
 Constraint-based System Level Diagnosis Of Multiprocessor
Architectures

A. Pataricza†,‡, K. Tilly †, E. Selényi†, M. Dal Cin‡, A.Petri†

† Department of Measurement ‡ Department of Computer
and Instrumentation Engineering Science III
Technical University of Budapest University of Erlangen-Nürnberg

Müegyetem rkp. 9 Martensstr. 3
H-1521 Budapest, Hungary 91058 Erlangen, Germany
email: pataric@mmt.bme.hu email: dalcin@informatik.uni-erlangen.de

Abstract

In the latest years, new ideas appeared in system level diagnosis. Contrary to the tradi-
tional diagnosis models (like PMC, BGM etc.) which use strictly graph-oriented methods to
determine the faulty components in a system, these new theories prefer AI-based algorithms,
especially CSP methods. Syndrome decoding, the basic problem of self diagnosis, can be eas-
ily transformed to constraints between the state of the tester and the tested components, con-
sidering the test results. Therefore, the diagnosis algorithm can be derived from a special
constraint solving algorithm. The “benign” nature of the constraints (all their variables, repre-
senting the fault states of the components, have a very limited domain; the constraints are sim-
ple and similar to each other) reduces the algorithm’s complexity so it can be converted to a
powerful distributed diagnosis method with a minimal overhead. An experimental algorithm
was implemented for a Parsytec GC tightly coupled multiprocessor system.

1.Introduction

1.1 Traditional methodology of self-diagnosis

The construction of dependable systems is hardly possible without the application of some
form of self-checking. Therefore different models and algorithms were developed for system
level (self-)diagnosis.The majority of them are based on graph theory derived from the first so-
called “system level models” published in the mid-sixties.

These introductory models (PMC for symmetric and BGM for asymmetric test invalida-
tion) are the most well-known and most widely used ones. Their mathematical apparatus is
simple and well-elaborated; both theoretical investigations and practical implementations
proved their usefulness.

However these models have some implicit limitations preventing their use in many impor-
tant fields of application. The test invalidation model is oversimplified in order to assure a
proper mathematical treatment decreasing the level of reality of the models and reducing their
usability.

The rapid development of electronic technology and computer architectures radically
modified the basic assumptions used in the diagnostic model:

– the fault rates are much lower and the dominating part of faults is transient;
– the complexity of other system components is comparable with the complexity of the

CPU;
– the complexity of the systems and the number of the computing elements have been

drastically increased.
Most insufficiencies result from the hardest simplification of the PMC and BGM models:

the assumption of a homogenous system (built of identical components with identical test
invalidation). This assumption effectively reduces the range of applicability due to the grow-
ing practical importance of inhomogenous multiprocessor systems.

1.2 Required features of a new self-diagnosis method

The new requirements resulting from the latest results in multiprocessor system design,
characterize the expected features of a proper, general purpose self-diagnosis method:

• it should be applicable in inhomogenous systems as well as in homogenous ones (dif-
ferent components with different test invalidation models are considered);

• the diagnostic resolution should only loosely depend on the actual system topology
and/or test invalidation model (the currently used methods have serious restrictions on
the system topology due to the use of rigid, inadaptive algorithms);

• the algorithm should extract all the useful information from the elementary diagnostic
results (e.g. for estimating the level of diagnosis at run-time);

• it should cope with the latest massively parallel processor systems with several hun-
dreds or even thousands of system components, thus the algorithm should have an
excellent efficiency even for a very high number of units under test .

These requirements need a new approach.A generalized test invalidation model for syn-
drome decoding and diagnosis in inhomogenous systems is published in [2]. This model con-
tains all sufficient and necessary conditions of one-step and sequential diagnosis for the
different test invalidation models. However, its mathematical apparatus is not optimal (it uses
complex matrix operations, e.g. computation of transitive closure); therefore the efficiency of
the algorithm becomes a crucial factor in large-scale system diagnosis.

