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Abstract

Current trends in the development of design automation tools aim

at a radical increase in productivity by o�ering highly automated de-

sign tools. As applications include even critical control applications,

dependability becomes to an important design issue.

A novel approach supporting concurrent diagnostic engineering us-

ing a data ow behavioral description is presented in this paper. The

basic idea of this new method is the extension of the descriptions of

the functional elements with the models of fault e�ects and fault prop-

agation at each level of the hardware-software codesign hierarchy, thus

allowing design for testability of digital computing systems.
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Using the presented approach test generation can be done concur-

rently with the system design and not only in the back-end design

phase as it had been done previously. For test generation purposes

the generalized forms of the well known logic gate level test design

algorithms can be used.

Keywords: diagnostic design, testability, test generation, PODEM,

data ow, HW-SW codesign

1 Introduction

The advent of low-cost implementation technologies of application speci�c

circuits opens new horizons for custom-tailored solutions. The availability of

low-cost, but highly complex o�-the-shelf programmable components (PLDs)

and ASIC technologies allows for the use such a background even for small en-

terprises, and not only for the market leaders in state-of-the-art technologies,

like some �ve years ago. Recent e�orts aim the reduction of cost and time

of the design tasks by developing integrated environments for system engi-

neering. These o�er various tools for the computer architects and circuit de-

signers based on a homogeneous tool-box and common engineering database

for the whole design process. An important characteristic of such tools is

that activities earlier performed only after the �nal engineering design are

pushed forward into an early design phase, thus allowing a radical shortening

of the design-feedback loop. Practical experiences show a 1:20 reduction in

design time, while the resulting hardware overhead due to the automated

design is as low as 40%. Moreover the use of automated design technologies
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radically improves the product's design quality. One such design approach is

Hardware-Software Codesign (Fig. 1), that denotes "the joint speci�cation,

design, and synthesis of mixed HW-SW systems" ([BBC+93, RB95]).

A main insu�ciency of these tools originates in the lack of an integrated

support for the follow-up phases of dependability analysis. This becomes cru-

cial in safety related applications, like process control and automation. The

avoidance of costly re-design cycles needs the pushing of diagnostic design

(test generation, testability analysis), into early phases of system design as

well. In [SS94] a method is presented for doing testability analysis as part of

integrated diagnostics in early design phases, but the problem of generating

and designing of the test set remains still unsolved.

The aim of our work is the development of a tool-box for model-based

diagnostic and dependability evaluation in the form of an extension of the ex-

isting functional design tools. The basic models and technologies developed

are fully coherent with those used in the original tools in order to keep the

integrity of the design environment and avoiding unnecessary model trans-

formations.

The basic idea of the methodology is as follows:

1. A system is modeled at the highest level of abstraction of the functional

design process usually by data ow models [Sch92, BS93]. Only the

ow of data and the processing-related delay times are modeled in

the form of token ows without any description of the individual data

transformation in the components (Level 1 and level 2 uninterpreted

modeling in Fig. 1). This phase aims primarily at performance analysis

and optimization and it is supported by formal analysis methods, e.g.

3



level1 and level2

HW

level3 and level4
interpreted modeling

HDL model

uninterpreted modeling

HW-SW separation

SW

specification

Level1: data & control functions are
not separated, uninterpreted modeling

DF (like) language

data & control functions are
separated, uninterpreted modeling

Level3: interpreted modeling of control functions
modeling of data functions is uninterpreted

Level4: interpreted modeling of
both data & control functions 

in
cr

ea
si

ng
 u

nc
er

ta
in

ty

Level2:

SW synthesis silicon/PLD synthesis

co-design process
(iterative steps of model refinement

executable specification
input:

output:

(set of interactive modules)

and evaluation)

abstract architecture
(set of communicating processors)

DFN -> DFN’ DFN -> HDL

Figure 1: HW-SW codesign process

on the basis of automatic translations into timed Petri-nets.

2. More and more structural and functional details are added by stepwise

re�nement into this initial model thus de�ning increasingly precisely the

system's structure and the data processing functions of its components.

