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Abstract

For constructing fault tolerance mechanisms in large massively parallel multipro-
cessor systems, a scalable fault diagnosis is necessary, which works efficiently
even if there are several thousand processors in the system. In this paper we
present an event-driven, distributed system-level diagnosis algorithm, based on a
general diagnosis model which does not limit the number of simultaneously exist-
ing faults. In particular, the relation between error detection and fault localization
as well as two different methods for distributing diagnostic information are exam-
ined in detail. Furthermore, we give measurements concerning how does our diag-
nosis algorithm affect application performance.

1. Introduction

The production cost of complex, highly integrated electronic components is decreasing
due to the development of manufacturing technology. As a result,massively parallel multi-
computers, capable of operating several thousand processing elements (PEs) simultaneously,
are gaining larger importance in computation-intensive scientific and technical applications.
Yet, the huge processing capacity achieved by utilizing massively parallel architecture still
requires reliable operation over a long time period. The large number of processors built in
such systems increases the probability of faults, which may result in a dramatically reduced
reliability without fault tolerance. Thus, the aim of fault tolerance is to ensure the specified
operation in spite of occurring faults by preventingdetected errors from becoming failures.

In design and application of massively parallel computersscalability is a significant
requirement. A multiprocessor system is called scalable, when extending it with new
resources performance increases proportionally. Due to this requirement, the application of
centralized controller or observer devices is difficult, or even impossible, since they limit the
number of PEs. Thus, like other parts of the system, diagnosis must bedistributed as well. It
is possible to utilize the PEs themselves for determining the system fault status: this approach
is known asdistributed fault tolerance [5][6][8][10].

The paper presents two implementations of a distributed diagnosis algorithm. The algo-
rithm was developed for the Parsytec GCel massively parallel computer. This system uses
INMOS T805 transputers as PEs, and may integrate 16’384 transputers in its full configura-
tion. The size of the hardware can be extended in units of 16 transputers (called clusters) [11].



Scalability is achieved with a regular distributed system structure, using a two-dimensional
grid interconnection network (seeFigure 1.). Purpose of the algorithm is to generate in every
fault-free transputer a correct diagnostic image, containing the fault state of system compo-
nents. If the diagnosis is consistent, the fault-free transputers can logically disconnect the
faulty units from the system by stopping the communication with them. Employing this
method the number of tolerable faults only depends on the properties of the system intercon-
nection topology.

Figure 1. Structure of the Parsytec GCel

2. Diagnosis model

The application of the developed distributed system-level diagnosis algorithm (described
in Section 3.) requires the following conditions to be fulfilled:

• Individual and complete tests. The algorithm assumes, that the processing elements
are “intelligent units”, that is they are able to performcomplete tests (with 100% fault
coverage) on units accessible via a direct communication link, independently of other
PEs. Only the normal interconnection facilities may be used for testing purposes.
Diagnostic messages are assumed to be protected by error-correction coding, which
serves as an additional test for both the neighboring processor and the communication
link connecting the PE with its neighbor. Consequently, an error in the communication
facilities will also result in a bad test outcome, which enables the diagnosis of the inter-
connection network as well.

• Symmetric test invalidation. The algorithm uses the symmetric test invalidation
model (PMC) introduced by Preparata et al. [12]. In this model, a fault-free tester
always determines the condition of the device under test (DUT) correctly, while a test
performed by a faulty tester may result in an arbitrary outcome. Since such test results
do not correspond to the actual fault state of the DUT, they must be left out of consid-
eration. Note, that the PMC model is the most general, but also the most pessimistic
test invalidation model. Incorporating the PMC model, the algorithm is applicable in
systems of other fault models as well. In those systems the algorithm produces correct
diagnosis, but provides less diagnostic information than it is possible to obtain.

