
A Combination of Petri Nets and Process Network
Synthesis

�

Szilvia Gyapay and András Pataricza
Department of Measurement and Information Systems

Budapest University of Technology, Budapest, Hungary�
gyapay,pataric � @mit.bme.hu

Abstract – Resource allocation and scheduling optimiza-
tion problems are core problems in the field of IT systems.
However, such problems frequently underlie several addi-
tional constraints. The formalization of a real life prob-
lem requires a well-defined mathematical and modeling ap-
proach providing an integrated verification and optimization.
The current paper proposes such methods adapting Process
Network Synthesis algorithms to Petri net reachability prob-
lem: combining the efficiency of PNS optimization algo-
rithms with the modeling power of Petri nets. They provide
powerful techniques to compute optimal trajectories for the
reachability analysis of the modeled system.1

Keywords: Petri nets, Process Network Synthesis, verifica-
tion, optimization.

1 Introduction
The design of IT systems requires sophisticated tools in

order to simultaneously assure the productivity and the qual-
ity of the final system. Since Petri nets are an appropri-
ate means to model safety critical and high available sys-
tems they are widely used in the design of IT systems. Petri
nets have a rich mathematical background supporting ver-
ification and validation. However, the appearance of an-
other focal task, namely, optimization requires the integra-
tion of optimization techniques as an extension to the mod-
eling paradigm offered by Petri nets.

The expressive power of Petri nets allows us to define an
optimal trajectory problem: cost parameters can be added to
transition firings and a minimal cost solution is searched for.
Temporal logic conditions can be formulated in order to con-
fine the solution space by additional constraints. Thus, the
problem is to find an optimal trajectory from a given initial
state to an end state with minimal cost where the trajectory
satisfies the specified temporal conditions.

The obvious solution for the optimal trajectory problem
is the brute force traversal of the state space of the Petri net
selecting the subsequent transition to be fired according to
the objective function. This method frequently requires the

�
0-7803-7952-7/03/$17.00 c

�
2003 IEEE.

1This work was partially supported by project OTKA T038027.

exhaustive traversal of the state space leading to a combina-
tional explosion of the computational complexity.

Avoiding the state space explosion, semi-decision meth-
ods (e.g., the state equation method) are frequently used to
avoid the state space explosion by restricting the set of fea-
sible solutions. However, semi-decision techniques are able
only to prove that a system does not violate of its specifi-
cation by showing that no solution exists upon contradicting
assumption.

Problem statement and own contribution Although
model checking and optimal scheduling have recently been
combined for model checking tools with explicit state space
traversal [8], the literature of Petri nets lacks such a com-
bined technique. To bridge this gap, the current paper pro-
poses an integrated optimization and validation algorithm for
the optimal trajectory problem.

It is a basic problem that in complex models like the faith-
ful models of IT systems the number of candidate operations
is extremely large. This way the solution space may con-
sist several billions of states making the use of traditional
algorithms infeasible. Additionally, both the controllability
and observability of an IT system are limited. For instance,
during the observation of a program run in their natural envi-
ronment we can observe only its interactions with the outside
world but no detailed information is available on the internal
state of the program. Accordingly, such special methods are
required for a variety of IT related applications which are
able to cope with problems: (1) characterized by a limited
observability and controllability (2) where the relevant infor-
mation belongs to the controllable input and observable out-
put of the system without a special of interest on its internal
state.

That kind of restrictions introduce limitations on the prob-
lem class to be solved. In the forthcoming presentation we
will show how the structural limitation can be exploited in
order to provide solution methodologies able to handle large
scale systems as well.

Our approach exploits the efficiency of Process Network
Synthesis (PNS) algorithms that were developed to generate
the optimal manufacturing of final products from raw ma-
terials by applying operating units. In PNS problems, the

so-called Accelerated Branch and Bound algorithm (ABB)
generates the optimal (either minimal or maximal) solution
for the resource allocation problem.

Based on the graphical and semantical resemblance be-
tween Petri net reachability problem and PNS problems, an
obvious idea is to adapt the ABB algorithm in order to solve
the optimal trajectory problem. However, the ABB algorithm
does not provide a fireable optimal trajectory due to its dif-
ferent background (see Section 4.2).

Therefore, a gradual filtering method consisting of semi-
decision techniques is introduced in order to eliminate the
spurious solutions as soon as possible. The method contains
four consecutive steps.

