
1

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 1

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 2

OMG Model Driven Architecture

Document: ormsc/2001-07-01
Architecture Board ORMSC 1

July 9, 2001

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 3

OMG’s vision on architecture

SECURITY

DIRECTORY

WEB

Model Driven
Architecture

UML

MOF

NET

Manufacturing

Finance

E -Commerce

HealthCare

More

Transportation

 CORBA

XMI/XML

PERVASIVE SERVICES

CWM

JAVA

TRANSACTION

EVENTS

Model Driven Architecture TelecomSpace

2

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 4

Modeling views

Computing Independent
Business Model

Platform Independent
Component View

Platform Specific
Model

Computing Independent
Business Model

Platform Independent
Component View

Platform Specific
Model

Componen t 1 Componen t 2

Computat ion
independent

Plat form
independent

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 5

Metamodell

O t h e r
l a n g u a g e s

U M L

M e t a m o d e l

P I M

P S M M a p p i n g
t e c h n i q u e s

P I M M a p p i n g
t e c h n i q u e s

P S M

M O F

I n f r a s t r u c t u r e

1 . .n 1 . .n

1 . .n1 . .n

1 . .n

1 . .n

1 . .n

<<expressed w i th>>

<<expressed w i th>>

<<expressed w i th>>

< < b a s e d o n > >

< < b a s e d o n > >

<<are desc r i bed w i th>>

<<are desc r i bed w i th>>

M a p p i n g f r o m P I M t o P S M

Mapp ing f rom PIM to P IM

< < i n d e p e n d e n t o f > >

< < d e p e n d s o n > >

R e f a c t o r i n g f r o m P S M t o P I M

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 6

UML promises

UML 1.4 specification

www.omg.org

3

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 7

Need for visual programming
• Verbal definition

– long, ambiguous, lack of mathematical preciseness

– no IP reuse, language problems
– navigation ?
– maintenance ?

• Programming languages
– chaotic linear code

– special dialects
– hard to understand for non-programmers

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 8

Third generation CASE
Huge projects
• collaborative teamwork ⇒ repository handling
• modular technology, interface and attribute definition
• animation based debugging
• documentation
• roundtrip engineering
• configuration control
• version control
Visual specification design, requirement capture
• standard, easy-to-understand graphical notation
• document generation possibilities

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 9

Third generation CASE (cont’d)
Object orientation
• dynamic and static structures, inheritance
• component based development
Complex control process description
• hierarchical
• concurrent
• event driven
Distributed, multitasking, multi-threading systems
• communication
• lifecycle
Run-time platform support
• commercial
• RT

4

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 10

UML

Visual, object-oriented programming

Comprehensive tool for the entire lifecycle:

• specification design

• algorithm design

• architecture design

• code generation, implementation

• setup, configuration

• documentation

⇒ productivity and quality improvement at the same time

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 11

Origins

• Systematic requirement capture and specification

(Ivar Jacobson)

• Object-oriented visual programming

(Grady Booch, Jim Rumbaugh)

• Hierarchical, concurrent state automaton

(David Harel)

• OMG: Rational, IBM, Ms, HP, Oracle, I-Logix

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 12

Visual object oriented programming

• Object-orientation:

– algorithms + data structures

– hierarchical description

– model based problem composition:

• the problem should be described, not the solution

(Korn, 1974, databases)

• hierarchical refinement from general to specific

class ⇒ instance

• Graphical notation: Rumbaugh OMT

5

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 13

Advantages of using UML

Cost
factors very low low nominal high

very
high

Reusability UML
diagrams

UML
diagrams &

interface tags

100%

90%

80%

70%

74%
80%

90%

71%
76%

88%
82%

Reusa-
bil ity

Analyst
capability

Relia-
bil ity

Documen-
tation

Programmer
capability

Application
experience

Development
tool

Cost

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 14

Design workflow

System
requirements

Specification

System
model

Attribute
model

Architecture
definition

Functional
model

Object code

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 15

System model

Physical system
Interface

modul
Control
program

RT - platform

control signals

sensor signals

6

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 16

Detailed workflow
System

requirements
Behavior

description
Algorithm

description

Functional
diagram

Allocated functional
diagram

Functional diagrams for
units

Program
code

Connection and
message structure

Documentation

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 17

Automation and quality
What does it solve?
• Unambiguous notation (?)
• Hierarchical refinement
• Syntactically adequate relations inside the model
• No coding errors in automatically generated parts (error/LOC)
What does it not solve?
• Semantic correctness
• Conformance to specifications, fulfilment of requirements
• Performance and availability

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 18

Typical sources of design faults
Specification

– conflicts
– imperfection
– configuration management
– post-patch

Design
– divergent teamwork
– technological design faults (e.g.: deadlock)
– incompatibility with requirements - VALIDATION
– incompatibility with specification - VERIFICATION
– interface incompatibility (HW, SW)
– coding errors

7

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 19

Simulation and animation based verification

Interface
modul

Control
program

RT - platform

control signals

sensor signal
Simulated system

Graphic animation

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 20

Analysis of system dependability
A great number of accidents due to specification problems:
• imperfect,
• inadequate prerequisites,
• uncovered cases,
specification integrity checking (top-down)

Specification components:
• Functional requirements,

• Security criteria,
• Operation requisites: limitations to design space
• Ranked quality requirements

(priority: performance or security?)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 21

Completness
• The specification:

– distinction from undesired behavior,
� avoid misunderstandings

• Automatic support of specification completeness:
– phrase constraints

(e.g. validity time interval rules for input)
– verification (e.g. reachability analysis)

• Further analysis of software model:
– controller (state machine model for behavioral description),
– sensors, controllers, controlled environment

8

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 22

Criteria of completeness

Interface
module

Control
program

RT - platform

control signals

sensor signals

Arbitrary frequency

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 23

Inputs and outputs

Completeness of input and output variables

• reaction must be defined for all possible inputs from

sensors (even if NOP)

• unused, but possible output values must be verified (e.g.

valve always opened, no closing procedure)

• credibility check required upon security-critical output

values

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 24

Trigger events
Expected input values:
• prerequisites relative to environment
• acceptable domains
„Unexpected” input values:
• potential error
• pre-defined reaction
• logging
From all states, for all events (event combinations)
• Specified behavior
• Even if there is no event for a certain period
Input check required

9

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 25

Distributed systems

Completeness of state definition
• secure initial state (boundaries initialized)
• refreshing internal model after system restart (default)
• initialize system and local variables
Detection of lost information (missed messages)
• what happens to lost messages?
• how long does the system wait for the input? (warning)
• time restrictions for inputs
• time intervals instead of dates
• reaction to inputs not fulfilling requirements

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 26

Performance analysis
Minimal and maximal frequency of interrupts

• check minimum frequency

• scenario for overload situations (emergency warning,

masking, degraded mode)

Capacity related definitions

• defined actions for a saturated system

Handling invalid (late) data

validity period for all input data

Application generation
Source:
• modeling environment
• programming or hardware description language
• boundary conditions

Goal:
• code generation from model

• as effective as possible
• model building from source code

10

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 28

Code generation levels

• From the entire model
• From certain parts of the model

– class

• declaration
• declaration + behaviour

– package
– ...

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 29

Requirement modelling and
architecture design

Use case, class and package diagrams

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 30

Content
• Use case diagrams

– actors, use cases

– scenarios, event sequences

• Class and object diagrams
– classes, objects
– relations

• Package diagram

11

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 31

Use case diagrams: objective
Requirement acquisition:

definition of expected system capabilities

• system
• environment (actors)

• expected behavior patterns (use cases)

Actor = user
Use case = potential interaction between user

and system

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 32

UML use case diagrams

lecturer roll query

administrator handle course list

student attend a course

STUDENT ADMINISTRATION
SYSTEM

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 33

 Use case diagram syntax
Use case diagram components:

• system - square. with use cases inside

• actor - scribbling-mn
• use cases - denoted ellipse

• relations
– actor - actor
– actor - use case

– use case - use case

12

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 34

Use case diagrams construction
Identification of actors:

• Who is using the system directly?

• Who is in charge for system maintenance?
• External resources used by the system

• Other connected systems

“Gathering nouns from a verbal specification.”

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 35

Identification of use cases
• What is the system used for?

• How is the system used?

• What is the system doing?
• What the system is expected to know?

“Gathering verbs from a verbal specification.”

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 36

Use case diagrams relations
Relations:

• association
– actor - use case
– actor involved in usage

– multiplicity

• extension
– use case - use case

– a use case is sometimes extended by another
(typical: exception handling solutions)

13

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 37

Use case diagrams relations
• generalization

– actor - actor

– use case - use case
– a use case or an actor is a special occurrence of

another use case, or actor

• include
– use case - use case

– a use case always includes another

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 38

Use case diagrams example

lecturer roll query

administrator handle course list

student register

STUDENT ADMINISTRATION SYSTEM

<<extend>>

check password

non-existing
 course

<<include>>

<<include>>

<<include>>

1 *

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 39

Scenarios
Scenario: what does the system do from the

actors point of view (for all use cases)

• brief description
• prerequisites, initial event

• series of events

• alternative series of events
• final event, after-effects

NOT UML!