The most important step of self-diagnosis is basically the process of finding the possible
fault states of system components based on the syndrome information. A systematic search
method is required for effective syndrome decoding. Many applications even demand on-the-
fly diagnosis for maximal performance; it requires a diagnosis method that is able to identify
the fault states of some units from partial syndrome information. This is hardly achievable
with traditional algorithms.

1.3 The use of AI-based methods and algorithms

The main intention of “artificial intelligence” (AI) methods is to find efficient solutions for
difficultly solvable (to be more precise, generally NP-complete) or hard to represent problems.
This gives a way to handle many practical but earlier unmanageable problems.

This aim is frequently reached by more sophisticated information management; it is often
called “knowledge management” as it represents a high level of abstraction and a more flexi-
ble and efficient information extraction from elementary data.

Many well-elaborated, efficient and practically tested AI-based algorithms have been
developed over the years. A group of them, the CS (Constraint Satisfaction) methods seem
especially useful for a special self-diagnosis model [2].

Application of CS methods has already proven very attractive on fields closely related to
system level diagnosis. For example, CS-based automated test pattern generation is presented
in [3].

2. Constraint Satisfaction Problems and their handling

2.1 A brief definition of a CSP

A constraint satisfaction problem (CSP) can be described as an (X, D, C) tuple. X =
{X 1,X2,... Xn} is a set of variables; D = {D1,D2,... Dn} is a set of domains (each domain is a
set associated with a variable and contains the allowed values of that variable) and C =
{C1,C2,... Ck} is a set of constraints. Constraints arerelations between domains of variables,

i.e. they are subsets of the Cartesian product of the affected variables’ domains (Ci ⊂ D*=

Dp× Dq× ...× Dz).

A solution of a CSP is a vector x = [x1,x2,... xn] of values that satisfies all the constraints.
The constraint satisfaction problem itself is to findone solution or all solutions of a given
CSP.

CSPs can be represented by a G(X,C) network where the elements of X are represented by
nodes and the elements of C byedges of the network. In so-calledbinary CSPs every con-
straint affect at most two variables and the network is a graph; in the general case, however,
the CSP network is a hypergraph.Loop edges represent unary constraints (affecting only one
variable),multiple edges are different constraints affecting the same variables. Obviously, loop
and multiple edges can be eliminated from binary CSPs.

A CSP isdiscrete if every Di is a finite set, andcontinuous if some Di-s are finite or infinite
intervals. The CSP isstatic if both the constraint network topology and the constraints them-
selves are fixed anddynamic if they can change during the search for solutions. In the field of
system-level diagnosis, only discrete CSPs are used.

Solving discrete CSPs is proved to be NP-complete [4], so simple exhaustive algorithms
cannot be used to generate all the variable value sets and to select the solutions. Intelligent
backtracking algorithms (backjumping, backmarking, forward checking etc.) can be used [7].

2.2 Solving CSPs: Preprocessing Methods

We can assume for simplicity without loss of generality that each of the n variable in the

CSP has the same discrete domain so the search space D* = Dn. Therefore the worst-case com-

plexity of a trivial generate-and-test algorithm isΟ(dn) where d is the cardinality of D. The
complexity can be obviously reduced by decreasing d or n.

Decreasing of d can be achieved by a kind of preprocessing calledconsistency algorithms
[4] [5] [6]. Consistency means the elimination of locally inconsistent value combinations from
the variables’ domains, as they surely cannot participate in a globally consistent (correct) solu-
tion.

Consistency algorithms even reduce the number of “fruitless” backtrackings made every
time when a locally inconsistent value is found. They work generally only on binary CSPs
because every variable in such CSPs can be evaluated independently. Moreover a subsequent

evaluation of the current value of a variable and its neighbours is always sufficient to achieve
global consistency. Therefore problem transformation to a binary CSP is preferable.

Consistency algorithms can be grouped according to the number of the nodes (vertices)
they consider when searching for local inconsistencies.