At first, the adapted ABB algorithm generates a candidate
optimal solution for the optimal trajectory problem. If it ex-
ists, the reached end state is estimated by the state equation
and its reachability from the initial state is decided subse-
quently. Finally, if the candidate solution was not rejected
by the previous check, model checking tool SPIN is used to
prove the fireability of the candidate solution and specified
temporal conditions. If the check is negative the next best so-
lution is delivered by the ABB algorithm and the introduced
check is performed again.

The rest of the paper is structured as follows. Section 2
and Section 3 give a short introduction into Petri nets and
Process Network Synthesis, respectively. Then the resem-
blance of the two approaches is discussed in Section 4 that is
followed by the analysis of the direct algorithm adaptation.
The integrated technique is given in Section 5. Finally, we
conclude our work by summarizing ongoing research activi-
ties.

2 Petri Nets
2.1 Basic definitions

Petri nets are directed, bipartite graphs represented by a
four-tuple ���������	��
���
�������� , where � and
 are the
sets of place and transition nodes, respectively. Places may
contain tokens, whose distribution describes the state of the
net, represented by a � ��� -dimensional vector over naturals
called marking, where the i-th component (���������) denotes
the number of tokens contained in ��� . � � denotes the initial
marking of the net.

The state of the net is changed by transition firings. The
token flow is denoted by the weight function
 assigning
positive integers to the edges between places and transitions

! "�#�%$&
'��()�#
*$&���,+.- .

Let /�0 and 0�/ denote the pre-set and the post-set of an
element 0213�%(4
 , respectively, such that /50��7698�1
�:(;
< =
>�#8?��0?�	@:ACB and 0�/��!6D8�1E�F(�
< G�#0H��8I�J@:ACB .

At marking � a K transition is enabled (i.e., may fire) at
marking � , if its input places hold at least as many tokens
as required by the weight of the corresponding edges, i.e., ifL �41M/�KN ����O�?�>P<
Q���H��K�� holds. The firing of a transition
passes (removes and produces) the defined number of tokens
from its input places (/�K) to its output places (K�/), respec-

tively. Formally, the reached marking can be computed asL �&1R�S T�*UV���?�,�W�������YX)
Q���H��K��HZ4
>�[K\���?�
The Petri net model of a simplified transportation system

with three suppliers and four pieces of goods in the initial
state can be seen in Fig. 1. All the edges are] -weighted, i.e.,
each supplier in supp is able to transport one piece of goods
to the destinations stores s1, s2, and s3 through routes r1,
r2, and r3 such that r3 cannot be reached directly from the
starting point supp but only either through r1 or r2. After
shipping the goods, the suppliers return back to the starting
point.

^_ `abc de fghi jk

lm

goods

ship2ship1

ship3

cont_1 cont_2

sel_31

sel_32

place

transition

token

supp

sel_r1

s3

r3

r1

sel_r2

s1 s2

r2

Figure 1: Petri net model of a transportation system

The affect of firing a transition can be extended for a firing
sequence no�QpqK �sr ��K �ut �wvDvwvx��K �zy @ . Let us define the adja-
cency matrix of the net as {|�2}zX~
>�O� � ��KV�D��ZM
>�#KV�T�#� � ��� � � ,
where { is a � ���C$��
Q� dimensional matrix.

Let us also define the Parikh vector of a firing sequence as
a �
Q� -dimensional vector � , where the i-th component counts
the firing number of transition K�� in the firing sequence (i.e.,
���#���� ���� K ��� 1FnR "�5�R���x� . Then a firing sequence having
the Parikh vector � leads to the marking � U computed by the
so-called state equation, � U ����Z�{7�D� .

2.2 Optimal trajectory problem
In Petri net-based analysis, a focal problem is the so-called

reachability problem. The reachability problem in Petri nets
is to decide whether a given state is reachable from a given
initial state by a fireable trajectory. Frequently, in complex
system models only the state of a subset of places is relevant
from the practical point of view. This way the reachability
problem is restricted during the partial reachability analysis
to decide whether a state covering a given substate is reach-
able.