(Level 3 mixed uninterpreted-interpreted modeling in Fig. 1).

3. Finally, when all component functions become fully de�ned (Level4

interpreted modeling in Fig. 1), hardware-software separation can be

done and the automatic or interactive hardware and software synthesis

processes can be started.

The presented approach is based on the idea of extending the data ow

notation by incorporating faults and fault e�ects. This extended notation

will be used in the modeling phases of HW-SW codesign, thus fault related
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information can be gained concurrently with the system design by the eval-

uation of this composite model.

In uninterpreted modeling the tokens representing the data can be marked

either as correct or as erroneous. A superset of the fault propagation paths

can be estimated by tracing their ow from the fault site in the network.

Due to the simpli�cations all elements are assumed to propagate potentially

all faults, (no data dependencies are modeled) only necessary conditions can

be estimated, but even this over-pessimistic results can be still used for an

e�ective control strategy in the test search procedures in more detailed mod-

els.

Later, after introducing data dependencies at the mixed and interpreted

models costly heuristic or structural test generation algorithm must be in-

voked for the �nal decision. However the high-level dependability analysis

provides not only an inexpensive way for comparative analysis of alternative

constructs, but serves as a tool for test strategy design.

In previous works [CGPT94, Cse94, CPS95] and in this work it is shown

that the following problems can be solved using the presented approach:

� fault simulation

� test generation, fail-safe test generation

� estimation of optimal diagnostics strategies

� testability analysis for both built in and maintenance tests

� failure modes and e�ects analysis (FMEA)

The paper is organized as follows: Section 2 introduces the modeling

approach, and presents a simple system and its model as an example. In
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Section 3 a representative of the family of test pattern generation algorithms

is presented, and a test is generated for the example. Finally Section 5

contains concluding remarks and a short overview of the future work.

2 The Modeling Approach

2.1 The fault model

Faults are mainly hardware related and usually modeled at a lower level of

abstraction. Therefore it is necessary to introduce an error model at higher

levels of abstraction. Since in uninterpreted modeling data dependencies are

unde�ned, it has to express uncertainties due to the neglected data depen-

dencies. In the proposed approach a multi valued fault model is used instead

of the stuck-at gate level fault model. Its advantage is the high expressive

power for the description: the quite complex functional units can be de-

scribed more precisely and various other requirements, like safe testing, can

be considered. A potential multi-valued fault model can be de�ned: accord-

ing to the black-box modeling approach, component faults are identi�ed by

the rough, and for the sake of the compactness, simpli�ed classi�cation of

the results they deliver:

� ok message denotes that the component delivered correct computa-

tional result

� inc message denotes that the component delivered incorrect data

� dead message will be sent, if the component, due to a fatal fault, does

not deliver results at all
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� x message is used to express uncertainty. The correctness of the result

depends on the actual data values received by the component and on

the actual implementation of the component (for a given data value it

would be ok, for another it would be inc)

2.2 The data ow notation

The data ow notation, proposed in [Jon89], is well-suitable for conceptual

modeling of computing systems in the early design phases [BS93], for early

validation of computing systems [BBS93], and for performance evaluation

[CBBS94].

A data ow network N is a set of nodes PN , which execute concurrently

and exchange data over point-to-point communication channels CN . The

data ow node represents the functional elements of the system. The signal

propagation attributes of an element are described by a simple relation be-

tween inputs and outputs, eventually depending on the previous state of the

node. Note, that as the correlation of the inputs and outputs is described

by this relation in a weaker form than by an input-output function, this be-

havior can be also non-deterministic. The channels of the data ow network

symbolize the interaction between the functional elements of the system. In-

ternal channels link two nodes. Input (output) channels connect a single

node to the outside world representing the primary inputs (outputs) of the

system. Communication events occur when data items (subsequently called

tokens) are inserted into an input channel (input event describing the arrival

of some data to the primary inputs) or data items are removed from an out-
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put channel (output event denoting the appearance of results on a primary

output of the system).