• Diagnosability. Majority of the diagnosis algorithms introduce an upper limit on the
number of simultaneously existing faults to deal with the uncertainty caused by pessi-
mistic test invalidation models. The underlying assumption of thist-limit is that few
faults are more likely to occur in a properly designed multiprocessor system. The
t-limit is the most number of arbitrary located faults for which the diagnosis is possible
(e.g., for the two-dimensional, non-torus grid it is 2). Note, that the t-limit is aworst-
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case diagnostic measure, in most situations it provides a much too pessimistic assump-
tion [7].

In distributed systems with regular structure, messages exchanged between non-neigh-
boring nodes are transferred via a chain of processors and links. Faulty processors or
communication links cannot be included in this chain, because faults block the infor-
mation flow. Therefore, an arbitrary set of faulty processors and links mayisolate a
group of fault-free processors if other fault-free processors in the system are unable to
exchange information with this group. In such cases a diagnosis including the state of
every processor in the systemcannot be generated.

Consider a graph, in which nodes correspond to the PEs of the system, and where a
directed arc exists between nodes if communication is possible between the corre-
sponding processors in the given direction (in case of bidirectional links the arcs are
not directed). This graph is called theinterconnection graph of the system. Until this
graph remainsstrongly connected (or connected in the undirected case) a diagnosis of
the whole system is possible. If the graph gets unconnected by faulty processors or
links, severalconnected subgraphs are created. Further on, diagnosis is restricted to
the group of processors located in the same connected subgraph (the case of 3 con-
nected subgraphs is presented inFigure 2.).

Figure 2. Diagnostic knowledge in different connected subgraphs

Note, that not the number of faulty nodes, but the size of connected subgraphs is
related to the diagnostic limits. Therefore our algorithm does not require limiting the
number of faults, rather it includes in the diagnosis only nodes in the same connected
subgraph, classifying the state of other processors asunknown. Each fault-free PE
makes* diagnosis about its own subgraph, as indicated inFigure 2..

• Determining the real message order. The arrival of messages at a processor will not
always correspond to the order of their creation, due to communication delays. Such a
situation can occur if a PE becomes faulty during the testing process. Then, messages
received in an incorrect order will cause the algorithm to generate an incorrect diagno-
sis. To avoid this, logical time-stamps related to test execution must be attached to the
diagnostic messages, and the real order of messages must be determined using a dis-
tributed event-ordering procedure [9].
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knowledge of subgraph 2.

knowledge of subgraph 3.



3. Diagnosis algorithm

During distributed diagnosis, processors test theneighboring (i.e., accessible via a direct
edge in the system interconnection graph) processors. Every PE generates a local diagnostic
image, which it transfers to the tested fault-free neighboring nodes. Communication stops,
when all of the fault-free processors transferred their local test results to all other fault-free
units. All processors have obtained information about the fault state of each other node (unless
some faulty PEs cut the system into different isolated components, seeSection 2.). This infor-
mation is reliable, since it was forwarded over a chain of fault-free nodes. Processing the
incoming local diagnostic images all PEs can determine the fault state of the whole system.

Note, that the diagnostic process is almost identical for the different processors (only the
inhomogeneity at the two-dimensional grid borders has to be taken into consideration), so
each processor uses an identical diagnosis algorithm. The algorithm consists of two phases: an
initial  and aworking phase. Two observations motivated to split the algorithm:

1. High current during switching on/off may damage the electronic components of the
system. Hence, the majority of faults occurs (or already exists) in the initial period.
During further operation the failure rate is expected to be lower.

2. In the initial period processors do not have information about the condition of other
components (i.e., other PEs and communication links), so the whole diagnosis process
must be completed once. Later the system fault state does not change significantly
compared to the starting diagnostic image. Therefore significant communication and
administration can be saved by calculating and distributing only thedifferences
between the current (diagnosed) fault state and the stored diagnostic image.

3.1 Initial phase of the algorithm

After generating the local diagnostic image, the interprocessor communication starts, and
it continues until each fault-free processor has received local diagnostic images from all the
others. Every PE sends its information to its neighbors, but further on it only receives and for-
wards the messages sent by other units. To evaluate the termination rule of the communication
process, PEs must keep a record of the incoming messages to determine from which nodes
they have not received diagnostic image yet. For this purpose they must also discover which
units are accessible via a path of fault-free processors and links.