14

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 40

Scenarios example

Use case is started by the student in order to register for a
course.

P1. Started when student provides his ID.

F1. Check ID.
F2. Display course list.
F3. Student selects course .
F4. Include student to course roll.
F5. Send acknowledge message.

E1. Display: false ID.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 41

UML in the elaboration phase
Second phase: elaboration

• detailed analysis of problem

• architecture design
• identification of classes and objects

• definition of relations

Class diagrams

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 42

Class diagrams
Static structure diagram: the system

components, their internal structure, and
relations

• objects

• classes

• interfaces
• connections

• packages

15

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 43

Class diagrams example

Lecturer

Announcement

auditorium
date

opening ())

User
name
password

Student

Register handling

register student(course, student data)

*

Course

name
credit

Administrator
Course list handler

register for course(name,credit)
delete course(name)

1

*

*

1

1

1

1

14

3..10

0..4

1..*

1..*

register student(course, student data)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 44

Class diagram elements
Class

• name

• attributes
– visibility
– type

– initial value

• methods
– visibility
– type

������

����	
 �
	�����������

�����������
 ����	�������	

����

 ������!

����������
 "�#�����

�����#$ %����������
 ������!�

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 45

Refinement
Object:

• name

• attributes

Composite object

�
���&�	
'���&��

#	��
	����������

�	�(����������)�����)�*��

�
�+	#���
����#(

����#���
��	����

�������
 %�����

$�
����

,#
�����

�	
��#��

,#
�����

����	
-���	��

�.
��#	
'��	

+��	�+��	�

16

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 46

Association
Association: relation of classes and objects

• name

• navigation properties, direction
• roles

• multiplicity

• type
• implementation

– attribute

– method

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 47

Structuring
Qualification -

• attribute enabling the grouping of objects,

• querying of group elements
person

bank account

*

0..1

account_no

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 48

Hierarchy
Content:

between container and its component objects

Composition:
Container physically

holds its parts

attributes

foregroundcolor
backgroundcolor
borderlinewidth

polygon

1

1

point

xpos
ypos

3..*

1

17

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 49

Association
Association class:

associations may hold attributes and operations,
that do not fit to any other objects.

manufacturing

capacity

product machine
1..**0..*

switch()

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 50

Inheritance
Generalization:

parent - child relation (inheritance)

shape

circle square polygon

color

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 51

Abstract classes
Abstract classes and interfaces:

a particular realization hidden behind an interface
class

• dependency

• realization

Editor

Open()
Close()

<<Interface>>

MSWin window

open()
close()

Motif Window

open()
close()

Macintosh window

open()
close()

18

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 52

Package diagrams
Package:

• functionally correlated model components

• package
• relation

– dependency

Persons

Subjects
Registrations

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 53

Package diagrams and SW architecture

Top level package diagram - SW architecture

Persons

SubjectsRegistrationsInterfaces

Error handling Database

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 54

Control process design

• Basic components: events, operations

• Sequence diagrams

• Statechart

19

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 55

UML dynamic behavior
• Until now: static constructs

– use case diagrams (requirements)

– class/object diagrams (static architecture)
– (deployment diagrams)

• Designing dynamic behavior of classes
– sequence diagrams

– statechart diagrams

→ generating code

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 56

Event

– parameterized asynchronous event
e.g. mouse click: position, button

– separate element, instance of event class,
inheritance: attribute expansion

– semantic:
• creation, sending to target object(s)
• queue in target object, selection from queue
• processing
• destroyed after processing
• reactive object: event triggered

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 57

Elements of dynamic behavior
• Operation:

– service provided by classes (method)
• return value may be given

– separate element, part of class definition
– synchronous communication between objects

• e.g. method invocation
result = server->operation(p1, p2, ..., pn)

• Message:
– event or operation

20

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 58

Elements of dynamic behavior II.
• State:

– state of an object

– determined by:
- attribute values (e.g. x<3)
- condition fulfillment (e.g. operation executable)

• State transition:
– change of state

– due to an incoming message (triggered)
or autonomously (null trigger)

• Action: operation performed by the object

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 59

Sequence diagrams
• Provides:

– order of messages between objects

– a typical case scenario

• Available for:
– development of detailed behavior descriptions

 (typical cases for a statechart)
– development of tests

– check timing parameters

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 60

Sequence diagrams - overview

RequestForks(pPhil, pLeftFork, pRightFork)

Release(pPhil)

BecomeHungry()

tm(5)

ForkGranted(pFork)
NotifyEating(pPhil)

Allocate(pPhil)

Allocate(pPhil)

Allocate(pPhil)

Eating

Thinking

Free

Allocated

Allocated
Free

theRM:
ResMgr

Doc:
Philosopher

leftFork:
Fork

rightFork:
Fork

ForkRefused(pFork)

21

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 61

Timing on sequence diagrams

• Descriptive (defining requirements)
– time interval
– timeout

Client Server

10s

tm(10s)5s

request

reply

ack

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 62

Sequence diagram components
• Object (class instance)
• Lifecycle
• Message: event or object
• Creating/deleting objects
• Condition/state, fork
• Timeout
• System boundaries
• Partitioning
• Time interval definition

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 63

Co-operation diagram
• Relations and messages between objects

 : Prof essor

course options form

course form

course

course offering

5: get_profess or(professor_id)

1: add_course()

3: select_course()

2: disp lay()

4: add_profess or(professor_id)

6: add_profess or(professor)

22

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 64

State charts - introduction
• Behavior of (reactive) objects

– reaction to messages (event, operation):
state transitions and actions

– conventional: state diagram

• State chart: extension of state diagram
– state hierarchy: refine states
– concurrent behavior: parallel threads

– history: last active state configuration

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 65

States I.
• Parameters:

– entry action

– exit action
– static reaction

• State refinement:
– simple state (no refinement)

– OR refinement : inferior state machine,
one state active at a time

– AND refinement : concurrent regions (state
machines), all regions simultaneously active

jlk

print_job

entry/init()
job/print()
exit/reset()

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 66

State refinement- example: TV
remote control

On Off

Standby

Disconnected

SoundImage

Show

Videotext

SoundOn

SoundOff

txt txt snd mute out in

off

out

on

23

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 67

States II.
• History state

– storing last active state configuration

– input transition: object enters the stored state
configuration

– output transition: default state, if no previous
active state

• Initial state: active at entering a region
• a single state, both in case of OR, AND refinement

• Final state signal: termination of state
machine

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 68

Example: History state

Print_job

H
Close

Print

Init
Handle

Start

Get

Reply

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 69

Statechart elements

• State

• (State transition)

• History

• Condition

• Initial state

• Final state

• State stub

StateName

H

s1 s2

H*

s1

s1

24

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 70

Transitions I.
• Providing state transitions

• Syntax:
trigger [guard] / action

– trigger: event-triggered operation or time-out

– guard: condition of transition
• logical expression using the parameters of object

attributes and messages
• reference to a state: IS_IN(state) macro
• without trigger: transition due to an attribute

becoming true

– action: operations („program code”)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 71

Transitions II.
• Timeout as trigger:

– if the objects hold the initial state in the given time
interval

e.g.: tm(50), measurement based on system
clock

• Complex transitions
– fork: splitting up to concurrent threads
– join: joining from concurrent states

– condition: fork depending on conditions
segments

• Transitions over hierarchies

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 72

State transition - example

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
tm(50)

Failure

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

25

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 73

Semantics
• Basic components:

– hierarchical state machine (state map)

– event chain + scheduler (“run-time platform”)

• Semantics provides:
Reaction to events
→ One step of the transition machine
– (concurrent) state transition firing(s)

– state configuration is changing in all regions of
the active state, and in (recursive) sub-states, in
case of OR refinement

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 74

Basic attributes
• Events processed one by one:

– the scheduler sends the next event only if the
previous processing is terminated

– stable configuration: no transition without a new
trigger

• Complete processing:
– maximal set of transitions is firing

(all allowed transitions firing, except of those blocked
by conflicts)

Steps of event processing
(implementation of code generator)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 75

Steps of event processing
• The scheduler allocates an event to the state

machine in a stable configuration
• Allowed transitions:

– initial state active
– the event is the trigger
– conditions are fulfilled

According to the number of allowed
transitions:
– Only one: fire!
– None: event can be dropped (without any impact)...
– Multiple transitions: selection of firing transitions?

