
1

Control Flow Checking in Multitasking Systems

István Majzik, András Pataricza
TU Budapest, Dept. of Measurement and Instrument Engineering

H-1521 Budapest, Müegyetem rkp. 9.
Phone/Fax: +361 1-664-938

E-mail: majzik@mmt.bme.hu

Abstract

The control flow checking technique presented in our paper is based on the new watchdog-
processor method SEIS (Signature Encoded Instruction Stream). This method is intended to
check the still uncovered area of state-of-the-art microprocessors using on-chip caches or in-
struction pipelines, since the processor instruction bus needs not be monitored. The control
flow is checked using assigned actual signatures and embedded reference signatures. Since
the actual and reference signatures are embedded in the checked program, the usual refer-
ence database and the time-consuming search/compare engine in the WP can be omitted.
The evaluation of the actual signature is a simple combinatorial task allowing high speed
and thus the sharing of the WP between different tasks and processors. The checking method
has been extended to higher levels of the application like simultaneous check of different pro-
cesses and their synchronization in multitasking systems.

Keywords

Fault tolerant computing, concurrent error detection, control flow checking, watchdog-pro-
cessors

1 Introduction

Multiprocessing systems that run computing intensive applications require a high level of
fault tolerance, thus the early error detection is a key design factor. The majority of failures
is caused by transient faults. Experiences and fault injection based simulations had shown
that up to 70% of the transient faults results in the disturbance of the program control flow
[1]. One of the widely used methods for the concurrent checking of the program control flow
is the application ofwatchdog processors (WP, [2]).

A watchdog-processor is a relatively simple coprocessor which monitors the control flow
of the checked processor using its state parameters. The run-time processor state and the ref-
erence control flow are represented bysignatures. Two types of watchdog processors are dis-
tinguished on the base of the generation of the run-time signatures: WPs working with
assigned or derived signatures.

This research is part of the Hungarian-German Joint Scientific Research Project #70 with additional
support from: SFB 182 (DFG), OTKA-760, T-3394 and F7414 (Hungarian NSF).

2

The derived signatures (e.g. in [3]) are generated directly by the WP which monitors the
address and instruction bus of the checked processor and compacts the values of the signals
as binary vectors (e.g. using linear feedback shift registers). Thereference signatures are
computed or compacted before the program run in the same way.

In order to generate the derived signatures, the processor instruction bus need to be moni-
tored. In the case of up-to-date microprocessors using built-in instruction cache and prefetch
queue this approach can not be used. The only way to identify the processor state is toassign
signatures to some states of the program. The high level program text is preprocessed before
the compilation and signature transfer instructions are inserted. In run-time, these instruc-
tions transfer the signatures to the WP. The checked processor and the WP are running simul-
taneously, the WP compares the run-time signatures with the reference ones downloaded
before the program start.

The until now developed assigned signature based WP methods (in the following referred
to as AS methods) use either a simplewatchdog reference program [4] or a reference data-
base [5]. The watchdog program contains the control structures of the checked program with
the modification that the computations are replaced by signature receive and check instruc-
tions. The reference database is the adjacency matrix of the control flow graph of the
checked program stored in some parse matrix format. The disadvantage of both approaches
is that due to the complicated evaluation of the run-time signatures (execution of the watch-
dog program or search in a large-scale database) the hardware implementation of the WP
needs an independent microprocessor. On the other hand, the usefulness of these methods in
multitasking systems is limited, because the size of the reference becomes large if the num-
ber of running processes increases.

One of the cooperation projects of the Department of Measurement and Instrument Engi-
neering (Technical University of Budapest) and the Department of Computer Structures (Uni-
versity of Erlangen) is the development of a high-speed watchdog processor. The goals and
guidelines of the project were as follows:

• Development of a WP working with assigned signatures (according to the type of the
checked system) and being able to check multitasking systems as well;

• Reducing the size of the reference database to an acceptable level (even if the number of
running processes is high);

• Assuring a fast signature evaluation which is executable by a simple sequential circuit
(without the need of an independent microprocessor).

In the following first the basics of the signature assignment are discussed, then the SEIS al-
gorithm for computing of the signatures is outlined (Section 3). The checking of the proce-
dure calls and the synchronization of cooperating processes are presented in the next two
sections. The support of error recovery and the hardware architecture of the WP are covered
by Section 6 and Section 7. At the end, measurement results and conclusions are presented.

2 Signature assignment basics

The control flow of a (high-level) program is the execution sequence of the statements. The
set of all possible fault-free executions of a program is associated with acontrol-flow graph
(CFG), where the vertices represent the statements (or given statement sequences) of the pro-

3

gram, the edges represent the admissible control operations between them, independently of
the data dependencies. In procedural programming languages each procedure can be associat-
ed with a control-flow graph.