Using our synchronous communication protocol, there are processors that meet the termi-
nation condition before others, due to inherent inhomogeneity of the two-dimensional grid
topology (i.e., some neighbors of processors located on grid edges are missing) and obstacles
in communication formed by faulty components [4]. These processors must inform their
neighbors before termination, otherwise the neighbors would possibly try to communicate
with the terminated processor, thus causing a deadlock situation. To avoid it, he algorithm has
a termination period. In this period ready-to-terminate PEs send special messages to their
neighbors, so the still active nodes will not communicate with these PEs further on. When the
information was sent to each neighbor, processors decode the received syndromes using the
algorithm described inSection 4., thus completing the initial phase.

The initial phase of the diagnosis algorithm is integrated into the booting and loading pro-
cess of the transputer system.

3.2 Working phase of the diagnosis algorithm

After finishing the initial phase, the algorithm continues with the working phase. At this
point all processors have an initial, system-level diagnostic image. During further operation



processors periodically test their neighbors, and compare the obtained test results to the stored
diagnostic image. If they find a difference (indicating a new fault occurrence or an on-line
repair), they update the local diagnostic image and start broadcasting messages, containing the
test results. As the test result distribution and syndrome decoding process is initiated by the
changes in the local diagnostic image, the working phase of the diagnosis algorithm isevent-
driven.

4. Fault localization

In both phases of the algorithm it is necessary to analyze the obtained diagnostic informa-
tion, and to decide the fault state of each accessible unit of the system. This task is accom-
plished by a syndrome decoding algorithm (defined by the state diagram inFigure 3.), which
describes the different states of determining the classification (faulty, fault-free, or link fault)
of a unit under diagnosis. In each state the momentary classification is shown between paren-
theses, state transitions indicated by arrows are influenced by the received test results.

Figure 3. State diagram of the syndrome decoding algorithm
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. During the subsequent four states (marked by gray background) test results
from the other testers of the unit are analyzed. The number of these states (indicated by
MAXNEIGHBOR in Figure 3.) equals to the number of tester units.

In these states the classification of the unit under diagnosis isunknown. Decision is made
when all messages were evaluated (
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on-line repairs into consideration. Here an extra diagnostic process is required to assure the
consistency between the diagnostic images stored at processors located in different connected
subgraphs (recallSection 2.), if links or nodes previously isolating these processors were
repaired.
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PEs testing each other (both PEs were diagnosed as fault-free, yet one of them states that the
other is faulty). This state is included as a verification option only. If the assumptions intro-
duced inSection 2. are true it will never be entered.

5. Two implemented approaches for the working phase

The implementation of the working phase can be done in different ways, depending on
how the processing power of the PE is divided between the diagnostic process and the running
application. In the following we describe two alternative implementation approaches. The first
one (called“Separate testing phase” approach) uses “rough” tests requiring only a fraction of
the processing capacity, thus yielding more computational power to the application. The sec-
ond (called“Gradual syndrome decoding” approach) uses more precise and complete tests;
yet it results in a decreased application performance due to the more intensive diagnosis pro-
cess. The other main difference between the approaches is in the termination rule used in the
distribution of local test results: the first approach is based on a time-out rule, which is safer
and easier to evaluate, but makes the distribution phase longer than waiting until the necessary
local test results were received, which rule is incorporated in the second approach.

Figure 4. Main modules in the implemented algorithm

The main structure of both implementation approaches for the working phase of the algo-
rithm are shown inFigure 4. If no fault event is detected, the algorithm periodically tests the
neighboring processors. Testing is accomplished by assigning independent threads to each
tested unit [2].

