should produce \good" integer programming models. To achieve

this will be a major piece of future work.

Model growth is lower for large models. This can be attributed to the fact that large

models generated by hand tend to contain more redundancy, for the sake of easier under-

standing and because the designer has less overview which would enable him to model

more tersely.

8.6 Performance measurements

The measurement method and the problems are the same as in the previous section. Fig.

(20) shows the running times as a function of the number of constraints in the problem.

The c � xn shaped curves which �t the data best have n = 1:3781 and n = 1:8172

respectively for the solution phase and both phases. The measurement data is rather

irregular; this irregularity is expected to increase for larger models, especially for the

58

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 IP

 c
on

st
ra

in
ts

Number of dataflow firing rules

Component Data
ow Constraints in preprocessed IP model

�ring rules OPBDP CPLEX

S arb 495 14262 (not preprocessed)

Cpu 136 765

Disc 33 265

Reset 8 432

Term 8 108

Figure 19: Model sizes before and after all automatic transformations

solution phase. More large examples are needed to explore the e�ciency of solving the

models.

As mentioned before, running time depends to a large extent on the way of formulating

the model; a lot of experimentation will be necessary. The same goes for probing the

di�erent parameters infuencing the algorithms; most solvers provide a large number of

these.

59

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000

R
un

ni
ng

 ti
m

e
(s

)

Number of IP constraints

solving
preprocessing+solving

Figure 20: Running times of solving the IP problems

60

9 The software system

This section does not go into details of the implementation. Such information is available

in the source code and the documentation.

9.1 Design goals and choices

The experimental implementation is a collection of loosely coupled programs which com-

municate by means of �les and/or UNIX pipes (|). This solution was chosen because of

its extensibility: new parts can be added and other systems may be interfaced to easily,

as long as they are \plug compatible", i.e. the �le formats are the same. The task of

conversion | if needed | needs writing a simple parser in the worst case. Several such

parsers or their skeletons are provided already.

This way of communication needs that the interchange formats are speci�ed: see Section

(9.2). All the �les are plain text �les.

The implementation languages of the programs are perl, the Bison parser generator and

C++. Perl is good for rapid prototyping and the source can be easily modi�ed, thus it was

chosen for solving the simpler problems and for implementing unstable requirements, such

as tools speci�c to a chosen �le format. C++ is extendible and e�cient, if the program

is well designed, thus it is the implementation language of sophisticated algorithms. The

Bison parser generator is used for �le format conversions.

The source code and the documentation is managed by the CVS versioning system and a

set of generic make�les. Documentation includes diagrams of the Booch object-oriented

design notation.

The structure of the software system is summarised in Fig. (21). , Boxes correspond

to programs and arrows to data
ows, with shaded boxes indicating the interchange �le

format.

As to the size of the source code (excluding OPBDP source): there are � 4700 lines of C

and C++, � 1100 lines of Flex/Bison source, and � 500 lines of Perl and other scripts.

9.2 File formats

9.2.1 Overview

Fig. (7) summarises the used interchange formats and the �le extensions used for each

type.

61

common

xpetri2im

petri2opbdp

df2petrimodeller

xpetri

genfmf

multipetri

dfn

fmf
out

opb

im

xpetri file

CPLEX LP file
common

modeller

opbdp2cplex

opbdp_parser

opt_cplex

CPLEX

opt_opbdp

OPBDP

Figure 21: Overview of the structure

File extension Short description

.dfn Models of data
ow components

.fmf Fault models of data
ow components

.im Descriptions of Petri nets

.out, .opb Optimisation problems

Table 7: Interchange �le formats

9.2.2 Models of data
ow components

The �le format is the one used in [9]. It contains the description of a colored data
ow

component; see Section (5.3) for its description. It has the input and output variables,

the possible states and the �ring rules. Firing rules are of the form

i1(t) = iv1; : : : ; ik(t) = ivk; s(t) = sv) o1 = ov1; : : : ol(t) = ovl; s(t+ 1) = svnew

where the i-s are some input variables, the o-s are some output variables and s is the state

variable. The other symbols are arbitrary values legal for the corresponding variable.

The �le format includes priority and delay values for �rings. These are unused by the

software system.

9.2.3 Fault models of data
ow components

The data
ow to Petri net tranformation needs classi�cation of input and output variables

and the state variable in order to allow incorporation of a fault model for the component.

Various classes express various kinds of non-determinism. This information is not fully

62

present in the .dfn �le, and only appears in the naming of constructs, hence it is not

accessiable to the computer.