Due to their expressive power, Petri nets facilitate the
modeling of resource allocation and scheduling problems by
introducing quantitative parameters, like cost. As transitions
typically represent operations in the system, we restrict our-
selves to cost functions linear in the number of executed tran-
sitions. This way, the state equation forms a (mixed) integer

linear programming problem describing an optimal trajec-
tory problem.

The objective of the optimization problem is to find a fire-
able (executable) trajectory from the initial state to the final
(sub)state (or to the set of final states in the case of a partial
reachability-styled problem) of an optimal cost.

In our running example, an optimal trajectory problem can
be formulated as follows. The task of the suppliers is to place
goods in the stores in the predefined amount, e.g., initially,
there are three suppliers and four pieces of goods, and]=�D]=�w]
pieces of goods have to be placed in s1, s2, and s3, respec-
tively. This task constitutes a partial reachability problem
(because we do not care about where the suppliers stop their
shipping).

Introducing shipping or traveling costs into the model as
the cost of the firing of the corresponding transition, the
optimal trajectory problem is to find the optimal shipping
itinerary. In Fig. 2, cost values of the transition firings are
shown in the rectangulars representing the transitions.

��

��

��

goods

ship2ship1

ship3

cont_1 cont_2

sel_31

sel_32

1 1

1 1

1 1

11

1

supp

s1

s3

r1

r3

r2

s2

sel_r1
sel_r2

Figure 2: Optimal trajectory problem: desired end substate
and cost values

One of the main advantage of the introduced modeling ap-
proach is, that optimization and verification problems (like
the question whether the suppliers return back to their start-
ing point) are modeled simultaneously. In addition, we can
formulate temporal logic conditions like the following: if an
order of shipping two pieces of goods occurs then it has to
be executed eventually (by some suppliers).

There are two obvious ways to solve the optimal trajectory
problem: the traversal of the state space of the problem or the
computation of the optimal solution of a linear programming
problem. However, in case of large, complex systems, the
exhaustive search for a trajectory can result in state space
explosion. On the other hand, the second way provides only
a semi-decision technique to determine the optimal trajectory
for the optimal trajectory problem (see Section 5).

In order to develop efficient search methods, another sim-
ilar mathematical paradigm, the Process Network Synthesis
methods was investigated.

3 Process Network Synthesis
In chemical engineering, PNS algorithms are used to de-

termine an optimal resource allocation and scheduling for the
production of desired products from given raw materials [1].

3.1 Problem definition
A PNS problem is represented by the so-called P-graph.

A P-graph �V�<����� is a bipartite graph where the two sets
of disjoint nodes are materials � and operating units � , re-
spectively. Materials can be raw materials (�), products (�)
or intermediate materials (�
	���	N�). An operating unit
consumes its input materials in order to produce its output
materials.

Then, the PNS problem �#�	��� ����� of a P-graph ���<�
���
constitutes to produce all products in � from raw materials
� by operating units � .

In Fig. 3 an example P-graph is shown where � �
6������;��� ���R�������	��� ��� BT�
� � 6]=�
�C���"���G���C���CB . Product
� ��6�� B has to be produced by the operating units, from
raw materials �S�%6����������EB . The rest of the materials are
intermediate materials � ������� or byproduct � .

F

B C

G H

3

op. unit

material

5

2

D

E

4

1

A

6

Figure 3: Example P-graph

The solution of the problem is represented by a sub-P-
graph where all of the desired products are present and they
are produced by the involved operating units. A feasible so-
lution structure has to satisfy certain properties. These re-
quirements are expressed by the following five axioms.

1. (A1) Every final product is represented in the graph.

2. (A2) A material has no input if and only if it represents
a raw material.

3. (A3) Every operating unit represents an operating unit
defined in the synthesis problem.

4. (A4) Every operating unit has at least one path leading
to a final product.

5. (A5) If a material belongs to the graph, it must be an
input to or output from at least one operating unit in the
graph.

Obviously, the constraints in the PNS problem formulation
do not introduce any restriction on the intermediate material
stores after finishing the production. However, the proper
selection of the objective function will confine the solution
space to ’reasonable solutions’. This way a PNS problem
strongly resembles to a partial reachability problem as it ac-
cepts all of the solutions that produce the desired products
from the given raw materials not regarding the produced but
unused intermediate materials.