5.1 The “Separate testing phase” approach

If the tests detect an error at one of the neighboring processors, exception handling is
invoked by issuing an error indication from the correspondingtesting module to thelocal
diagnosis module. The local diagnosis module gives control to thesupervisor module, which
handles the exceptions caused by the detected error. The supervisor module calls the proce-
dures responsible for terminating the current application, for distribution the local test results,
and for processing the diagnostic information (as described inSection 4.) [1].

– Test of neighboring processors. In this approach, each testing module is comprised of
three threads: one for receiving <I’malive> messages from the corresponding neighboring
processors, one for sending such messages, and one for measuring the delay between two

Local
Diagnosis

Test of neighboring
processor 3.

Test of neighboring
processor 1.

Test of neighboring
processor 2.

Test of neighboring
processor 4.

Supervisor

Terminate
Application

Process
Diagnostic
Information

Distribute
Local Test

Results



consecutive <I’malive> messages received from the same neighbor. If this delay exceeds
a given limit, the thread sends an error message to the module performing local diagnosis.

– Terminating the application. The task of this module of the diagnosis algorithm is to stop
the execution of the application on all the PEs as soon as possible. This is necessary to
prevent the propagation of errors. If the application is quickly stopped, the error
propagation probability is reduced, because no further communication –except the
communication of the diagnostic information– will take place.
For quick termination of the application, the module initiates a fast broadcast. The broad-
cast messages are received on every node by thelocal diagnosis module, which starts the
exception handling. For the implementation of a fast broadcast no specific routing mecha-
nism is required; the existing routing mechanism of the Parsytec GCel system supple-
mented with a high-level, fault-tolerant communication protocol is fully sufficient.

– Distribution of local test results. After terminating the application, the module for
distributing the local diagnosis results is activated. At first, neighbors of the faulty
processor start a separate testing phase, executing different tests in order to locate the
cause of the error. The possible causes are faulty links and faulty processor components.
These tests even make possible to classify faults astemporary or permanent. The outcome
of the tests constitutes the local diagnosis results.
The module transfers the local diagnosis results by a fault-tolerant broadcast to the super-
visor module of all processors. This fault-tolerant broadcast is similar to the one intro-
duced above under“Terminating the application”.

5.2 “Gradual syndrome decoding” approach

In case of an occurring error (detected by failure of a local test or a bad test outcome
received from another PE), the appropriate testing thread orthecommunication router module
notifies thesupervisor module. The supervisor module first terminates the running application
to avoid error propagation, then it starts the module which distributes the local test results.
During communication every tester of the faulty node broadcasts its test results, and the fault-
free units analyze these results [3].
– Test of neighboring processors. This approach is based ondirect testing. Direct testing

may take two forms: either the tester processor sends some stimulus to the unit under test,
which sends back its responses to the stimulus; or the testing facilities are built-in the
tested PE, and only a request-reply message exchange between the tester and the built-in
testing unit is required to obtain the current fault state.
The testing module is composed of two threads: one for sending data or requests to the
tested units, and one for receiving the replies. The sending thread maintains a queue about
the pending requests and the corresponding request start times. The receiving thread mea-
sures the delay between every request start and reply arrival, deletes the entries related to
incoming messages from the queue, and detects timed-out messages.

– Distribution of local test results. When one of the testers of a faulty node detects the
error, it sends the bad test outcome to all of its fault-free neighbors. The neighbors forward
the message to their neighbors (excluding the sender) and so on, until the message arrives
at every accessible fault-free node. To minimize the number of redundant messages during
the broadcast, a routing mechanism is used, which prevents the nodes from receiving the
same message in multiple copies.
Receiving an error indication about a node, processors first check whether the report corre-
sponds to one of their neighbors (precisely, to a node which they are assigned to test). If
they are testers of the node, they re-test it and after forwarding the original report they



broadcast the test result as well. This way every fault-free processor receives up-to-date
test results from all testers of the examined node.

On obtaining a test result, the distribution module calls the procedure responsible for pro-
cessing the diagnostic information. This way distribution of local test results and process-
ing of diagnostic information are executed alternatively. The diagnostic image is produced
gradually, utilizing the same tests for error detection and localization.