The functional behavior of a node p is de�ned by a set of �ring rules

Rp. Sp de�nes the set of possible states of the node. A node is ready to

execute as soon as the data required by one of its �ring rules are available

and the node is in a proper state. The meaning of �ring rule f 2 Rp, denoted

by f = (s;Xin; s
0; Xout) is that if the node p is in state s 2 S, each of the

input channels i 2 Ip holds at least Xin(i) data items, then �ring rule f is

potentially selected for execution. The execution of �ring rule f removes

Xin(i) data items from each input channel i 2 Ip and outputs Xout(j) data

items on each output channel j 2 Op, while the node changes its state from

s to s0.

2.3 An example

The selected example is very simple due to space limitation and can not in-

troduce the full modeling power of the presented approach (refer to [Cse94]).

The system is an intelligent scales, that can calculate the price of goods ac-

cording to its weight and to the unit price. Modeling is done at the highest

level of abstraction (uninterpreted modeling). The fault model is restricted

to single internal faults, that can be one of the following:

� eq-more identi�es the fault when a component delivers a result, which

is either equal to or larger then the correct one. Actually in our case

it is considered to as a fault free result.
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WEIGHT SENSOR:
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O={from_weight_sensor}
S={eq-more  , less, dead}
R={f1 ... f8}

f2=(eq-more; goods=less; eq-more; less->from_weight)
f3=(eq-more; goods=dead; eq-more; x->from_weight)
f4=(eq-more; goods=x; eq-more; x->from_weight)
f5=(less; goods=eq-more; less; less->from_weight)
f6=(less; goods=less; less; less->from_weight)
f7=(less; goods=dead; less; less->from_weight)
f8=(less; goods=x; less; less->from_weight)

f1=(eq-more; goods=eq-more; eq-more; eq-more->from_weight)

P
C

N

N

INTELLIGENT SCALES:
={price in, weight_sensor, controller, display, arithmetic} 
={price_per_unit, from_price_in, from_weight_sensor, goods, to_display, to_arithmetic, from_arithmetic,

from_ctrl, price_out}

Figure 2: Data ow model of the intelligent scales

� token less is sent by a component if it delivers a result, that is less

than the correct one.

� dead denotes that a component does not deliver results at all.

� x expresses the uncertainty when either ok/more or less could be sent.

We assume, that the system has no built-in fault detection capabilities. From

the point of view of the shopkeeper fault less is of the greatest severity since

in this case the price paid by the customer is less than the value of the goods.

The data ow graph of the system and the formal notation of one of the nodes

are shown in Fig. 2. (Note that if it is necessary the fault ok/more could be

split into two faults ok and more.)
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The system consists of 5 parts: price in reads in the price per unit of the

goods from a keyboard and sends it to the controller and to the display as

well. Malfunctions of the component are: not delivering result (e.g. due to a

broken wire), or delivering faulty result less. The weight sensor measures

the weight of the goods and sends the results to the controller. The weight

sensor always sends result, but it can be either ok/more ore less. The

controller in the �rst step of its functioning receives the weight and the

price per unit of the goods and delivers them to the arithmetic unit. In the

second step the computed price received from the arithmetic unit is forwarded

to the display. The controller can deliver either ok/more or less results, or

it can be even dead. The arithmetic unit is responsible for computing the

price of the goods from the price of the unit and from the weight. When the

component is faulty computation results can be incorrect or it is possible that

the component does not deliver results at all. Finally the display displays

the price per unit and the price of the measured goods. The display can have

one of the faults ok/more, less, dead.

Inputs of the system are: price per unit, goods, while price out is the

output of the system. The initial state of fault-free components is ok0. A

verbal interpretation of some �ring rules of the weight sensor node (Fig. 2)

is:

f1- During a fault-free functioning this rule describes the component. Since

only fault-free messages eq-more are received and the component does

not have any internal fault, it remains in fault-free state eq-more.

f2- Describes the fault propagation of the fault-free component: if the

input message, received from goods is faulty less, the result will also
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be faulty less and it will be delivered into from weight.

f5- Due to an internal fault the sensor measures the goods faulty. The

result of the measurement is less then the weight of the goods, and the

faulty result is delivered to the controller via from weight.