The synthesis of the optimal solution structure of a PNS
problem is performed by three PNS sub-algorithms: the
Maximal Structure Generation algorithm generating the su-
perstructure of the feasible solutions according to the above
axioms, the Solution Structure Generation algorithm com-
puting all the structurally feasible networks, and finally, the
Accelerated Branch and Bound algorithm dealing with the
search for optimal production.

3.2 PNS algorithms
Based on the specific structure of the PNS problem, the

combinatorial optimization problem can be solved efficiently
by the exploitation of the features given by the five axioms.

Maximal Structure Generation (MSG) Algorithm The
MSG algorithm excludes those materials and operating units
that violate any of the five axioms thus achieving a signifi-
cant reduction of the solution space in polynomial time. The
resulting maximal structure is the union of all solution struc-
tures and it is itself a feasible network.

The maximal structure of the example in Fig. 3 is deliv-
ered by excluding the operating unit � because it does not
satisfy axiom � � � � : there is no path from operating unit � to
any desired product. The main advantage of allowing redun-
dant problem formulations is on the engineering side as the
engineer can simply formulate all the production possibili-
ties without dealing with the extra constraints confining the
solution space.

Solution Structure Generation (SSG) Algorithm After
removing the redundant elements from the P-graph all the
solution structures are generated.

During the computation, the SSG algorithm maintains a
’to be produced’ set of materials. Initially, this set contains
only the products. Then the algorithm recursively builds up
a set of possible operating units.

The iteration consists of two main steps: at first, a material
from the set ’to be produced’ is selected (and also excluded
from the set). Then, the operating units producing the se-
lected material are taken into consideration: a subset of them
is added to the already marked operating units. After that,
the set ’to be produced’ is extended with their input materi-
als. Finally, the algorithm calls itself recursively.

The algorithm delivers all of base solutions that are closed
under unification and an arbitrary solution structure can be
generated combining these elementary solutions under the

operations of unifications. Algorithm SSG generates ev-
ery solution structure and only the solution structures of the
problem as the span graph of the set of the selected operating
units.

Accelerated Branch and Bound (ABB) Algorithm
While the SSG algorithm generates all the solution struc-
tures regarding to the structural properties and neglecting
the quantitative parameters, the ABB algorithm computes the
optimal solution network of a minimal cost fulfilling simul-
taneously the quantitative constraints added to the operations
and the material stores.

When selecting linear constraints and objective functions
PNS problems can be interpreted as integer linear program-
ming problems. The ABB algorithm solves this integer lin-
ear programming problem exploiting the additional struc-
tural properties (the same way as in the SSG algorithm) in
the following way.

/ Bounding (numerical cut) is conventional: if there is a
known solution, its cost value serves as a lower limit for
the further computations, i.e., a branch with a greater
value is cut, and only the branches with lower value are
taken into consideration.

/ The branching method (logical cut) is based on algo-
rithm SSG: branching is done at the selection of the op-
erating units that produce the selected material from the
’to be produced’ set, i.e., the solution structures gen-
erated by algorithm SSG provide a basis for algorithm
ABB.

The main advantage of the ABB algorithm is that it
uses combinations of the elementary solutions instead
of performing trials with individual elementary opera-
tions. This way the set over which the combinations
are searched for is reduced to the set of a few solution
structures instead of the huge number of potential ele-
mentary operations.

The result of the algorithm is a vector representing the
contained operating units in the optimal network together
with their operating rate. Exploiting the specific structure
of the problem, the ABB algorithm achieves an essential im-
provement by the structural cuts in contrast to the conven-
tional algorithm that traverses all of the � � ��� vectors repre-
senting the subsets of operating units in the worst case.

In the following section we will discuss the adaptability of
PNS methods for the Petri net reachability problem.

4 Adaptation of PNS algorithms to
Petri nets

Based on the resemblance between PNS approach and
Petri net partial reachability problem, our aim was to apply
PNS algorithms in order to solve the optimal trajectory prob-
lem [3].

Petri Nets P-graph of a PNS problem

places (P) material containers
transitions operating units

weight of incoming and outcoming edges production rate for operating units
of the corresponding transition

characteristic vector of the Parikh vector set of the corresponding operating units
Parikh vector result vector of the ABB algorithm

Table 1: Correspondence between Petri net and P-graph elements

4.1 Resemblance of problem definitions
For the sake of simplicity, we discuss the case when cost

parameters are only assigned to transition firings in the opti-
mal trajectory problem.