5.3 Comparison of the two approaches

The main differences between the two described implementation approaches, their advan-
tages and disadvantages are the following:

• Testing mechanism. As mentioned above, the “Separate testing phase” approach uses
<I’m alive> messages to detect fault occurrences, and has a separate testing phase.
While <I’m alive> messages are easy to process, these tests are less dependable, and
more post-processing is required later. As the application is quickly stopped on detect-
ing a fault, there is enough time to perform more detailed tests in the following testing
phase. The direct tests used in the “Gradual syndrome decoding” approach provide
better fault coverage, but reduce the application performance in a larger amount than
<I’m alive> messages.

• Fault classification. An advantage of the separate testing phase of the first approach is
the possibility to classify faults as permanent or transient. Also some specific tests may
be performed in the dedicated testing phase (e.g., for testing particularly the intercon-
nection link, CPU, memory, etc. of the DUT), it is possible to obtain more detailed
information about the examined node (to localize a faulty component). Such classifica-
tion is not possible in gradual diagnosis, since decisions are made on the basis of tests
used also for error detection (i.e., there are no repeated tests).

• Termination rules. The two approaches use different criterion for terminating the dis-
tribution phase. The “Separate testing phase” approach waits for a certain time inter-
val, in which all of the local test results must be received. This simple method makes
the algorithm robust against losing messages. On the other hand, determination of the
optimal time-out limit requires exhaustive experiments with the given machine. The
“Gradual syndrome decoding” approach waits only until local test results from each
tester of the faulty node were received, therefore it can be faster than the other one.

6. Measurements

As stated inSection 3., during the operation of the system faults seldom occur. In a fault-
free system the event-driven diagnosis algorithm performs only error detection, thus the test-
ing mechanism has the largest impact on the application performance. We have examined the
application run-time overhead caused by testing. The minimal run-time overhead can be
achieved using the <I’m alive> message testing method, therefore the “Separate testing phase”
approach was measured. InFigure 5. the run-time overhead is given, running one application
and the diagnosis algorithm concurrently on each processor. Performance measurements with
various applications, which differ in the amount of communication, were made. However, the
shape of curves describing the overhead corresponding to the different applications are so
identical, that only one curve was given inFigure 5.

Figure 5. states that the overhead is inversely proportional to the time between two con-
secutive <I’m alive> messages. The sending of <I’m alive> messages has a very little impact
on the application run-time, if the interval between two messages is longer than one second. If



the <I’m alive> messages are sent in every 500 milliseconds, the overhead is bigger, but does
not exceed 0,2 percent. Even if the <I’m alive> messages are sent in every 6 milliseconds, the
overhead is still less than 2 percent.

Figure 5. Application run-time overhead caused by testing, using the <I’m alive> mechanism

7. Conclusions

In this paper we introduced a new system-level diagnosis algorithm. The algorithm is dis-
tributed, which makes it applicable in scalable systems; and event-driven, thus it processes
diagnostic information fast and efficiently, requiring small amount of communication and
computation.

The general structure of the algorithm, consisting of two separate phases has been
described. A new syndrome decoding method, which produces the diagnosis gradually was
given. Furthermore, we presented an extended diagnosis model, which makes possible to
obtain all accessible diagnostic information without limiting the number of tolerated faults
within the system.

Additionally, we presented two implementations based on the algorithm. One of them uses
different tests for error detection and localization, using a separate testing phase after quick
termination of the running application. The other executes the local test result distribution and
the syndrome decoding procedures alternatively, thus creating diagnostic images gradually,
taking every test outcome into consideration during diagnosis. The two implementations were
compared, highlighting the advantages and disadvantages in both of them. We have included
some measurement results, which show that the testing causes only a small overhead, assuring
that the implementations will work efficiently in real systems.

Our future work will concentrate on the relation between the tests for error detection and
the tests for error localization.
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