According to the basic AS scheme, signatures are assigned to the vertices of the CFG,
which is often referred to as theencoding of the CFG. The WP monitors the signature flow
by checking whether an edge exists between the vertices associated with the actual and the
previously received signatures. At a higher level, the change between the CFGs of different
processes and processors can be examined, if the CFG identification information is embed-
ded in the run-time signatures as well. In this way the procedure calling mechanism, the
scheduling, the synchronization of cooperating processes can be checked in the WP.

The main goal of our new algorithm calledSignature Encoded Instruction Stream (SEIS,
[6]) is the reduction or elimination of the large-scale reference database and the complicated
WP program used in the former methods. The run-time signatures should contain all the in-
formation which is needed in order to evaluate them. In SEIS, an assigned signature not only
identifies the current state of the program but also contains information of the possible suc-
cessor states (i.e. signatures). In this way each signature can be validated on the base of its
predecessor in the signature flow, the possible successors of each signature need not be
stored explicitly in the WP. The state of the checking in a given CFG is represented by a sin-
gle reference signature which is regularly replaced by the actually evaluated and fault-free
one. The switching between the checked CFGs is simple, since only the actual reference sig-
nature has to be saved and replaced with the reference of the new CFG (returning to the
checking of the actual CFG, the saved reference is used again).

Since each signature should contain information of the identification of the possible suc-
cessor ones, the limited signature size in real computer systems and the desired high signa-
ture transfer rate need the limitation of the number of successors. It is more or less possible
since in control structures of commonly used programming languages the number of succes-
sors of a statement is limited by the syntax (in most cases it is 2 or less; in assembly languag-
es only simple two-way branches and loops can be used). However, there are control
structures in which the number of successors (or predecessors) of a given statement is not
limited (e.g. thecase branches in aswitch structure). To encode the CFG of such “irregu-
lar” control structures, the encoding algorithm has to be carefully defined. The SEIS prepro-
cessor (for programs in C language) assures that each signature has the same size,
independently of the number of successors to be identified.

3 Encoding and checking of the control flow graph

The input of the SEIS preprocessor is the original high-level program source, the output is
the modified program text which contains the inserted statements which transfer the run-time
signatures to the WP. The preprocessed program can be compiled by the original compiler of
the language and it can be executed without further modifications.

The steps of the SEIS encoding algorithm are informally presented as follows ([7] is a
more formal description):

4

1. The control flow graph of the program is extracted. The basic control structures are
assignedelementary control subgraphs which can be composed hierarchically. The sub-
graphs are defined in such a way that they satisfy the requirements of the encoding: the
number of successors of the vertices should be limited.

2. The edges of the CFG are collected into an edge list (since the base of the encoding and
checking is the existence of edges in the graph). The listing of the edges can be reduced to
the well-known problem of theEulerian circuit generation. Inserting additional edges, the
CFG can be transformed into an Euler-graph in which the Eulerian circuit can be gener-
ated using simple linear algorithms. This circuit contains all edges once and only once.

3. The vertices listed in the Eulerian circuit are encoded. A cyclic ordering of the possible
code values is defined. Subsequent vertices in the circuit which are connected by normal
edges of the CFG are assigned subsequent codes; if they are connected by additional edges
then they are separated skipping a code value. In the Eulerian circuit, each vertex is listed
several times (the number of occurrences of a vertex is equal to the maximum number of
its input and output edges). The signature of a vertex is generated concatenating the code
values assigned to the multiple occurrences of it (called in the followingssublabels).

This encoding method defines thechecking rule as well: A signature is a valid successor of
a reference one if and only if one of its sublabels is successor (in the used cyclic ordering
of the sublabel codes) of one of the sublabels of the reference signature.

4. In some vertices, the number of sublabels is reduced. The vertices of irregular control
structures, which can have an unlimited number of successors (predecessors), are marked
asmultiple output (multiple input, respectively) vertices in the control-flow graph extrac-
tion step. (These type of vertices, their predecessors or successors can be identified on the
base of the syntax of the language.) The number of sublabels of the multiple input (multi-
ple output) vertices have to be reduced. The base of the reduction is, that the sublabels
referring to the same successor (predecessor) vertex may have the same code if they have
no predecessor (successor) sublabels. In this way the output (input) edges of the multiple
output (input) vertices can be connected to the same sublabel reducing the number of sub-
labels. These special vertices are defined in such a way that the reduction is always possi-
ble.

The SEIS graph extraction and encoding algorithm assures that if programs in C language
are preprocessed then the number of sublabels of each vertex is limited by 3. The edges
which are encoded using less than 3 sublabels are completed appending one of the existing
sublabels to the signature once again. The fact that each signature consists of a fixed number
of sublabels enables a simple implementation of the WP hardware. The base of the signature
evaluation is the rule described in Step 3.