Let �#�	��
���
�� � ��� denote a Petri net model with a cost
function �E
3+ ���� associated to the transitions. Let �
denote the (sub)state to be reached through an optimal tra-
jectory. The analogy of the to Process Network Synthesis
problem elements is sketched in Table 1.

Please, observe, that PNS problems focus only on the
determination of the optimal production of the desired end
products without considering the unspent intermediate ma-
terials and byproducts unless the objective function requires
the zero amount of them. Since the start and end states of an
optimal trajectory have only to satisfy the condition to cover
the given initial and end (sub)states not regarding to the to-
ken numbers in the other places, optimal trajectory problems
can be expressed as PNS problems.

Table 2 describes a Petri net optimal trajectory problem as
a PNS problem.

4.2 Adaptation problems
Petri nets cover a wider range of models than those which

can be represented by PNS problems. Namely, P-graphs and
Petri nets have the similar structure but not all Petri net reach-
ability problems can be directly ’transformed’ into a PNS
problem and thus performing the ABB algorithm on it. One
reason for the limited expressiveness of the PNS problems
are the constraints introduced by the axioms (see Section 3.1)
in the transformed reachability problem.

’Produced raw materials’ In PNS problems all the raw
materials have to be represented by source places which are
initially marked and do not have incoming edges. In the ini-
tial marking of the Petri net model an arbitrary place may
contain tokens initially. In case of an initially marked place
that is not a source place, the direct transformation of the
Petri net would result in a raw material that is produced pro-
hibiting axiom � � �T� .

However, formally any Petri net with a known initial
marking can be transformed to the convenient PNS format in
such a way that an additional source place is initially marked
having a single output transition placing tokens into each

place which was marked in the original net. Hence ’pro-
duced raw materials’ are eliminated.

Revisiting our Petri net example in Section 2.1, the con-
venient PNS model of the derived Petri net satisfying the
PNS axioms is depicted in Fig. 4. Please observe, that place
goods does not require such an initialization because it has
no input transition.

�� ���	
�

�
 ����

goods

ship2ship1

ship3

cont_1 cont_2

sel_31

sel_32

0

1 1

1 1

1 1

11

1

init

initialize

supp

sel_r1

r1

r3

s3

sel_r2

s2s1

r2

Figure 4: Petri net model with no ’produced raw material’

The other four axioms refer to the redundancy of a ma-
terial or an operating unit. These redundancy requirements
have to be also hold by Petri nets. Now, let us examine what
solutions are generated for the above Petri net.

Let us imagine an optimal trajectory problem, with four
pieces of goods, initially (we do not care about the number
of suppliers in place supp, i.e., about the number of tokens
in place init). The task is to ship]T�w]=�D] pieces of goods to
s1, s2, and s3, respectively. It is easy to observe, that there
is no trajectory from the given initial state if place init
contains no token.

However, the optimal solution generated by the ABB algo-
rithm (firing transitions sel r1, sel r2, sel 31, ship1,
ship2 and ship3, �C�w]T�w]T�w]=�D]=�D] many times, respectively)
does not contain transition initialize, that is, it is not
fireable from the given initial state.

optimal trajectory problem PNS problem

places marked in the initial state raw materials
places marked at the state to be reachable desired products

number of tokens quantity of materials
costs assigned to transitions operation cost of operating units

Table 2: Petri net (partial) reachability as a PNS problem

Catalysts Since PNS algorithms are originally developed
to solve chemical resource allocation problems, they do not
care about the presence of catalyst materials. In the trans-
formed PNS problem place supp behaves as a catalyst: it is
both consumed and produced during the manufacturing pro-
cess resulting in a total of zero change in amount.

However, while such catalysts cannot be assessed based
upon material bill like equation used in the PNS model, PNS
algorithms suppose those materials to be available at the be-
ginning. Since our aim is not to model chemical production
systems but to model complex IT systems, unfireable spu-
rious solutions (involving unavailable catalysts) have to be
filtered.

Finally, let us discuss the meaning of the results of the
adapted ABB algorithm to the Petri net model. For PNS
problems, the ABB algorithm returns a vector representing
the optimal production of the desired products as the oper-
ation duration of the involved operating units. Then the re-
quired amount of raw materials, in order to produce the given
optimal production is calculated. This amount is estimated as
the sum of the operation rates of the operating units that con-
sume raw materials. This sum is unique as a consequence of
axiom (A2).