The classi�cation scheme currently in use by the software system is found below. It must

only be viewed as an example, for it may be exchanged to an appropriate model speci�c

scheme easily. Only the data
ow to Petri net transformation (df2petri) must be slightly

modi�ed to achieve that.

Variable class Description Treatment

normal describes no fault state. has at most one value at

a time. Having no value

means \don't care".

fault describes the fault state of a

system component

one element in the domain

is marked as \fault free".

permanent with permanent fault mode. has exactly one value.

transient with transient fault mode. has either one value or two,

one of which means \fault

free".

9.2.4 Descriptions of Petri nets

The representation is sparse. Linear constraints on 0-1 variables representing the occu-

rance of token
ow into a speci�c place can be added. Special comments are used to store

information on the fault model and the contents of the data
ow component | if the �le

comes from a data
ow to Petri net transformation. See Section (9.2.3).

9.2.5 Optimisation problems

A description of a linear 0-1 optimisation problem with integer coe�cients. The format

is similar to the widespread LP format of e.g. the public domain tool lpsolve. The

fact that the variables are 0-1 need not be expressed. This format is easily convertible to

other widely used formats.

The concatenation of .opb and .out is a full problem statement. Of those, .out is the

part generated by the reformulation algorithm of Section (6).

9.3 Programs

9.3.1 df2petri

A program transforming data
ow models into an equivalent Petri net model. The input

is a data
ow component description �le along with some additional information on the

fault model. Section (5) is devoted to the transformation algorithm.

63

9.3.2 genfmf

Generates a default fault model information �le for a data
ow component description, in

order to ease the creation of these �les. In the new �le all variables are normal variables

but the state variable, which is \permanent" (see 9.2.3).

9.3.3 multipetri

Constructs the iterative array model of a data
ow component (see Section (5.2)), by

concatenating the output an dinput state variables of the models at consecutive time

intervals.

9.3.4 petri2opbdp

Transforms the Petri net model | extended by some constraints | into a linear inequality

system of 0-1 variables. The algorithm is described in Section (6). The latter must be

extended by an objective function and additional constraints to obtain a formulation of

a speci�c dependability problem; for possible ways see Section (8).

9.3.5 CPLEX

CPLEX[13] is commercial software, solving linear mixed integer programming problems.

It is one of the most widespread and performant tools on the market. It has numerous

parameters for the solving and preprocessing phase; the system is tunable to a high extent.

9.3.6 OPBDP

OPBDP[11] is a freely available tool implementing an implicit enumeration algorithm

for solving linear 0-1 optimisation problems12 with integer coe�cients, as well as a large

selection of preprocessing algorithms.

9.3.7 opbdp2cplex

Transforms an OPBDP format problem �le into a CPLEX LP format problem �le. Uses

opbdp parser.

12Note that the result of model transformation is an optimisation problem satisfying these require-

ments.

64

9.3.8 Tools for the programs

A C++ library A library containing classes used by several of the executables, e.g.

container class templates.

Container class templates are planned to be replaced by STL[10].

opbdp parser A generic parser for OPBDP format problem �les. Parsing actions can

be implemented by subclassing an abstract class.

opt opbdp, opt cplex These tools are wrappers around OPBDP and CPLEX, resp. .

They run the optimisation software with some default options and interpret the output:

values of variables in the optimal solution will be translated into values of the data
ow

component variables from which the model to be solved was created.

65

10 Use of high-level descriptions

Speci�c high-level modeling techniques are shortly addressed in this section. Coloured

Petri nets are discussed as a problem description language. There are also plans to use

statecharts | hierarchical �nite state machines expressing also parallelism, as described

in [17] | in the modeling process.

10.1 Coloured Petri nets

Coloured Petri nets are popular modeling tools in the description of complex problems.

They show a good e�ciency especially in those cases, where -at least locally- similarities

are present in the problem, as this way the repetition of the identical parts can be avoided

in the Petri net representation.

In the case of diagnostics the following main reasons state the necessity of further inves-

tigations on application of coloured nets in a similar diagnostic algorithm:

� Our model is essentially nothing else than the unfolded version of a coloured net,

in such a way that mutual exclusion relations prescribe the uni-color �ring of the

variables.

A special attractivity of going to the higher description level results from the fact

that the Murata theorem forming the basis of the developed algorithms is valid

even for coloured nets, thus the search for T-invariants can be performed eventually

using a much more compact representation. The key problem still unsolved is, how

to express the constraints in a manageable form.

� A practical bene�t is assumed in the coloured modeling of the fault-error-failure

mechanism due to the following reasons:

{ The unfolded model handles faulty and fault-free cases in symmetrical tests,

as if they were fully independent ones.