2.2.1 Node-consistency or 1-consistency

Node consistency considers only a single vertex at a time; it simply checks unary con-
straints and deletes all values not allowed by them. As unary constraints can be previously
eliminated from a CSP by restricting the domains, this algorithm is used only as a supplemen-
tary step in more complex consistency algorithms.

2.2.2 Arc-consistency or 2-consistency

Arc consistency considers two vertices Xi and Xj at a time, connected by a binary relation
Rij . It eliminates every value from the domain of Xi without a value of Xj satisfying Rij . By
checking apprppriate vertex pairs and relations, full consistency can be achieved.

There are three basic versions of general purpose arc consistency algorithms (in the order
of decreasing worst case time complexity):

• AC-1 updates all the variables whenever any of the variable domains has changed;
• AC-3 updates the domains of the variables adjacent to the changed variable;
• AC-4 updates only those adjacent variables that are affected by the change of a vari-

able domain. (It requires some bookkeeping of the relations and the variable domains
affected by them.) [3] [4]

2.2.3 Path consistency or 3-consistency

Path consistency between two vertices Xi and Xj connected by a binary relation Rij means
that all value pairs in a solution of the CSP allowed by Rij must be also allowed by all paths
between Xi and Xj. The whole constraint network is path consistent if every pair of directly
connected vertices is path consistent.

Full path consistency in a complete constraint graph is equal to the consistency for length
2 paths [3]. Since any constraint network can be extended to a full constraint graph with
dummy (“always true”) constraints, checking path consistency is equal to checking only
length 2 paths.

There are also three basic versions of path consistency algorithms; differences among
them are similar to the differences among arc consistency algorithms:

• PC-1 updates domains of every vertex, vertices along every arc and every length 2 path
if any vertex has changed;

• PC-2 updates domains of those length 2 paths that contain the changed vertex;
• PC-3 updates only the length 2 path affected by the changes of a vertex domain. It uses

similar bookkeeping about the influence of variables and edges like AC-4. [4]

2.2.4 k-consistency

A set Sk of k variables is considered at a time. If a completely consistent subset of value

(k-1)-tuples exist on Sk-1⊂ Sk (with k-1 variables) then any value from the domain of the kth
variable can be eliminated that cannot form a consistent value set with any of the consistent
(k-1)-tuples. Global consistency can be achieved by successive elimination for increasing val-
ues of k until all variables are involved or the some of the domains become empty; in this case

the CSP is not satisfiable. The most well-known k-consistency algorithm is theinvasion proce-
dure [3].

2.3 Formulating a self-diagnosis problem as a CSP

There are many similarities between methods of self-diagnosis and constraint satisfaction.
Actually the final goal is very similar: we want to know the fault state of the system compo-
nents that conforms to our diagnostic model, the test invalidation rules and the actual test
results (syndrome pieces). These restrictions can be represented by binary relations between
the state of processors in a test pair. The exact relation is determined by the test result, thus a
set of relations can be built from the syndrome information and can be applied to find the pos-
sible fault states of the system.

The use ofrelations instead oflogical functions is advantageous, because the diagnostic
uncertainy appearing in some test invalidation (e.g. in the PMC model a faulty unit may be
tested as good) can be handled as well. The relations can be handled by a uniform mechanism,
independently from the invalidation rules, system topology, the considered number of faults
and special properties of syndromes. So this representation is very flexible and is applicable on
a wide range of systems.

Therefore a self-diagnosis problem can be very easily reformulated to a constraint satisfac-
tion problem. The variables of the CSP represent the fault state of the system components. The
constraints represent the restrictions from the model by the test invalidation relations and by
the actual syndrome pieces. If one-pass diagnosis is allowable, a static binary CSP is pro-
duced. In the case of diagnosis on the fly only a few syndrome pieces are present so the com-
plete set of relations cannot be built at the beginning. Every incoming test result, however,
reduces the solution space of possible fault states so the previously constructed relations (con-
straints) remain valid, just new constraints have to be added. Therefore a kind of dynamic CSP
can represent this case.