26

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 76

Steps of event processing
• Selecting firing transitions:

– Maximal number of non-conflicting transitions
simultaneous firing of concurrent transitions

– Conflict: Leaving the same state
 (intersection of state sets is not empty)

→ Solution:
• priority: higher, if the initial state has lower level in

hierarchy (refinement)
(OO principle: refinement, re-definition)

• random choice, if states are independent

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 77

Steps of event processing
• Conflict resolution - example:

e

e
eee

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 78

Steps of event processing
• Selected fireable transitions:

random order

• A single fireable transition:
– leave initial state(s), first executing exit actions on

lower level

– execution of action(s)

– enter target state(s) → new configuration
first executing enter actions at the higher level

27

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 79

Steps of event processing
• Entering a new configuration:

– simple target state: part of new configuration

– non-concurrent superstate: an active substate
with direct access or the initial state

– concurrent target state: must have a reachable
active sub-state or the initial state in all regions

– history state: last active state

– instable state: immediate transition (part of the
step)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 80

Example
• Intersection, traffic light controller

– switch off (blinking yellow)

– switch on: at the beginning green for main road
– green, yellow, red etc. time intervals (scheduler)

– three cars waiting on the main road: green light
required independently of scheduler

– snap a photo of irregular drivers

– function activated/deactivated manually

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 81

1. Change color

Off

do/blink

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

reset

reset

reset

reset

tm(T4)

28

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 82

2. Hierarchy

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 83

3. Concurrent sub-states

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

Camera Count

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 84

4. History state

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

On

Off

Shoot

H

CarGo

M
anualO

ff

M
anualO

n

T1

T4

T2

T3

Camera Count

29

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 85

5. Complete controller

Off

On

do/blink

reset

!reset

Red

Count0

Count1

Count2

car

car

car

Yellow

Green

Red
Yellow

On

Off

Shoot

H

CarGo

M
anualO

ff

M
anualO

n

T1

T4

T2

T3

Camera Count

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 86

UML definition path
UML was defined by metamodeling

(Meta Object Facility)
• open architecture

– small set of core constructs
– CORBA interfaces (IDL mapping)

• extensibility for models
– inheritance
– composition

• metamodel creation
– meta-metamodel: MOF Model (common language)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 87

MOF Viewpoints

• Modelling (Designer)
– “look-down” the metalevels
– creation of a domain-

specific information model
– managing subsequent

• design
• implementation steps

• Data (Programmer)
– “look-up” the metalevels
– using the information

model
– creation of conforming

applications

30

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 88

Four Layer Metadata Architecture

MOF Model

UML
Metamodel

UML Model

Application
Data

Fixed: MetaClass ...

MetaClass (‘State’,
MetaAttr (‘name’),
MetaAttr (‘outgoing’
LIST <Transition>))

State(’a1’, Transition(‘t1’))

Red_light.a1.t1 :=...

M3 layer
meta-metamodel

M2 layer
metamodel

M1 layer
model

M0 layer
information

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 89

Basic MOF Constructs

• Class:
– describing meta-objects

• Association:
– binary relation between Classes

• DataTypes:
– modelling external data, primitive types

• Package :
– modularizing the models

• Constraint (OCL):
– semantic restrictions on elements

Package

Class

Association

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 90

Classes

• Class es:
– describing meta-objects

• Attribute s:
– value holder in a Class

instance

• Operation s:
– name and type signature

• Generalization :
– inheritance

• Abstract Classes :
– no instance objects

Abstract SuperClass

Class
Attribute : Integer

Operation(Arg1 : Integer) : Boolean

Abstract
Class

Generalization

Attribute

Operation

90

31

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 91

Associations
• Association :

– expressing relationship in
metamodels

• AssociationEnd (Role):
– two named ends of links

• Multiplicity :
– single, optional, multi-valued

relationship

• Aggregation :
– Classes closely related to

others

Aggregation

Association
End

Multiplicity

Association

Vehicle

0..*

11 +myVehicle

0..* +tyres

Tyre

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 92

Packages
• Package :

– partitioning, modularizing

• Nesting :
– Packages inside Packages

• Importing :
– element re-use

Package

Sub Package

Imported
Package

Nested
Package

Importing
Package

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 93

Introducing
Guards

Guard

StateVertex

Transition

1

*

+source1

+outgoing**

1

+incomin g *

+target 1

0..11

+guard

0..1

+transition

1

StateMachine
*

+transitions

*

+statemachine

0..1

State

+stateMachine

+top 1

0..1

1

0..1

Statemachine =
Top State +Transitions

Connecting States To
Transitions

MOF Example: Statecharts

32

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 94

UML
Understandability

MOF
Managability

XML
eXchange

XMI

XMI: Standard Integration

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 95

Main Design Goals

�an interchange format for any MOF metamodel

�automated DTD generation

�principles of XML document design

� interchanging model fragments

� independent model validation and interchange

�extensions, non-standard models

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 96

XML = eXtensible Markup Language
• Document Type Definition (DTD)

– for document design

– special grammar
– document validation

• Document instance
– for storing information
– well-formed, HTML like tags

– strict tree structure

33

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 97

Automated DTD Generation
(Simple Encoding)

<!ELEMENT Rule.lhs (Graph)>
<!ELEMENT Rule.rhs (Graph)>
<!ELEMENT Rule.map (Map)>

<!ELEMENT Rule.priority
(#PCDATA|XMI.reference)* >

<!ELEMENT Rule (Rule.priority,
XMI.extension*,
Rule.lhs,
Rule.rhs,
Rule.map)

>

<!ATTLIST Rule
%XMI.element.att
%XMI.link.att

>

Graph

MapRule
priority

1

1

+lhs
1

1

+rhs

11

+map

1

1

1

1

11

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 98

UML-related Work In Progress at OMG
Will we have pUML???

• MOF 1.4 RTF 18-Sep: revision is complete

• UML Profile for EDOC RFP
• UML Textual Notation RFP

• UML Profile for Scheduling RFP

• OMG Requests For Proposal: Towards UML 2.0
 (UML 2.0 Infra/Superstructure RFPs)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 99

UML 2.0 issues

155

62
66

96

39

31 9
Correct ion of
technical error (33.8%)

Correct ion of editorial
error (13.5%)

Clarification (14.4%)

Considered and
declided (21.0%)

Redundant with
another issue (8.5%)

Source:
UML2001: A standardization odyssey
Communications of the ACM - October 1999/Vo. 10
Chris Cobryn

34

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 100

UML 2.0
(major revision ⇒ 2/2002)

• General requirements
• Infrastructure: architectural alignment,

restructuring and extension mechanism
– UML 2.0 metamodel.

• Superstructure : refinement and
extension of UML 1.x semantics and
notation.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 101

Infrastructure:
UML metamodel problems

• Compatibility with the MOF meta-metamodel?

• No strict conformance to 4-layer metamodel
pattern!

• Deviation ⇒ implementation problems in other
OMG standards (e.g. XMI)
– Current UML: inclusion of a “physical metamodel”

(additional detail for model transformations and
interchange)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 102

Need for restructuring

• Maintenance, implementation and extension

• Large metamodel
– > 100 metaclasses, >70 standard elements

– continuing expansion, behavioral semantics

– inconsistencies.
• Uneven in the depth and quality of its semantics,

• Mixing abstract and implementation-specific
constructs

35

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 103

Architectural alignment
• MOF meta-metamodel,

• 4-layer metamodel architectural pattern.

• Sharing MOF and UML metamodel elements:
– isomorphic mapping: MOF meta-metamodel and

UML metamodel kernel elements

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 104

Restructuring

• Separation of kernel language constructs
and standard elements that depend on
them.

• Package structure:
– compliance points
– efficient implementation.

• Identification of all semantic variation
points in the metamodel.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 105

Extensibility
• Definition methodology for profiles

• A first-class extension mechanism:
– modelers: own metaclasses (MOF)

• Identification of model elements whose
detailed semantics preclude specialization in
a profile

36

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 106

Superstructure: UML problems

• Modeling of structural patterns?

– No proper support for structural modeling, only
patterns of interaction (signal and operation
invocation between roles)?

– Specification of run-time architectures?

• Semantics of the generalization, dependency,
and association relationships?

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 107

Component-based development?

• Plug-substitutable components?

• Too weak notion of Interface
– outputs?
– complex transactions?
– component ⇒ environment requirements?
– component architectural frameworks?
– component application frameworks.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 108

Run-time Architectures ?

• Architecture of systems by hierarchical
decomposition ⇒ internal structure:

– layered or interconnected instances
(encapsulation, interconnection, communication).

• Profiles: additional constraints on the general
semantics?

37

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 109

Inheritance mechanisms ?

• Implementation languages ⇔
UML generalization relationship.

• Elementwise scope of inheritance?
What is inherited for each model element ?

• StateMachines cannot be generalized!

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 110

State machines
– Complexity of state machines cannot always be

fully captured by hierarchical composition
(Composite states). groups of states with identical
behavior but where the same state participates in
more than one such group.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 111

Data flow modeling?