As an example consider the following procedure:

int test_procedure()
{

for (f=0; f<9; f++) {
if (a<b) a=b+f;
else c=a-f;

}
}

5

The preprocessed version of this procedure is as follows:

int test_procedure()
{

SENDSIG(SOP,1,10,1); {
for (f=0; f<9; f++) {

SENDSIG(NRM,2,5,2); {
if (a>b) {SENDSIG(NRM,3,3,3); a=b+f;}
else {SENDSIG(NRM,6,6,6); c=a-f;}
SENDSIG(NRM,4,7,4);}

}}
SENDSIG(EOP,8,11,8);

}

The SENDSIG macro transfers the signature to the watchdog, its implementation depends on
the hardware interface between the checked processor and the watchdog. The parameters of
the macro are the signature type (see later) and the sublabel codes. The signatures belonging
to adjacent statements contain subsequent sublabel codes, in this example the successor func-
tion is the one which increases the code by one.

4 Checking of the procedure calls

There are two ways to check the procedure calls. First, intermediate signatures can be insert-
ed before and after the procedure calls connecting the first and last signature of the called
procedure to the reference of the caller environment. In this way the caller and the called pro-
cedures have a single common CFG.

The second method allows the use of independent CFGs of the called procedures. In the
WP, similarly to the checked program, asignature stack is implemented which stores the ref-
erence signatures of the embedded procedure calls. The initial and final vertices of the proce-
dures are marked byStart of Procedure (SOP) andEnd of Procedure (EOP) flags. Receiving
a SOP signature the watchdog stores the actual reference signature on the stack (signature
push), the first reference of the new CFG is the actual and unchecked SOP signature. In the
case of an EOP signature the most recently saved reference is restored from the stack (signa-
ture pop operation) and checking of the CFG of the caller procedure resumes.

5 Checking the synchronization of processes

The synchronization of processes is performed by the scheduler and by the synchronous com-
munication. If aprocess identifier is appended to each signature then the scheduler can be
easily checked. Changing the running process the scheduler transfers the ID of the actual pro-
cess to the watchdog. The WP stores it internally and compares with the identifiers embed-
ded in the run-time signatures. Only the signatures of the actual running process are valid.

The communication can be checked by usingguard signatures. They are transferred to the
WP in the same way as the normal signatures, but their effect and evaluation are different.
Two type of guards are used:start guard, inserted before a communication statement, and
checker guard, inserted after it. The processes beginning a synchronous communication ini-

6

tialize theircommunication registers in the WP by the start guard signatures. Receiving a
checker guard signature, it is evaluated in the WP fault-free if all the processes which are
partners in the communication have already updated their communication registers by send-
ing the initialization guard. (I.e. a process is enabled to continue to run if its partners have al-
ready begun the communication, too.) If only two-way communications are enabled then the
structure of the guard signatures and their evaluation is simple.

6 Support of error recovery

If an error of a checked process is detected then the system is interrupted and a status word is
available in the WP which contains the detailed description of the error. The system can re-
start the execution of the erroneous process using a previously saved state of it, which is
calledcheckpoint state (rollback recovery).

The prototype of the SEIS WP supports the rollback recovery of the checked system.
When the main processor stores a checkpoint then simultaneously the state of the actual pro-
cess is saved internally in the WP (initiated by a special command similar to the guard signa-
tures). The WP-internal state of a process is its signature stack, so it has to be stored as
checkpoint. If a rollback recovery is performed then the checkpoint stack space replaces the
actual one, in this way the execution as well as the checking of the process can continue
from the fault-free previous state.

7 The checker hardware

The signatures assigned to the processes of a multitasking application consist of 5 parts: the
3 sublabels, the procedure and the process identification numbers (the use of procedure ID is
optionally; in multiprocessor systems processor ID can be used as well). These parts are eval-
uated by autonomous modules of the WP hardware:

• Thestatement level module checks the actually received signature on the base of the refer-
ence one. The possible sublabel pairs are examined by 9 comparators and a combinatorial
sublabel successor function. The time needed to evaluate a signature is the delay of the
comparators. After the evaluation, the reference signature is updated.

• The procedure level module checks the switching between the CFGs using the signature
stack. The SOP and EOP signatures initiate a push or pop operation updating the stack
pointer and the reference signature.

• In theprocess level module, the process ID is compared with the reference ID of the running
process which was transferred by the scheduler. The guard signatures initialize and check
the communication registers. The signature transfer is monitored by a timer which detects
when a process fails to send signatures.

The WP was built using standard programmable logic devices (MACH series of AMD). The
procedure stack was implemented in a 256K RAM which was shared dynamically between
the processes (this stack proved to be oversized if no recursive procedure calls were
checked). The WP as a coprocessor on the 32 bit VME bus can check multiple processors in
a time-sharing manner. The transfer and evaluation of a signature takes about 500 ns.