In order to execute the production, catalysts are also nec-
essary, but their initial amount does not have to be calcu-
lated because they remain in the network as unused materi-
als. Therefore the amount of the required raw materials is
enough to perform the production.

In case of Petri net models, catalysts cannot be supposed
to be available at the beginning but they have to be present
’physically’ in the net. Therefore, in the optimal trajectory
problem, we have to know the required amount of catalyst
tokens beside necessary amount of the initial tokens. On the
other hand, in many real problems the exact trajectory has to
be computed providing the order of the execution steps that
is not provided by the ABB algorithm.

5 Solution algorithm for the optimal
trajectory problem

In the following we introduce a gradual filtering method
to compute the optimal fireable solutions for the optimal tra-
jectory problem.

Our problem has two orthogonal aspects: one requiring
the fireability of the solution in order to be feasible, and the
other one requiring the optimal cost. These two aspects have
to be merged into a single algorithm. This merging can be

done at different levels of granularity: a straightforward so-
lution would be to estimate, for instance, an optimal solution,
to check subsequently its fireability and to return to a search
for the second best solution if the fireability constraint is not
satisfied. However, such rough granular merging of the algo-
rithms may lead to a very high level of redundant computa-
tions. This way our objective is to detect infeasibility of the
solutions as early as possible.

Our proposal consists of four consecutive steps.

1. At first, a candidate optimal solution as a Parikh vec-
tor is generated by the adapted ABB algorithm (already
discussed in Section 4. This is a sufficient condition as
discussed in Section 4.2.

2. Secondly, if there exists a solution, the end state reached
from the initial state by the candidate solution Parikh
vector can definitely be calculated by means of the state
equation.

3. In order to assure the fireability of the solution derived
by the adapted ABB algorithm, it is tested by a re-
duced check partitioned into a fast symbolic reachabil-
ity check,

4. and a fireability check (together with the examination
of the satisfaction of the temporal conditions).

Dependent on the result of the checking methods, the algo-
rithm either terminates delivering a fireable optimal solution
or the adapted ABB algorithm generates the next optimal so-
lution and the introduced check is performed again.

5.1 Reachability check
The reachability check of the end state from a given ini-

tial state is performed by symbolic techniques using Binary
Decision Diagrams.

/ One solution is the symbolic state space traversal by
the so-called image computation elaborated by Pastor,
Cortadella and Roig [7]. The algorithm builds the state
space starting from the given initial state firing simul-
taneously all the enabled transitions from the set of the
reachable states.

The main disadvantage of using this method is that in
case of an initial substate the state space has to be gen-
erated for each candidate solution freshly.

/ The other solution is the calculation of a membership
function based on the transitive closure of the single
step transition function. The main advantage of this so-
lution is that the membership function can be calculated
independently from the actual initial state. In this way
the membership function is reusable for the next candi-
date solutions generated by the ABB algorithm.

In the following the sketch of an algorithm using the sec-
ond approach is given.

5.2 Membership function generation
For the reachability check of the solution computed by al-

gorithm ABB, we use the transitive closure computation in-
troduced in [6]. As the input of the computation, the Boolean
representation of Petri net transition relation is used encod-
ing the states and the dynamic behavior of Petri nets as
Boolean functions.

For the sake of simplicity, let ��� �q���	��
���
���� � ��� be a
safe Petri net, i.e., for every marking � reachable from the
initial marking ��� , for all places �����?���] holds. An �
marking is encoded by the set of � ���I��� boolean variables
such that each variable has the values] if and only if the
corresponding place is marked at the marking � , i.e., � �
����� �wvDvwvx�����I�J x� � �]	��
 ����� � �,�] .

A transition K is enabled in marking � , if the following
expression is evaluated as true: �
�	� �������� � � � . After having

the condition for the enabledness we may define the result
marking � U � ��� �� �O���w�\�wvDvwvD��� �� �O���"��� from the marking ���
����� �wvDvwvx�����I� firing transition K as follows.� �� ��� � �DvwvwvD�#� � �,� �� �] if � � 1 K�/

A if � � 1R/�K 	 K�/
� � otherwise.

Then the transition relation function is the following. The
state � U � �����5�DvwvwvD�����I� is reachable from state � �
��� � �wvDvwvx��� � � by firing a transition if the following function
is evaluated to] .