• Removal of restrictions on activity graph
modeling due to the mapping to state
machines ⇒
data flow modeling at a high level of
granularity

38

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 112

Activity Graphs

• UML 1.x. activity graph � state machine

– Modeling of multiple reactions to an event over
time ?

– Modeling of flows that do not return to the
originating line of control ?

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 113

Interactions
(sequence diagram, collaboration)

• Maintenance of a large set of SD?

• Structuring specifications using SD ?

• Correlation between multiple SD?

• Cross-reference ?

• Compositionality?
(only sequential, no parallel, optional, repetition)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 114

Notation inconsistencies and
shortcomings

• Some diagrams define:

– content of one specific element (e.g., a static structure
diagram defines the namespace content of a package),

– an element and its properties (e.g., a statechart defines
a StateMachine),

– different views without any model element (e.g., a
deployment diagram).

39

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 115

UML Profile for Enterprise Distributed
Object Computing (EDOC)

• Business Object Initiative (BOI)

• Supports design and implementation of enterprise
distributed object computing.

– object-oriented (business entities, processes and rules)

– event-driven style of computation
(not necessarily inherently transactional)

– using an enterprise-class component model.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 116

Architectural Context: OMA

ISO/IEC 10746, Reference Model of Open
Distributed Processing

Object Frameworks and Domain
Interfaces

• complete high level, domain specific
functional components

– collections of cooperating objects

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 117

Object frameworks

Definition of the
• structure,
• interfaces,
• types,
• operation sequencing,
• qualities of service of the individual object

40

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 118

Requirements on implementations

• Portability,
• Interoperability
• Securability
• Compliance inspectability and testability

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 119

Component categories

• Application,

• Domain,

• Facility,

• Service Objects.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 120

Object interfaces

Each object

• supports (interface inheritance) or makes use of (client requests)
some combination of

– Application,

– Domain,

– CORBA facilities

– CORBA services interfaces.

41

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 121

Component Modeling

Mechanisms for UML enterprise-class component
model specification :

• Transactional characteristics

• Security characteristics and services (authentication,
authorization, message protection, data protection, security
logging, non-repudiation)

• Persistence characteristics and interaction with stores

• Packaging and deployment characteristics

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 122

Modeling of Business Process,
Entity, Rule, and Event Objects

• Specification of business rules and their behavioral semantics

• Manipulation of BP objects at runtime

• Additional, specialized relationship semantics (constraints or operational
semantics)

• Classifications

• Derivation of pre and post conditions for create/read/update/delete (“CRUD”)
operations

• Proof of mappability to CORBA

– General Relationship Model (ISO/IEC 10165-7/ITU-T Recommendation X.725)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 123

Enterprise Collaboration Architecture (ECA)
Joint Final Submission

(V 0.29,18. 06. 2001)

5 UML profiles:
• Component Collaboration Architecture (CCA)

• Entities profile,

• Events profile,
• Business Processes profile,

• Relationships profile,

42

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 124

Component Collaboration
Architecture (CCA)

• Structural and behavioral system modeling
based on “Process Components”

• UML classes, collaborations and activity
graphs,

• Interaction: through Ports,

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 125

Methodology

• Recursive decomposition of Process
Components:
– Composition (Collaboration) assembly of

Process Components,

– Choreography (Activity Graph) : flow of
activities

• Varying and mixed levels of granularity,
further specialization by profiles

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 126

Main functionalities

43

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 127

Entities profile

UML extensions

• modeling entity objects
• representations of concepts in the

application problem domain

• definition as composable components;
– attributes, relationships, operations,

constraints, dependencies at a technology-
independent level

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 128

Events profile
• Event driven systems: (business entity,

business event, business process, business
activity and business rule).

• Basic building blocks:
– business process

– business entity

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 129

Interaction

Business
Process

Business
Rules

Business Entity

44

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 130

Software management and UML

Integration of SW project and
cost management into UML

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 131

SW management

• Problem solving activities
– scope
– design
– build
– verification

• Management activities
– scheduling
– budget planning
– tracking
– controlling

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 132

Waterfall model

Properties:

+ easy scheduling

+ traditional project management
- does not reflect the phases of problem
solving

- does not support team work well
- 80-20% rule is neglected

45

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 133

Waterfall lifecycle model

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 134

Spiral model

Properties:

+ eliminates some of the disadvantages of the
waterfall model
+ iteration,

+ no sharp separation (less rigid),
+ keeps the 80-20 % rule

+ overly elaborated

- no guarantee for convergence

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 135

Spiral model

46

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 136

Controlled iteration
New lifecycle model for OO development:

• combination of how people work and

• proper management.
Basically, it is based on development phases,
and activities serve the management during
phases.
Previous models had serious limitations.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 137

Controlled Iteration Model

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 138

Controlled iteration (basic idea)
Inter-phase transitions based on maturity:

scoping

designing

building

verifying

inception
elaboration

construction
transition

47

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 139

Controlled iteration (properties)
• Based on RAD, but less elaborate

• Easy to manage

• Transition between phases is well defined
• Controlled, iterative

• 80%-20% rule is met

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 140

Controlled iteration (timing)

business modeling

requirements

analysis and design

implementation

testing

installation

inception elaboration construction transition

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 141

Support processes I.
Complexity due to iteration and activities that

span over phases.
⇒ Need for support processes
⇒ necessary for SW development too.

• Requirement management

• Content management

48

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 142

Support processes II.
• Design management

• Construction and integration

• Testing and quality assurance
– component (class, object)
– subsystem (package)

– system

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 143

Cost estimation

• Aim: prediction of development time
– different project phases

– different project type

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 144

COCOMO II.

PM=A·(�17 Emi)· SizeB

• PM: Person Months

• A: invariant

• Emi: Effort Multiplier
– product, human, technology, environment

• Size: source lines of code

• B: Scale factors
– development process

49

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 145

COCOMO II.

COCOMO II.

SW reliability
Documentation
Database size
Product complexity
Reusability

Platform volatility
Execution time
Main storage

Personnel continuity
Application experience
Analyst capability
Programmer capability
Language & tool exp.

Development schedule
SW tools
Multi-site development

Extra
low

Very
low

Low Nominal High Very
high

Extra high

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 146

COCOMO based system design

Variant 1

Variant 2

Variant 3

voter

Variant 1 Variant 2 Variant 3

checker

•Size of variants: 10.000 SLOC

•Size of voter/checker: 2.000 SLOC

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 147

COCOMO based system design

EM Var1 Var2 Var3 Voter

RELY nom nom nom VeryHigh

CPLX nom nom nom VeryHigh

RUSE nom nom nom High

AEXP nom nom low nom

LTEX nom nom low nom

EM Var1 Var2 Var3 Checker

RELY nom nom nom VeryHigh

CPLX nom nom nom High

156 PM 147 PM

 (faster) (slower)

50

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 148

Towards RT-UML

Response to the OMG RFP for Schedulability,
Performance, and Time (Revised Submission, June 18,
2001)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 149

Guidelines
RT modeling:
• Common framework for a number of different techniques
• Key characteristics : timeliness, performance, and schedulability

Main purpose:
• High degree of freedom to modelers

style and modeling constructs, full UML

• Analysis of RT properties early in the development cycle by
different techniques

• Support to all the mainstream real-time technologies
• Different analysis models directly from a UML model by

model transformation

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 150

Modeling for Analysis

Simplified, reduced complexity models with a small number of base
abstractions

Different analysis methods focus on different aspects of the model
Analysis views : simplified version of the complete model
Problem: extraction requires experts
⇒ Single unifying framework : common elements of different real-time

specific analysis methods, (all the essential patterns)
Core of the framework:

 general resource model: common model of resources with QoS
attributes

51

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 151

Framework

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 152

Modeling aspects

Resources :
• typical patterns present in many real-time analysis methods

Modeling time
• only metric time
• distinction between physical and simulated time

Scheduling ability
• focus on systems having hard timeliness requirements
• support for RMA, DMA, EDA, and other analysis methods

Performance
• stochastic modeling

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 153

Structure of the RT-Profile

Modularized

Suited for future
extensions

Unnecessary
elements can be left
out

52

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 154

General Resource Modeling (GRM)
Essential framework for modeling real-time

systems

Core: notion of QoS

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 155

GRM - Domain Viewpoint
Overall package structure described in UML:

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 156

GRM - UML Viewpoint
Domain concept ⇒ UML stereotype

• Modeling Realization Relationships
• UML Extensions

• Modeling Guidelines and Examples

• Required UML Metamodel Changes
• Proposed Notational Extensions

53

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 157

General Time Modeling (GTM)

General framework for representing time
and time-related mechanisms
Cardinality of time

(delay, duration,clock time, ...) ⇒ metric
time instead of logical time

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 158

General Concurrency Modeling
(GCM)

Primary purposes:
• It enables modelers to describe a rich enough domain

model of concurrently executing and communicating
objects that can serve as a base for more concrete analysis
models.