3 Test Design in HW-SW Codesign

The base of e�ective fault detection and diagnostics is a well planned test

strategy. In this section we will show that test strategy design can be done

concurrently with system design by using a data ow model based auto-

matic test pattern generation (ATPG). The presented algorithm is a gener-

alized form of logic gate-level test pattern generation algorithms. The idea of

generalization arises when considering the correspondence between the two

models:

� Similarity to the gate and module-level stuck-at fault model, where

faults are modeled at the output of logic gates. Errors of a functional

data ow node are manifested at the outputs in the form of erroneous

messages.

� The behavior of a data ow functional element is described by a transfer

relation, similarly to the truth or state transition tables of logic gates

and modules.

� The model may contain loops that, just like in case of sequential logic

have to be cut and an iterative array model can be constructed in both

cases [ABF90].
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� Since components can have states, the testing of a system has to start

from a prede�ned initial system state. (In practical data ow models

examined till yet there was no need for the search of a self-initialization

sequence.)

We will exploit this correspondence and present the high-level version of a

gate-level ATPG algorithm. As a representative example we selected the

well known PODEM algorithm [ABF90, Goe81] that is widely used for test

generation for stuck-at faults in logic circuits.

3.1 The PODEM algorithm

In order to generate a test for a given fault the problem of test generation

is recursively divided into the subproblems of: implication and checking;

line justi�cation; fault propagation. Implication and checking aims at the

reduction of the problem space, line justi�cation is responsible for setting the

primary inputs (PIs) according to a given line and fault propagation tries to

propagate the state of a line to the primary outputs (POs). The PODEM

(Path-Oriented Decision Making) algorithm (Fig. 3) is characterized by a

direct search process: it directly manipulates the PIs and tries to propagate

the fault to the POs. In each step of the algorithm checking and implication

is done. To keep track the still open problems a set is maintained during

the algorithm: the D-frontier contains the gates from the outputs of which

the fault has to be propagated towards the POs. The advantage of Podem()

over other test pattern generation algorithms is that due to the direct search

that:
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� no consistency check is needed

� the J-frontier can be eliminated

� backward implication are not necessary

In the proposed approach solution of the subproblems is slightly di�erent

from the original one:

� Due to the multi-valued fault model eq-more, less, dead, x values

are used instead of 0 and 1. It means that instead of values D (1 in the

good, 0 in the faulty circuit) and D (0/1), fault-pairs eq-more/less,

eq-more/dead, eq-more/x, less/eq-more, less/dead, less/x,

dead/eq-more, dead/less, dead/x are propagated.

� Instead of the truth table �ring rules are used. Possible actions depend

on the state of the component. States of the component have to be con-

sistent in subsequent blocks of the iterative array model (predecessor

and successor states).

� Checking has to ensure that the constraints imposed by the global

testing requirements, i.e. safe testing, are ful�lled.

Test generation starts with initialization of the channels, where the value

ND (not de�ned) is assigned to each channel. After the initialization the

Podem() procedure is called (Fig. 3). In each step when Podem() is executed

some checking occurs, a PI is selected, implication is done, and Podem() is

called recursively again to check the results of the implication step. The

activities of the Podem() procedure can be outlined as:

Step 3 the stop criterion is checked, e.g. if a fault pair has been propagated

to a PO, test generation is successful.
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begin
PODEM()

if (error at PO) then return SUCCESS
if (test not possible) then
k=Objective()

3:

1:
2:

4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

j=Backtrace(k)

begin
for (v=all possible faults)

end
return

end

if (PODEM()=SUCCESS) then
Imply(j,v)

FAILURE

return FAILURE

return SUCCESS

Figure 3: The PODEM algorithm

Step 4 if no test can be generated, Podem() has to be stopped. This case

is when:

� the target fault can not be activated, since a di�erent value has

been propagated to the output of the faulty component.