{ The reduction of typical test structure elements, like dominant and equivalent

faults, require an extensive preprocessing in the non-coloured models.

{ Traditional Petri nets o�er a �ne granular modeling capability in hierarchical

modeling for the detailed description of the local fault-to-error transforma-

tion mechanism within a subunit. However, as error propagation mechanisms

through the remaining parts of the systems depend only on the type of the er-

ror on the outputs of this faulty subunit, this mechanism is largely independent

of the particular fault.

66

� If the UUT has a regular structure, like a massively parallel processor, this regu-

larity can be easily expressed by means of the association of algebraic attributes

with the tokens, in such a general form that a rule can describe "processor` tests

processor`+1".

67

11 Conclusion and future work

The main result of its report is that the combination of Petri nets as modeling tool and

of linear algebra and integer optimization as well-proven solution methodology for large

scale problems is a promising way for handling realistic diagnostics problems.

An experimental algorithm was implemented. It is not yet fully mature; its running

time and memory usage must be improved. This can be achieved by relatively little

implementation e�ort.

Note that the run-time e�ciency of the solver for the integer linear programming problem

to be used in the last phase heavily depends on the ordering of inequalities and in general

on the model formulation. A lot of experimentation will be necessary to guess the right

modelling choices.

Several high level descriptions | in addition to data
ow networks | have to be interfaced

to the software system, so that the latter smoothly integrates into the greater HIDE

framework. The greatest challenge is to keep the size of the model resulting from each

transformation low.

A more detailed list of improvement ideas are given near the ends of Section (5) and

Section (6).

68

References

[1] G. Csert�an, A. Pataricza, and E. Sel�enyi. Dependability analysis in hw-sw co-design.

In IEEE international Computer Performance and Dependability Symposium 1995-

IPDS'95, pages 306{315. IEEE Computer Society Press, Apr. 1995.

[2] R. David and H. Alla. Petri nets and Grafcet. New York u.a. Prentice Hall, 1992.

[3] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541{557, Apr. 1989.

[4] T. Murata and D. Zhang. A predicate-transition model for parallel interpretation

of logic programs. IEEE Transactions on Software Engineering, 14(4):481{497, Apr.

1988.

[5] L. Portinale. Exploiting t-invariant analysis in diagnostic reasoning on a petri net

model. In M. A. Marsan, editor, Application and theory of Petri nets 1993, volume

691 of Lecture notes in computer science, pages 339{356, Berlin..., 1993. 14th Inter-

national Conference, Chicago, Illinois, USA, June 21 - 25, 1993, Springer. PND/1.

[6] M. Silva, J. Martinez, P. Ladet, and H.Alla. Generalized inverses and the calculation

of symbolic invariants in coloured petri nets. Technique et Science Informatiques,

4:113{126, 1985.

[7] J. W. Simpson, W. R. ; Sheppard. System Test and Diagnostic. Kluwer Academic

Publishers, 1994. ISBN 0-7923-9475-5.

[8] J. Mart��nez, M. Silva. A simple and fast algorithm to obtain all invariants of a

Generalised Petri Net. Bad Honnef, Germany, Procs. of the 2nd European Workshop

on Application and Theory of Petri Nets, 411-421, 1981.

[9] Csertan Gyuri MEMSY modelljerol valami.

[10] Working Paper for Draft Proposed International Standard for Information Sys-

tems { Programming Language C++. Public Review Document. ISO/IEC

JTC1/SC22/WG21, 1997.

[11] Peter Barth. Logic Based 0-1 Constraint Programming. Kluwer Academic

Publishers, Boston, ISBN: 0-7923-9663-4, 1995. For OPBDP: World Wide Web

http://www.mpi-sb.mpg.de/ barth/opbdp/opbdp.html, 1995.

[12] Uni�ed Modeling Language Summary, Version 1.1.

World Wide Web http://www.rational.com/uml/, 1 September 1997.

[13] Using the CPLEX Callable Library. Version 4.0, 1995.

69

[14] H. P. Williams. Model building in mathematical programming. Wiley and Sons,

New York, 1990.

[15] G. L. Nemhauser, L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, New York, 1988.

[16] Fourer, Robert (4er@iems.nwu.edu), Gregory, John W. (ashbury@skypoint.com).

Linear Programming FAQ. World Wide Web http://www.mcs.anl.gov/home/-

otc/faq/linear-programming-faq.html, Usenet sci.answers, anonymous FTP

ftp://rtfm.mit.edu/pub/usenet/sci.answers/linear-programming-faq, 1997.

[17] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8(3), pp. 231-274, June 1987.

70