• It enables providers of real-time system infrastructures (e.g.,
operating systems) to describe the concurrency and
communication mechanisms of their system.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 159

GCM - Domain Viewpoint
General concurrency modeling concepts:

54

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 160

Schedulability Modeling (SM)

Component of the proposed profile that is intended specifically
for scheduling ability analysis

Minimal set of common scheduling annotations for very basic
scheduling ability analysis

Designer’s aspect: analyze the system under several scenarios
using different parameter values

2 important functions of typical tools:
• Calculate the scheduling ability of the system

• Assistance with determining how the system can be
improved

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 161

SM - Domain Viewpoint
The scheduling ability model derived form GRM:

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 162

The core scheduling ability model:

SM - Domain Viewpoint

55

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 163

Performance Modeling (PM)
A component of the profile that is intended for general

performance analysis of UML models. Minimal set of
concepts to support the central ideas of perf. analysis

Facilities for:
• capturing performance requirements
• associating performance-related QoS characteristics with selected

elements of a UML model
• specifying execution parameters
• presenting performance results
Two important functions of typical tools:
• estimate the performance of a system instance
• assistance with determining how the system can be improved

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 164

Relationship between the performance concepts and the
general resource model

PM - Domain Viewpoint

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 165

PM - Domain Viewpoint

The performance analysis domain model

56

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 166

Real-time properties and OCL

S. Flake, W. Mueller. An OCL Extension for Real-Time
Constraints.

In: T. Clark, J. Warmer (eds.), Advances in Object
Modelling with the OCL, (Springer, 2001. to appear)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 167

Problems in the practical use of
temporal logic

• Hard to understand
– additional temporal properties
– not the entire expressive power is needed

• Approaches
– graphic notations (sequence charts)
– design patterns for requirement analysis

– natural language (or artificial language =
standards)

– OCL

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 168

OCL
• Textual, programming

language-like
• Defined for expressing

pre-/post invariants of
classes

• Sets, sequences, multi-
sets

• Navigation
• No statements on states
• No temporal expressions

57

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 169

Extension for TL constructs
• OclState

– new operations complying to State charts
self.isActive()

• OclConfiguration=Set(OclState)
– parallel substates
– usual OCL set operations

• OclPath= Set(OclConfiguration)
– Potential executions of the state chart (context)

• OclAny
– @pre
– @post potential sequences

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 170

OCL extensions and state charts
Example: input buffer

• No new orders until an
accepted order is waiting

context InputBuffer
inv: let errorCfg =
Set {Acceptor::Accepting,

Loader::WaitingForDelivery
}

in
self@post->forAll(p:OclPath

| p->excludes(errorCfg))

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 171

Requirement capture and V&V

58

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 172

Embedded systems
• Main problem: check the interaction of the

system and its environment

• Needed:
– Description of the environment

(“controlled object”)

– Description of the system under design
(“controller”)

– Requirements

– Checking methods

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 173

V&V oriented system model

Requirements

Controlled
object

Controller

Checker

inputs

outputs

general

specific

outputs

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 174

Basic objects
Environment
• Complete model - closed loop (abstraction?

constraints by the environment !)
• Input/output behavior - half-open loop (scenario)
• Arbitrary - open loop (most pessimistic)
System under design
• Different UML models in different phases

– black box
– grey box
– white box

59

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 175

Requirements specification
Syntactic: completeness (static/dynamic)

Semantic

• General (no deadlocks)
– metamodel level definition
– OCL

– external: temporal logic

• Application-specific (e.g. safety constraints)
– external expression (e.g temporal logic)
– co-modeling (“observer”)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 176

Requirement models

Requirements

Scenario
(I/O behavior)

Controller

Checker

inputs

outputs

general

specific

outputs

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 177

Open loop

Requirements

Controller

Checker

inputs

general

specific

outputs

60

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 178

Checking methods
• Testing

– typical cases

– crucial cases
– specification/structure oriented

– E.g debugging/simulation
– NONEXHAUSTIVE

• Formal methods
– All (potentially restricted) cases
– E.g. model checking

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 179

Safety-Critical Systems Design

B. Powel Douglass, [i-Logix whitepaper]

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 180

Introduction
• Real-time embedded systems

• Timeliness and predictability

• “Hard” real-time systems, missing a single
deadline is considered to be a systems failure

• Reliability

• Safety

61

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 181

Safety Concepts
• Risk - Nancy Leveson:

– a combination of the likelihood of an accident and
the severity of the potential consequences

• Mishap or accident:
– a state or set of conditions of a system (or an

object) that, together with other conditions in the
environment of the system (or object) will
inevitably leads to an accident (loss event)(ibid.).

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 182

Hazard Analysis
• First step in developing safe systems is to

determine the hazards of system. A

• Hazard: a condition that could allow a mishap
to occur in the presence of other, non-fault,
conditions

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 183

Hazard Analysis
• Requirements specification

• Continuously updated

• Identified hazards, including
– The hazard itself
– The level of risk

– The tolerance time -- how long the hazardous
condition can be tolerated before the condition
results in an incident

62

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 184

Hazard Analysis
• Means by which the hazards can arise

– The fault leading to the hazard

– Likelihood of fault
– The fault detection time

• The means by which the hazards are handled
– The means

– The fault reaction (exposure) time

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 185

Hazard Handling
• Obviation

• Education

• Alarming
• Interlocks

• Internal checking

• Additional safety equipment
• Restricting access to potential hazards

• Labeling

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 186

Single Point Failures - TUV
First fault

Device
UNSAFE

Device
SAFE

Second
Fault

Hazard after T0 ?

Fault tolerance time
Time of second fault (based on MTBF)

yes

yes

yes

no

no

no

Fault detected after
T1 ?

Hazard ?

Ttest<T0<T1

TUV Single Fault Assessment:

63

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 187

Safe Designs

Single Channel Protected Designs (SCPD)

Brake
Lever

Pedal
Sensor Computer

Computer
Bus

Brake

Engine

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 188

Safe Designs
Dual Channel Designs (DCD)

<processor>
Linear

Accelerator

<processor>
Safety

Processor

<actuator>
Beam
Emitter

<switch>
Cutoff
Switch

Beam
Detector

Mechanical
Courtain

Selt Test Status

Set intensity

Watchdog service Selt Test Status

Emergency shutdown

Set intensity
Start Beam
End Beam

Beam intensity
Beam duration

Beam intensity
Beam duration Close

Open

On

Off

Off

Start Beam/End Beam

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 189

Design Patterns for Reliability
and Safety

• Homogeneous Redundancy Pattern

• Diverse Redundancy Pattern
• Monitor-Actuator Pattern

• Safety Executive Pattern

64

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 190

Homogeneous Redundancy
Pattern (HRP)

Homogenous
Redundancy

Pattern

Channel
subsystem

Controller
subsystem

Redundant
Channel

Controller

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 191

Diverse Redundancy Pattern
(DRP)

Diverse
Redundancy

Pattern

Controller
subsystem

Diversely
Redundant
Channels

Controller

Channel
subsystem

Channel
subsystem

Channel
subsystem

Channel
Interface

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 192

Monitor-Actuator Pattern (MAP)

Monitor
Actuator
Pattern

Controller
subsystem

Monitor
Channel

Controller

Monitor
Channel

Actuation
Channel

Actuator
Channel

65

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 193

Safety Executive Pattern (SEP)

Safety
Executive

Pattern

Safety
Executive

Watchdog

Safety
Executive

Watchdog

Subsystem

Fail-safe
processing

channel

Fault Recovery
Channel

Subsystem

Safety
policies

Safety
Measures

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 194

Implementing Designs Safely
• Language choice

– Compile-time checking (C vs. Ada)

– Run-time checking (C vs. Ada)

• Exceptions vs. error codes

• Use “safe” language subsets (e.g. avoiding
void*)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 195

Testing For Safety
• Fault seeding:

– inducing (or simulating) faults impacting the
safety of the system to ensure that the system
acts in the safe, correct manner in the presence
of those faults

66

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 196

UML and the Formal
Development of Safety-critical

Real-time Systems

A.S. Evans and A.J Wellings
University of York

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 197

Introduction

• Use of formal notation (Z, real-time logistics,etc.)