� no error propagation step can be done, since the D-frontier is

empty

Step 5 an objective (a channel) for error propagation is selected. Usually it

is a channel from the D-frontier.

Step 6 a PI being in connection with the selected channel are selected.

Step 7{12 All possible faults are probed at the PIs in order to ful�ll the

objective by implications. If none of the probes are successful Podem()

returns failure and another PI (according to Step 6) has to be selected

and probed again.

In each step Podem() is executed two other procedures are called: Objec-

tive() selects a channel to which a fault pair has to be propagated. For this

14



begin
Objective() /* fault is n=f */

if (all output of n is ND) then N=n
else select a node N from D-frontier
select one input m of N
return m

end

3:

1:
2:

4:
5:
6:
7:

Figure 4: Procedure Objective()

reason in:

Step 3,4 a component is selected. It is either the component a test has to

be generated for or it is a component from the D-frontier.

Step 5 a still unassigned (it has a value ND) input of the node is selected.

begin
3:

1:
2:

4:
5:
6:
7:
8:
9: end

Backtrace(k)

return k
end
k=j

begin
while (k is an output)

select an input j of node n /* k is an output of n */

Figure 5: Procedure Backtrace()

The other procedure Backtrace() is responsible for �nding the PIs, with

which adjustment a fault pair has to be propagated to the selected channel:

Step 3{7 A search is done toward the PIs of the data ow modeled system.

To an output of a component an input is assigned. It will denote the

implication path from the PI to the selected objective.
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arithmetic
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weight sensor

controller

arithmeticdisplay

eq-more eq-more

eq-more

eq-moreeq-more

eq-more/less

eq-more/less

eq-more/lesseq-more/less

Step 0:

Step 1:

Step 2:

Backtrace()=goods

from_ctrl=eq-more/less, price_out=eq-more/less
D={display}

Step 3:

SUCCESS

Backtrace()=price_per_unit

D={controller}

Objective()=from_price_in

Imply() -> price_per_unit=eq-more, to_display=eq-more, from_price_in=eq-more

Objective()=from_weight_sensor

Imply() -> goods=eq-more, from_weight_sensor=eq-more, to_arithmetic=eq-more/less, from_arithmetic=eq-more/less,

Figure 6: Test generation for less fault of the controller

16



3.2 Test generation for the example

To enlighten the previously de�ned algorithm, test generation is shown in

detail for the less fault of the controller component in the simple example.

Steps of the test generation are presented in Fig. 6 step-by-step. Note that

identi�er of channels are omitted!

Steps of test generation can be explained as:

Step 0 Initialization. ND is assigned to all channels. Test generation can be

started.

Step 1 First call of the Podem() procedure. Since the POs have not been

reached yet, Objective() and Backtrace() are called. In this step all

the outputs of the controller unit are ND, thus the objective is channel

from price in. Backtrace identi�es the PI price per unit. After-

ward implication is done, but no error pairs appear, thus the D-frontier

remains empty.

Step 2 After the implication of the 1st step, Podem() is called again. This

time the objective is channel from weight sensor. Backtrace now

identi�es the other PI of the system: goods. As a result of implication

an error pair appears on the output channel of the display component,

that is now element of the D-frontier.

Step 3 Third, last call of Podem(). Checking detects the error pair eq-more

/less at the PO price out, thus test generation is �nished success-

fully.

The result means, if the controller has a less fault, it can be detected by

measuring a known weight. (Prize must also be typed correctly.)
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4 Conclusion and Future Work

In this work we presented a modeling approach which can be used in the

early phases of HW-SW codesign. It supports testability and dependability

analysis in such a way that it becomes an integral part of the design process,

since in the proposed data ow model both the functional and fault prop-

agation/fault e�ects information are incorporated. By means of a simple

example we have shown that even in this phase of the design test strategy

design and testability analysis can be done concurrently with the system

design.

Future work incorporates the implementation of an environment in which

dependable hardware-software codesign can be done. For this reason the

Ptolemy design environment, developed at the University of California at

Berkeley, will be used.
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