>���<� � U �,�! " � �$# % �&
�(' �*) �D�,+-� �� �O� � �wvwvDvx�#� � �/.�� � �10 (1)

In order to compute the membership function for the
reachability test, the transitive closure of the above defined

function is estimated by the algorithm published in [6]. The
algorithm computes the transitive closure of a matrix repre-
senting the transition relation function, where the rows and
the columns are indexed by the current state and the next
state, respectively.

The algorithm, called recursive descent procedure is based
on Shannon’s theorem:2

� 0

24365
0

2 3
(2)

where the subscripts refer to the operation of cofactoring,
e.g.,

2 3$798: � 2
�

3 ' � 7 : ' � (3)

In the sequel, recursive descent procedure is sketched
(where �	;=< stands for >@?G} � �[0 ��? �/<~��?"��8C���).
compute closure(T) 6

if
<1 65AI�D] B then return
 ;

F�BA
 3 r : r

3
r : r

3
r : r

3
r : rDC ;E � � �GF�H �JI?K�K �GL�F n�I�M4K �[
 3 r : r � ;EON � E � ;
 3 r : r ;

� � �GF�H �JI?K�K �GL�F n�IPM�K �#
 3 r : r 5 �[
 3 r : r ; E N ��� ;EOQ �
 3 r : r ; E � ;
�*� �R; EOQ ;
� � E N ; � ;
� � E � 5 � E N ; ��� ;
return 0S�x8T� � 5

0��x8T� � 5
0�� 8T� � 5

0��x8T� �
B

The initial and the calculated end states are substituted
into the generated membership function. If the test is neg-
ative, a next optimal solution is generated by the ABB al-
gorithm. However, this reachability check provides only a
semi-decision method (because the analyzed marking could
be reached by another trajectory). It has to be proved that the
end state can be reached by a trajectory corresponding to this
solution vector retrieved by the ABB algorithm as a Parikh
vector, i.e., a fireability check has to be performed.

5.3 Fireability check and temporal logic con-
ditions

The last step of our algorithm is to prove the fireability of
the candidate solution vector. If the solution is fireable, then
as the very last step, the satisfaction of temporal logic con-
ditions can be decided. For this purpose, the model checker
SPIN was chosen.

SPIN was originally developed to model computer and
network protocols. In the last years, SPIN was also adapted
successfully into many application domains such as specifi-
cation and design verification of both hardware and software
systems.

The main advantage of SPIN is its own specification lan-
guage Promela (Process Meta Language). Promela is appro-
priate to describe concurrent processes and it contains sev-
eral control structures. The requirements to be satisfied by
the system are given by linear temporal logic formulae. Ver-
ifying an LTL logic formula, SPIN reports either the satis-
faction of the formula or it generates a counterexample.

To perform the fireability check, at first the Petri net model
(without the cost function) is translated into a Promela model
using the embedded translation of PEP (Programming Envi-
ronment based on Petri nets) [2].

In order to check the fireability of the candidate Parikh
vector � , the new version of SPIN, SPIN 4.0 [5] is used. The

new C primitives of SPIN 4.0 facilitate the use of C variables
in the Promela model, thus an LTL property to be checked
can be dynamically changed during the verification.

We use a �GF�H �JI?K�K��Gv � variable that register the times of
the execution of the individual transition firings (representing
as atomic expressions) for each visited state. Thus, we for-
mulate the appropriate LTL logic formulae as �TL#
�� 8InT������
�GF�HQ��IGK�K��Gv � � . Namely, we let SPIN to search for a trajectory
(reached state) that violates the statement. If SPIN generates
a counterexample, there exists a trajectory having the candi-
date Parikh vector together with the order of the transitions
firings, otherwise the check is negative.

In order to improve this method, we may add a depth con-
straint for the search space as we know that the firing se-
quence consists as many steps as the sum of the components
of the Parikh vector.

In addition, introducing costs of the transitions as new
variables promises a further improvement providing numeri-
cal cuts beside the logical cuts performed by SPIN. Namely,
the search is terminated if either the given depth is reached
or the corresponding cost of the given Parikh vector is pro-
ceeded.