This reformulation gives a way to handle self-diagnosis problems very comfortably, with
the well-elaborated toolset of CSP solution methods. With a sufficient diagnostic model, a
very flexible method can be constructed.

The constraint-based approach is also very similar to the approach of the Selényi algo-
rithm [1], whose syndrome decoding process consists of two phases. In the first phase all the
deterministic information is extracted from the syndrome. This information contains all possi-
ble combinations of the fault states (CSP solution also produces this). In the second phase
those units are identified that remained unclassified in the first phase if one-step diagnosis is
requested. This means excluding the unwanted solutions from the set of all possible solutions
given in the first phase. It requires, however further restrictions in the diagnostic model
(assumptions on maximal number of faults, exclusion of certain faults, etc.).

3. Diagnostic model of the implemented algorithm

3.1 Implementation environment

The experimental implementation of the CSP-based diagnosis algorithm was created on a
Parsytec GCel massively parallel reliable multiprocessor machine (Fig.1.). The computing
elements are Inmos T805 or T9000 transputers. They are grouped by 16 to clusters; these clus-
ters are the basic building blocks of a machine that is scalable up to 16384 transputers.

Each transputer has 4 physical data links. These are connected to C104 routing chips that
provide a very fast, reliable and deadlock-free message routing and connection management.

Each cluster has 4 routing chips; every C104 chip has 32 connection ports (16 for the internal
interconnection of the cluster, 12 for the connection between clusters and 4 for I/O control and
other purposes).

Figure 1.The structural layout of the Parsytec GCel (1 cluster)

Despite of the 4 physical data connections, each transputer can communicate with an arbi-
trary number of other transputers via so-called virtual links. These are managed by a special
unit of the T9000 by multiplexing data packets on the physical connections. The highly con-
figurable routing chips make allocation of virtual links very easy; complete virtual topologies
are supplied with development libraries. The physical topology of each cluster is a 4x4 two-
dimensional mesh.

The machine has even low-level fault-tolerant features: every cluster has a 17th spare pro-
cessor, the local memory of the transputers is fault-tolerant with an ECC device.

Peripherial I/O management is done by a separate host machine (e.g. a Sun workstation)
connected to the Parsytec.

The machine has a Control Network (C-Net): every transputer has a direct link to a special
group of transputers directly connected to the host machine. This separate group is used for
dynamic configuration management and job control.

(Due to the delayed development of the T9000 transputers, the actual Parsytec machine
was equipped with T805 transputers. These transputers have a slightly different hardware
architecture but the development system is claimed 100% source code compatible with future
T9000-based Parsytec machines.)

3.2 The fault model

In order to validate the concepts described above a simple fault model was developed for
the Parsytec machine and a syndrome decoding algorithm was implemented using the stan-
dard test procedures available.

The used fault model, additionally to the processor faults, includes the faults in interpro-
cessor links and routing chips as well.

Testing of these system components is done by mutual time-out protected periodical <I’m
alive> messages between neighboring processors. The asynchronous communication mode is
used for message exchange because it does not block the sender processor (time-out detection
is possible).

T9000

T9000

T9000

T9000

C104

C104

C104

C104

16

Host

C-Net
(Sun work-

station)

The following fault states are considered for the components:

The possible test results are:good (the <I’m alive> message was correctly received within
the time-out limit),faulty (the <I’m alive> message was received within the time-out limit but
was corrupted) ordead (no message was received).

The effective diagnosis algorithm is running on the host machine (centralized diagnosis is
assumed). It is possible because the processors have a separate data connection to the host
machine (via the C-Net) that is independent from the routing chips and can be considered
fault-free.

The developed algorithm is forintra-cluster diagnosis (we assume only a single routing
chip between 2 processors) but it can be easily extended hierarchically to diagnose the whole
Parsytec machine.