• Improving quality and confidence

• Safety critical products

• Great precision

• Ability to verify design steps and properties

• Terse mathematical notations:

– difficult to use in practice

– incompatible with the notations favoured by engineers

• UML: user friendly replacement

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 198

UML semantics
• UML - model a real-time system fully formally

– complete and precise semantic required

• Semi-formal constraint language, the object
constraint language (OCL)

• Many inconsistencies

• The meaning of a number of abstractions
• Aggregation

• Accessibility and compatibility

• Formality

67

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 199

UML semantics

• Incomplete UML semantics: still possible to
development techniques
– formal reference point from which to judge

technique correctness

• Interpretation of UML concept

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 200

Approaches
• integrate notations (Z - [BFLP97, JK96])

– limitation: in-depth knowledge of the formal
notation

• extend formal notations with OO features
– e.g. Z++, Object-Z

– too different from current industrial practice

• directly express the semantics of UML in a
formal language
– criteria to be used in constructing the model

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 201

Refinement
• Formal refinement techniques for UML

• General real-time refinement conditions
– interplay between the different modeling notations

used by UML

• Design patterns:
– informal description of good design practices
– rigorous development of both sequential and real-

time systems

68

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 202

Refinement
• Simple set of conditions - respect to model

semantics

• UML: use of diagrams
• Refinement:

– textual formal language (e.g. Z) : manipulating
textual syntax

– UML: diagram based

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 203

Deduction
• Deduction: transformational process

• Properties in a constraint language can be
visualized
– visually verify the correctness of property

• Set of UML basic transformations as part of
rigorous analysis process

• Diagram refinement: key part of applying
UML to real-time systems

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 204

Conclusion
• UML as a formal language in its own right

• Sufficiently strong semantics can be
developed

• Need for proof and refinement technique
adaptation to fit current UML practice

69

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 205

UML and the Formal
Development of Safety-critical

Real-time Systems

A.S. Evans and A.J Wellings
University of York

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 206

Introduction

• Use of formal notation (Z, real-time logistics,etc.)

• Improving quality and confidence

• Safety critical products

• Great precision

• Ability to verify design steps and properties

• Terse mathematical notations:

– difficult to use in practice

– incompatible with the notations favoured by engineers

• UML: user friendly replacement

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 207

UML semantics
• UML - model a real-time system fully formally

– complete and precise semantic required

• Semi-formal constraint language, the object
constraint language (OCL)

• Many inconsistencies

• The meaning of a number of abstractions
• Aggregation

• Accessibility and compatibility

• Formality

70

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 208

UML semantics

• Incomplete UML semantics: still possible to
development techniques
– formal reference point from which to judge

technique correctness

• Interpretation of UML concept

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 209

Approaches
• integrate notations (Z - [BFLP97, JK96])

– limitation: in-depth knowledge of the formal
notation

• extend formal notations with OO features
– e.g. Z++, Object-Z

– too different from current industrial practice

• directly express the semantics of UML in a
formal language
– criteria to be used in constructing the model

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 210

Refinement
• Formal refinement techniques for UML

• General real-time refinement conditions
– interplay between the different modeling notations

used by UML

• Design patterns:
– informal description of good design practices
– rigorous development of both sequential and real-

time systems

71

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 211

Refinement
• Simple set of conditions - respect to model

semantics

• UML: use of diagrams
• Refinement:

– textual formal language (e.g. Z) : manipulating
textual syntax

– UML: diagram based

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 212

Deduction
• Deduction: transformational process

• Properties in a constraint language can be
visualized
– visually verify the correctness of property

• Set of UML basic transformations as part of
rigorous analysis process

• Diagram refinement: key part of applying
UML to real-time systems

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 213

Conclusion
• UML as a formal language in its own right

• Sufficiently strong semantics can be
developed

• Need for proof and refinement technique
adaptation to fit current UML practice

72

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 214

Data flow based modeling

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 215

Scope

Only the main structural elements are
important in the early stages of design

Abstraction
substituting data dependencies by non-

deterministic modelling
IF cond THEN action 1 ELSE action 2

action 1 OR action 2

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 216

Scope
Implementation specific restriction rules

do not apply
• Design of safety critical systems
• Modeling the effects of faults
• Analysis of safety

73

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 217

Theory of data flow networks

Node: representation of a HW/SW
component

Channel: directed FIFO connection
between nodes

Token: representation of data

Node functionality: firing rules

PC

Printer

LPT

Tray

LPT

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 218

Systematic generation of firing
rules

• Example: Printer
(Ready, LPT�doc, Busy, Tray�paper, 0)

• A large set of firing rules can not be handled
efficiently, algorithmization is needed

• Deduction tree: ordered structure of the firing rules
built by narrowing

• DON’T CARE component: x

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 219

Deduction tree

74

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 220

Examining the completeness of
the firing rule set

During the design process warning about omitted
firings

ROBDD: graph based structure, which is capable of
efficiently generating the normal form of Boolean
expressions

Steps of the algorithm:
• Read of the missing firings from the nodes
• Store them in a ROBDD structure
• Read the normal form from the ROBDD

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 221

Fault modeling with data flow
networks

• Qualitative modelling

• System behavior is described by firing rules

• Fault modeling in separate phase without
any restriction

Example: fault propagating behavior of the
Printer

(Ready, LPT�fty_doc, Busy, Tray�fty_paper, 0)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 222

Meta modeling

• Design and documentation is essential,
therefore required

• Meta modeling is capable of modeling data
as well as program structure

• Effective way of visual development

• Example: Dataflow UML model, DFN
metamodel

75

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 223

DFN meta model

Seq_Element

DFN

Node TokenChannel

State Firing

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 224

Data flow network editor

Java based program:

• Visual aid for the development process

• Only permits building of structurally correct
data flow networks (syntax driven)

• Supports building of the deduction tree

• Implements comprehensive log

• Uses XML to store data structure

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 225

XML-DOM

• The program has many classes, which need to be
implemented and stored.

• The XML-DOM Element structure has all the
characteristics of a generic data storage structure

• Inner structure of the data is contained in the
data’s editor class

• Lack of conversion, smaller chance of coding
faults

76

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 226

Dataflow.java

• 32 days, 5361 lines, 177 Kbyte

• Structured design: tested modules, well
defined connections

• Benefit of meta modeling : easy
implementation of extensions
– Implementation of “DON’T CARE”

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 227

Testing of UML designs

OMG UML Testing Profile RFP

Issued: July 13, 2001

Deadline: June 3, 2002

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 228

Objective
• Computational UML models ⇒ conformance requirements

(functional black-box test cases)

– typically use-case driven

– functional requirements (testing and certification)

• Test specific concepts basis :
– UML metamodel or MOF-based meta-model.

• Exchange of test specifications between tools: XMI

77

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 229

Intended architecture

T e c h n o l o g y i n d e p e n d e n t

T e s t p u r p o s e
(t e s t o b j e c t i v e s , v e r b a l)

U M L m o d e l

R e q u i r e m e n t s

T e s t c a s e
(C o m p l e t e s e p e c i f i c a t i o n o f t h e t e s t a c t i o n s)

S y s t e m i n t e r f a c e s
(r e f e r e n c e p o i n t s)

 T e s t s y s t e m
(s t r u c t u r e , c o n f i g u r a t i o n)

T e s t d a t a v a l u e s
E v a l u a t i o n s e q u e n c e ,

d e c i s i o n s t r a t e g y
p r e - a n d p o s t - c o n d i t i o n s

f o r t e s t i n g

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 230

Generating Tests from UML
Specifications

J. Offut, A. Abdurazik/ UML99

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 231

Introduction
• Effective SW testing for complex safety-

critical applications
• Specification-based testing (SBT):

– precise definition of fundamental aspects of the SW
– structural information omitted

• New coverage criteria
• Formal criteria for developing test inputs from

UML statecharts.

78

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 232

UML Based Test Data Generation

• UML categorizes transitions into five types
– Only interested in enabled transitions
– Similar to transitions based on predicate satisfaction

• Four kinds of events
– Change events as predicates, (basis for generating tests)

• (associated predicate← true) ⇒ Raised implicitly
• Evaluated continuously until it becomes true

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 233

Levels of testing

• Coverage levels for change event enabled
transitions:
– transition (“branch”)
– full predicate (“branch+selector”)

– transition-pair (“2 step path”)
– complete sequence (“path”)

• Choose a level: cost/benefit tradeoff

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 234

Statecharts

S1 S3S2

S4

T 1
[A or B]/C

T 5

T 2
T 0

T 3

T 4

Trans i t ion: {<T0>; <T1>; <T2>; <T3>; <T4>; <T5>}
Predicate: {<T0>; <T1|A and not B >; <T1|not A and B > ; <T2>; <T3>; <T4>; <T5>}
Transi t ion pai r : {<T0,T1>; <T1,T2>; <T2,T3>; <T0, T4>; <T4,T5>; <T5,T3>}
Complete sequence:{<T0,T1,T2,T3>; <T0, T4,T5,T3>}

79

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 235

Test Data Generation Tool

• Possible to automate almost all of the steps of
generating test data

• Test requirements: partial truth tables
– state transition predicates and pairs of (state,transition)

predicates

• Most complex: test case is the test prefix
inputs to put the system into a particular pre-

state

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 236

Methods of functional testing

Based on the contribution of
Zsuzsanna Makai (IQSOFT Rt.)