Recently, the Branch and Bound technique was imple-
mented using SPIN in [8] in order to provide optimal
scheduling and verification. Although the discussed ap-
proach is appropriate to perform the search for optimal
scheduling (especially combined with embedded heuristics
into the Promela model), it can be very inefficient if there is
no proper solution.

5.4 Running example
Let us revisit our example in Section 4.2 (depicted in

Fig. 4). We have four pieces of goods, initially (and we do
not care about the number of suppliers). The task is to ship
]=�w]T�w] pieces of goods to stores s1, s2, and s3, respectively.

As discussed, the candidate Parikh vector generated by the
ABB algorithm with optimal cost � is the following. Tran-
sitions sel r1, sel r2, sel 31, ship1, ship2 and
ship3 fire �I�w]T�w]=�D]=�D]=�w] times, respectively. The generated
solution yields the initial state that has three tokens in place
goods, while places s1, s2 and s3 contain]T�w]T�w] tokens
in the calculated end state, respectively.

The check of reachability fails because there is no fireable
trajectory from this initial state therefore, the calculated end
state cannot be reached.

The Parikh vector of the next best solution generated (with
optimal cost �) is as follows. Transitions initialize,
sel r1, sel r2, sel 31, ship1, ship2 and ship3
fire �I�
�C�D]=�w]T�w]=�D]=�D] times, respectively. The generated so-
lution yields the initial state that has three-three tokens in
places init and goods, while places supp, s1, s2 and
s3 contain �"�w]T�w]=�D] tokens in the calculated end state, re-
spectively. With the calculated initial and end states, both
of the reachability and the fireability check (yielding the fir-
ing order � $ initialize, ��$ sel r1, ship1, sel 31,
ship3, sel r2, ship2) are positive, i.e., we found the

optimal trajectory.

6 Ongoing research activities
In order to make the use of the above algorithm available

for system designers who is not familiar with mathematical
modeling and optimization problems, we are aiming to de-
velop an automatized framework for UML-based modeling
of optimization and verification problems [4].

The Petri net model corresponding to the UML represen-
tation is derived by mathematical model transformations au-
tomatically [9], and the Petri net model of the problem is
solved by the proposed technique. In this way, system ar-
chitect may design a system in their well-known design en-
vironment and our combined verification and optimization
method is carried out in a push-button way.

References
[1] F. Friedler, J. B. Varga, E. Feher, and L. T. Fan. Com-

binatorially Accelerated Branch–and–Bound Method for
Solving MIP Model of Process Network Synthesis, Non-
convex Optimization and its Applications. State of the
Arts in Global Opimization, Computational Methods
and Applications, pages 609–626, 1996.

[2] B. Grahlmann and C. Pohl. Profiting from Spin in PEP.
In SPIN’98 Workshop, 1998.

[3] S. Gyapay and A. Pataricza. Optimization Methods for
Reachability Analysis of Petri Net Models. In Proc. of
FORMS-2003, Budapest, Hungary, May 15-16), pages
53–60. L’ Harmattan, Budapest, 2003.

[4] S. Gyapay, A. Pataricza, J. Sziray, and F. Friedler.
Petri Net-based Optimization of Production Systems. In
� �	� IEEE Int. Conf. on Intelligent Engineering Systems,
pages 465–469. Opatija, Croatia, May 26–28 2002.

[5] G. J. Holzmann. The SPIN Model Checker - Primer
and Reference Manual. Addison-Wesley, Boston, USA,
2003.

[6] Y. Matsunaga, P. C. McGeer, and R. K. Brayton. On
Computing the Transitive Closure of a State Transition
Relation. In 30th ACM/IEEE Design Automation Con-
ference, Dallas, Texas, United States, pages 260–265,
1993.

[7] E. Pastor, J. Cortadella, and O. Roig. Symbolic Analysis
of Bounded Petri Nets. IEEE Transactions on Comput-
ers, 50(5):432–448, 2001.

[8] T. C. Ruys. Optimal Scheduling using Branch and
Bound with SPIN 4.0. In Proc. 10th Int. SPIN Work-
shop, Portland, OR, USA, May 9-10, 2003. Proceedings,
vol. 2648 of LNCS, pages 1–17. Springer, 2003.

[9] D. Varró, G. Varró, and A. Pataricza. Designing the au-
tomatic transformation of visual languages. Science of
Computer Programming, 44(2):205–227, August 2002.