7

8 Measurement results

The first measurements (in [8]) have shown that there is a strong dependence between the
fault coverage of this error detection method and the number of signatures sent to the WP
(the time and memory overhead of the preprocessed program).

Thememory overhead is acceptable even for programs in the MB range (in average up to
30%). However, thetime overhead is a critical factor. If the signature transfer needs more
time than the fetch and execution of a processor instruction, then the overhead can exceed
the 100%, especially in applications consisting of small iteration loops, since in each step a
signature has to be transferred additionally. In order to reduce the time overhead, two type of
reduction algorithms were elaborated. The first one, thestatic reduction, reduces the number
of signatures eliminating some vertices in the CFG. The second one, calleddynamic reduc-
tion, decreases the overhead caused by the overtested short loops containing the transfer of a
single signature in their body; these signatures are not transferred in each execution of the
loop, only at a given rate which is controlled by a dynamic reduction factor. These two reduc-
tion techniques are implemented in the preprocessor.

The fault injection experiments were executed defining different static and dynamic reduc-
tion factors. Without any reduction, the WP is able to detect up to 50-60% of the errors not
detected by the standard error detection mechanisms of the system (e.g. access to non-exis-
tent or unused memory, segmentation fault, illegal opcode). Using static reduction, the fault
coverage decreases rapidly, as the time between subsequent signatures increases (especially
in high-level programs where the statements can cover complex instruction sequences at the
assembly level). The dynamic reduction of small factors has no such effects; while reducing
the time overhead, the fault coverage remains the same as without the reduction.

9 Conclusions

On the basis of the measurements, the following applicability conditions of the SEIS method
(and, in general, of the AS methods) can be derived:

• The SEIS method performs the fastest signature evaluation known among the different AS
methods. The signature checker hardware needed by it is extremely simple, the checks can
be extended to higher levels of the application using additional checker modules.

• The preprocessor-approach assures a portable and compiler-independent signature assign-
ment. However, just like for all AS methods, existing programs, which can not be recom-
piled, can not be checked.

• If there are standard error-detection mechanisms in the system (segmentation checks, ex-
amination of the memory access rights) then this method does not increase drastically the
error detection capability.

• If the signature transfer is slow (compared with the memory access cycle in the system)
then the time overhead of the preprocessed program is unacceptable high (even if the sig-
nature evaluation is fast). If the main processor uses speed-up mechanisms, like instruction
prefetch queue or cache, a slow signature transfer becomes a performance bottleneck in the
checked system. (However, the SEIS and the other AS methods are intended to be used
even in this type of microprocessor systems, in which the instruction bus of the processor
is not observable).

8

References

[1] Czeck, E. W.; Siewiorek, D. P.: Effects of Transient Gate-Level Faults on Program Be-
haviour. Proc. 20th Int. Symposium on Fault-Tolerant Computing (FTCS-20), pp 236-
243, 1990

[2] Mahmood, A.; McCluskey, E. J.: Concurrent Error Detection Using Watchdog Proces-
sors - A Survey. IEEE Trans. on Comp., Vol 37/2, pp 160-174, 1988

[3] Wilken, K.; Shen, J. P.: Continuous Signature Monitoring: Efficient Concurrent Detec-
tion of Processor Control Errors. Proc. 1988 Int. Test Conf., pp 914-925, 1988

[4] Lu, D. J.: Watchdog Processors and Structural Integrity Checking. IEEE Trans. on
Comp., Vol 31/7, pp. 681-685, 1982

[5] Michel, E.; Hohl, W.: Concurrent Error Detection Using Watchdog Processors in the
Multiprocessor System MEMSY. Informatik-Fachberichte 283, Fault Tolerant Com-
puting Systems, pp. 54-64, Springer Verlag Berlin, 1991

[6] Pataricza, A.; Majzik, I.; Hohl, W.; Hönig, J.: Watchdog-Processors in Parallel Sys-
tems. Microprocessing and Microprogramming Vol. 39 (Proc. Euromicro'93, Barcelo-
na, 1993), pp 69-74, 1993

[7] Majzik, I.: SEIS: A Program Control-Flow Graph Encoding Algorithm for Control
Flow Checking. Technical Report TUB-TR-94-EE14, Technical University of Buda-
pest, Hungary (66 pages), 1994

[8] Majzik, I.; Pataricza, A.; Dal Cin, M.; Hohl, W.; Hönig, J.; Sieh, V.: Hierarchical
Checking of Multiprocessors using Watchdog-processors. In K. Echtle, D. Hammer, D.
Powell (Eds.): Dependable Computing - EDCC-1, LNCS 852, Springer Verlag, Berlin
Heidelberg, pp 386-403, 1994