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 237

Solutions
• Risk can be reduced by iterative development

methods

• Automatic testing
– clears costs at iterative development
– errors can be reproduced

– regressive testing

• Testing the three dimensions of quality:
– availability
– functionality
– performance

• Full control over the testing process

80

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 238

Workflow of testing

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 239

Test inputs

• Any component that may affect testing
• Define WHAT to test

?

ReqPro requirement

Rose model components
Demand of change

 “Custom input”

Excel table

Built-in inputs:Definition of own inputs:

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 240

Test schemes

Test Plan

Teszt eset

Ugyedi, tesztelend•

“dolgok”

Iteráció

Mikor kell tesztelni?

Konfiguráció

Milyen
konfiguráción kell

m• ködnie?

Teszt eset

Egyedi,

“dolgok”

Teszt eset

Unique, tesztelend•

 “ dolgok”

Iteráció

Mikor kell tesztelni?

Iteráció

When kell tesztelni?

Konfiguráció

Milyen
konfiguráción kell

m• ködnie?

Configuration

What is the applied
configuration?

Test Plan

Teszt eset

Ugyedi, tesztelend•

“dolgok”

Iteráció

Mikor kell tesztelni?

Konfiguráció

Milyen
konfiguráción kell

m• ködnie?

Teszt eset

Ugyedi, tesztelend•

“dolgok”

Test case

Unique components

to be tested

Iteráció

Mikor kell tesztelni?

Iteration

When to test?

Konfiguráció

Milyen
konfiguráción kell

m• ködnie?

Configuration

What is the applied
configuration?

• Test scheme
– a testing task

• Test case
– related to test input
– defines components to be

tested
• Iteration

– development phases
– defines testing date

• Configuration
– e.g.. operating system,

browser, etc.

81

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 241

Configuration
• Testing environment:

defined by variables
• If configuration assigned

to a test case,
configured test case is
automatically generated

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 242

Test case properties

owner

iteration

configuration

input

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 243

• Steps to be executed
• Verification points

• Pre- and after-conditions

• Acceptance criteria
• Implementation of testing

– Manual testing

– Script definition with Robot
– Unique implementation of test scripts

Testing scenarios

82

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 244

Script record

Testing in common environment,
Robot records performed actions

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 245

Recorded script

Checkpoints

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 246

• Executable: implemented test cases, scripts,
suites

• Execution of suites including several script
types available (manual, GUI, VU etc.)

• Arbitrary scripts may be executed by creating
adapters

Test execution

83

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 247

• TestManager
assigns actual
products to
reported errors:
– Log
– Test Case

– Test Script
– Checkpoint
– Test Input

Tracing reported errors

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 248

Integrated tools

RequisitePro

Requirements -
test inputs

Software development methodology - RUP

Rose

Visual model -
test inputs

TestManager

Control of testing process

Robot

Automatic
testing

ClearQuest
Tracing errors

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 249

V. Encontre (Rational whitepaper 6/29/2001)

Testing Embedded Systems

84

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 250

Introduction

• Testing:
– disciplined process

– behavior, performance and robustness match
expected criteria

– main criteria: as defect-free as possible

– formally described and measurable
– debugging only part of the testing process

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 251

RT systems
• Correctness: logical + temporal correctness

(safety-critical system)

• Separation between application development
and execution platforms
– A large variety of execution platforms ⇒ cross-

development environments

– Coexistence of various implementation
paradigms

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 252

Testability and measurability
• 50%+ of embedded systems development

projects are months behind schedule

• 44% of designs are within 20% of feature and
performance expectations

• 50%+ of total development effort is spent in
testing

85

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 253

Generic test iteration steps
• Identify the granule to be tested

• Root for granularity
• Transform it to a testable granule or granule

under test (GuT):
– isolating the granule from its environment: stubs,

adapters
– stub: piece of code that simulates 2-way access

between the granule and the rest of the
application

– test driver: measures output, then compares it

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 254

Test harness environment

Component i-1 Component i+1Component i StubStub
Test
driver

Observer

Points of control Points of observation

Global variables

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 255

GuT paths
• Points of Control and Observation (PCOs)

– at the border of, or inside the GuT

• PO inside the granule: coverage of a specific line of
code in the function

• PO at the border of the granule: parameter values
returned by the function

• PC inside the granule: change of a local variable

• PC at the border of the granule: the function call
with actual parameters

86

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 256

Describing the test case

• Appropriate PCOs
– depend on the kind of testing: functional,

structural, load etc.

• How to exploit
– which information, in what order

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 257

Description of the test case
• Requirements set: executable

– not formal

– translation to formal test case: introduces errors

• Rational QualityArchitect, Rational Test
RealTime: model-based testing techniques.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 258

Testing requirements
• Testing languages
• Data-intensive or transaction-based testing

• Session recorders: while the GuT is stimulated
(manually or by its future environment)

• Model execution leads to the generation of a UML
sequence diagram reflecting trace execution

– test case model by Rational QualityArchitect
RealTime

87

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 259

Testing requirements

• For each test case:

– GuT to a particular starting state :
preamble

– GuT to a final stable state: postamble

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 260

Deploying and executing test

• Test case transformed and integrated as the
information (vs. operative) part of the test
driver and stubs

• Test harness execution

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 261

Observing test results

• Monitored through Points of Observation

• At the border:
– parameters returned

– value of global variables
– ordering and timing of information

88

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 262

Observing test results
• Inside the granule

– source code coverage,

– control graph
– information flow: visualize exchange of

information with respect to time

– resource usage: time spent, memory pool, event
handling

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 263

Deciding on next steps
• Test cases can fail:

– nonconformance to the requirements

– the test case is wrong
– test case cannot be executed

• Actions if test has passed:
– Reevaluate the test (value and goal)
– Increase the number of test cases: code

coverage, structural testing
– Increase the scope of the test: aggregating

granules

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 264

When to Stop Testing?

• Non safety-critical systems: subjective criteria
• Safety-critical systems: failure is not an

option, no decision to stop testing on such
criteria

89

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 265

Requirement for a Generic Testing
Technology

• Help to define and isolate the GuT

• Provide a test case notation, either 3GL or
visual or high-level scripting, supporting
definition for PCOs, information sent to and
expected from the GuT, and
preamble/postamble

• Help to accurately derive test cases from
requirements or test ideas

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 266

Requirement for a Generic Testing
Technology

• Provide alternative ways to implement test
cases using session recorders

• Support test case deployment and execution

• Report observations
• Assess success or failure

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 267

Complex Systems Generic
Architecture and Implementation

• Two thirds of systems run on a real-time
operating system (RTOS)

• Majority of developers of embedded systems
use C, C++ (70% will be using C in 2002,
60% C++, 20% Java, 5% Ada [R1])

90

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 268

Granule types
• C function or Ada procedure

• C++ or Java class

• C or Ada (set of) module(s)
• C++ or Java cluster of classes

• an RTOS task

• a node
• the complete system

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 269

Incremental Steps of Testing
• 1. software unit testing

• 2. software integration testing

• 3. software validation testing
• 4. system unit testing

• 5. system integration testing

• 6. system validation testing.

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 270

Software Unit Testing
• GuT: C function or a C++ class
• data-intensive testing: large range of data

variation
• scenario-based testing:all possible use cases

• Points of Observation: value parameters,
object property assessments and source
code coverage

• White-box testing

91

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 271

Software Integration Testing
• GuT: set of functions or a cluster of classes
• Validation of the interface

• Points of Control: data-intensive main function call
or method-invocation sequences

• Points of Observation: interactions

• GuT starts to be meaningful
– end-to-end test scenario

– performance tests

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 272

Software Validation Testing

• GuT: all the user code inside a component

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 273

System Unit Testing
• GuT: full system componen t

• user code, RTOS- and platform-related
pieces:
– tasking mechanisms, communications, interrupts,

etc.

• Point of Control protocol: message
sent/received using the RTOS message
queues

92

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 274

System Unit Testing
• Virtual Testers
• Generate ordered sequences of samples of

messages
• Validate messages received by comparing

message content against expected
messages and date of reception against
timing constraints

• Grey-box testing: knowledge of the interface
to the GuT

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 275

System Integration Testing
• Set of components within a single node

• All system nodes up to a set of distributed
nodes

• Mix of RTOS- and network-related
communication protocols

• Focus on validating the various interfaces
• Grey-box testing

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 276

System Validation Testing
• GuT: finally the overall complete

embedded syste m

• meet end-user functional requirements
• perform final non-functional testing: load and

robustness testing

• ensure interoperability with other connected
equipment

93

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 277

Test execution sequence

• Whether all these steps applies to the system

• Exhaustive/partial tests
• Test order

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 278

Additional Requirements
• Testing technology must add the following

capabilities:
– Manage multiple types of Points of Control in order

to stimulate the GuT
– Offer of a wide variety of Points of Observation

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 279

Application Development and
Execution Platforms

• The technology used by Rational Test RealTime is
embedding the test harness onto the target system

• Compiling test data previously translated into the
application programming language (C, C++ or Ada)

• All mandatory DO-178B test requirements up to and
including level-A equipment

94

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 280

Automated Dependability
Analysis of UML Designs

A. Bondavalli et al. [HASE, ISORC]

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 281

System-level dependability analysis
• UML to Timed Petri-nets

transformation
• Rationale: real systems for critical

applications:
– a large number of components
– complex interactions
– redundant components
– complexity

• Avoidance of state explosion
⇒ system-wide model
⇒ solely the dependability relevant aspects

(fault/repair)
⇒ system structural properties

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 282

UML elements used and extensions
• Mainly structural diagrams:

– - Use case diagrams
– - Class diagrams

– - Object diagrams
– - Deployment diagrams

• Statechart diagrams: non-trivial
dynamic relations among components
in redundant structures

• Extensions to standard UML :
– - input the dependability parameters
– - identify redundancy (fault tolerance)

structures

95

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 283

Constraints on the UML designer

• - redundancy:
– class-based approach

• - redundant structure: objects from
stereotyped classes:
– - redundancy manager,
– - variant,
– - adjudicator, refined by subtypes, e.g.

tester, voter, or comparator

• - this constraint allows:
– - easily identifying redundancy in the UML

design
- a tomated derivation of relations among

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 284

Redundancy Management
in Distributed OO Systems

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 285

Modelling of
Redundancy Structures

• Dependability model available in the early
phases of the system design

• Decision about redundancy scheme (replication,
recovery and repair strategies)

• Abstract from details of consistency, checkpoints,
recovery

• Dependability model based on the object model
– (UML: class, object and deployment diagrams)

96

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 286

Statechart of the Redundancy Manager

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 287

Production Cell example
Basic version of the system

Feed Belt

Elevating Rotary
Table

Robot Press 1

Press 2

Arm 1

Arm 2

Feed Belt

Elevating Rotary
Table

Robot Press 1
Arm 1

Arm 2

Redundant version with two presses

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 288

UML Structural views of the
Production Cell

FeedBeltCRobotC

PressC

ControllerPC

RotarytableC

FeedBeltHW

FeedBeltC

controls

RotaryTableHW

RotaryTableC

controls

RobotHW

RobotC

controls

PressHW

PressC

controls

comm.comm.comm.

loads gets tak es

Worker
puts gets

Produce plate

Deployment diagram

Object diagram

Use case diagram
Worker

97

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 289

Sketch of the transformation
� Extraction of the relevant dependability
information
�UML description ⇒ Intermediate model, fixing:
–- fault activation processes resulting in basic

failure events
–- propagation processes,

consequences of basic events and derived
failure events

–- repair processes
–The Intermediate model is a hypergraph

• nodes: entities from the UML structural
diagrams
• hyperarcs: relations between elements

t f d d bilit l t d tt ib t

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 290

Sketch of the transformation-1

Fault
activation

Repair processes

Propagation
processes

Basic
event

Derived
events

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 291

Sketch of the transformation-2
• � IM ⇒ TPN (generality: postponement of

the selection of the automatic analysis tool)
• Timed Petri Nets:

– general class of Petri Nets, which encompasses
GSPN, SAN, SRN.

– elements: places, transitions, I/O arcs, subnets
(modular modeling)

– easy translation into less expressive and
powerful PN classes

98

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 292

UML diagrams of the
Production Cell example

FeedBel tCRobotC

PressC

Control lerPC

RotarytableC

Use case diagram

FeedBel tHW

FeedBel tC

controls

RotaryTableHW

RotaryTableC

controls

RobotHW

RobotC

controls

PressHW

PressC

controls

co mm.co mm.co mm.

loads get s takes

Worker
put s get s

Object diagram Deployment diagram

R o b ot
Arm1

Arm2
Press 1

Press 2

Fe e d b elt

Elev ating
rota r y ta ble

Pro duce pl ate

W o rker

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 293

Intermediate model of the
Production Cell example

Fe ed
Belt H W

R ota r y
T able HW

R obot HW Pr e ss HW

C ontr olle r
PC

C

U

U U U U

Fe ed
BeltC

R ota r y
T able C

R obotC Pr e ssC
U

U

U U

U U

U U U

U U U

0.0 02 0.0 02 0.0 04
0.0 01… 0 . 05

0.0 004 0. 0 004 0.0 004 0.0 004

0.0 1

0. 1 5 0.1 5

0.9

0.1

0.9

0.9 0.9 0.9 0.9

1.0 1.0 1. 0

0.4

0.9 0.9

0.9 0.9

Pr oduce
Pl ate

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 294

TPN model

• - Ovals: Basic Subnets

• - Rectangles: Propagation Subnets

• - Basic/Propagation subnets refined ⇒
 more accurate representation of the
crucial parts

SYS

U U U

C

U U U U

SFE-SW
U

U

U

U

U

U

U U U U

SFE-HWSFE-HW SFE-HW SFE-HW

SFE-HW

SFE-SW SFE-SW SFE-SW

99

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 295

Model refinement

• Subnets of the TPN include well-specified

• interface elements, the sole points at
which subnets can be linked to each other

• Basic failure subnet:
– places H, E, F are the interface elements

H E F
fault_occurrence error_latency

Basic failure
Propagation

Repair

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 296

Example of back-annotated results
• Reliability of the Basic Production Cell

– values of the press failure rate l ranging
within the interval [0.001,0.05]

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6 7 8 9 10 hours

Reliability

λ=0.001
λ=0.002
λ=0.005
λ=0.01
λ=0.02
λ=0.05

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 297

Possible design improvement and
subsequent re-evaluation

• Two redundant presses: comparison with
the Basic Production Cell version

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.001 0.002 0.005 0.01 0.02 0.05

Non redundant

Redundant

Reliability (t=10)

��

100

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 298

Efficiency of the analysis
– The size of TPN model:

• |TPN model| ~ |intermediate model| ��

|UML specification|
• minimal w.r.t. basic events:

no more concise TPN can represent
the failure/repair scenario

• a hand-made model could save on
the modeling elements involved in
the propagation processes
(failure/repair), at the expenses of the
modularity

• computational complexity of
numerical solution of the stochastic

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 299

Verbal specification of
quantitative attributes

[Dal Cin/ DSN01]

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 300

Structured Language for Specifications of Quantitative Requirements:
•formally specify performance and dependability requirements
•in terms of structured English sentences.

•„natural“ language
• easier communication to other persons
• documentation purposes.

<requirement>::= <query>[constraint]
<constraint>::= (= | < | > | ≤ | ≥)REAL
<query>::= [if <condition> then] <measure>[<timeScope>]
<measure>::= ([cumulative]probability |[accumulated]expectation |

variance) of <domain>
<timeScope>::= at time REAL | within time interval REAL to (REAL | infinity)
<domain>::= <property>[until<property>]
<property>::= <property>{(and | or)<property>}

SQIRL

101

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 301

For a quantitative analysis, the non-terminal symbols condition and
property have to be specified in the specific model context.
•context of UML Statecharts.

probability of in S1.Busy and not in Server.Serve_1 <0.5
probability of the station S1 waiting to be served should be less then 0.5.

Server

Poll_1 Serve_1

Poll_2 Serve_2

[S1.Idle]
/ rate=•1

[S2.Idle]
 /rate= •2

[S1.Busy]

[S2.Busy]
rate=• 1

rate=• 2

serve2

Semantics

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 302

The use of SQIRL follows a three-step approach.
• The non-functional requirements: in general terms

using SQIRL.
• in the context of the system model used, for

example, UML-State chart-models.
• Translation of refined requirements to a notation

that can be interpreted by an analysis tool.

Requirements

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 303

A: Validation of the requirements: SQIRL parser for
UML Statechart Models
Syntactical correctness check, validation against the

system model
B: Validation of the system model (desi gn): system

model and validated requirements as an input for an
analysis tool.
Stochastic Reward Nets (SRN) - an extension of

Generalized Stochastic Petri-Nets (GSPN) - analysis tool
PANDA .

Anal ysis steps

102

Budapest University of Technlogy and Economics
Department of Measurement and Information Systems 304

Special thanks for their contributions to:
•A. Bondavalli (CNUCE, Pisa, I)
•M. Dal Cin (FAU, Erlangen, D)
•S. Flake (C-lab, Paderborn, D)
•Zs. Makai (IQSOFT, Budapest, H)
•I. Majzik (BUTE, Budapest, H)
•Gy. Csertán (BUTE, Budapest, H)
•A. Petri jr. (BUTE, Budapest, H)
•G. Huszerl (BUTE, Budapest, H)
•O. Dobán (BUTE, Budapest, H)
•Sz. Gyapay (BUTE, Budapest, H)
•D. Petri (BUTE, Budapest, H)
•D. Varró (BUTE, Budapest, H)
to the OTKA T-030804 project for the basic funding of our research and E.
Gagyi for the technical preparation of this presentation