3.3 The test invalidation scheme and implication rules

The PMC type (symmetric) test invalidation was used for the algorithm. It was mandatory
due to the testing with <I’m alive> messages; other, more sophisticated test methods make
more optimistic invalidation possible.

Syndrome decoding is driven by implication rules, represented by constraints. They origi-
nate from the system structure (fault domination rules), the test invalidation model and the
actual syndrome pieces (Fig.2 .).

All the constraints are binary to achieve greater simplicity: the test results (syndrome bits)
are eliminated from them as variables, only the fault state of the tester and the tested compo-

Table 1:

Unit
Fault state and its

notation
Behavior

Possibly faulty
component(s)

Processor fault-free 0p correct operation -

faulty 1p incorrect test result
evaluation

memory

dead cp no communication CPU configuration, vir-
tual link, C-Network,
hardware exceptions

Data link live Lp,R correct message
transfer

-

broken Lp,R no message transfer wires/connectors, CPU
data link circuit

Router fault-free - correct operation -

single port
fault

LR,p no message transfer
via the faulty port

router data port circuit

dead mR all ports are faulty internal routing scheme,
clock

nent are variables. However, test results are already known before the syndrome decoding
starts so they can be treated as constants.

The constraints from the implication rules are as follows:
– (1) Forward (implication from the state of the tester to the state of the tested)

– Sp,R,p’ = 0 ∧ 0p ⇒ 0p’ (if the tester processor is fault-free and the test result is
“good” then the tested processor is also fault-free);

– Sp,R,p’ = 1∧ 0p ⇒ 1p’;
– Sp,R,p’ = c∧ 0p ⇒ Lp,R ∨ mR ∨ Lp’,R ∨ cp’.

– (2) Backward (from the state of the tested to the state of the tester)
– Sp,R,p’ = 0∧ 1p’ ⇒ 1p (if a faulty unit is tested as good then the tester is faulty);
– Sp,R,p’ = 1∧ 0p’ ⇒ 1p;
– Sp,R,p’ = c∧ cp’ ⇒ Lp,R ∨ mR ∨ Lp’,R ∨ 0p.

4. Implementation of the algorithm

The self-diagnosis algorithm is implemented in two parts: the low-level tester mechanism
(sending and receiving the <I’m alive> messages) runs on the Parsytec machine, the effective
diagnosis program runs on the host machine .

The test process is controlled by the host: it initiates the test sequence (starts the Parsytec
processors to exchange <I’m alive> messages), collects the results from the processors, main-
tains the dynamic CSP data structure, runs the CSP solver algorithm and displays the results.
The two program parts communicate through sockets.

4.1 The CSP solver

The CSP solver engine of the diagnosis algorithm is based on a public domain universal
CSP solver library from the University of Atlanta [7]. Different backtracking and preprocess-
ing (consistency) algorithms are implemented and can be easily applied.

The solver is able to maintain certain dynamic CSPs: the constraints themselves can be
altered during the solution process but their number cannot. Initially only the “fixed”, syn-
drome-independent constraints are generated, the others are “always-true” (the solver always
works with complete constraint graphs so the unnecessary constraints have to be “always-
true”).

(2)
Σ (Sp,R,p’=c) < 16⇒ mR

Lp,R ⇒ LR,p ∧ mR
Lp,R ⇒ LR,p ∨ mR

LR,p ⇒ Lp,R
mR ⇒ Lp,R

p

p’

R

Router chip

Tester processor

Tested processor Sp,R,p’ = c ⇒ Lp’,R ∨ mR

Sp,R,p’ = c ⇒ Lp,R ∨ mR

(1)
Sp,R,p’ denotes the result of

processor p testing pro-
cessor p’ through routing

chip R.

Figure 2.Constraints resulting
from the system structure and

from the test invalidation model

There are 20 variables in the CSP model; they represent the fault states of the processors
with their data connections and the routing chips. The cardinality of the variable domains is
48. (A processor can be fault-free, faulty or dead and each of its 4 data connections can be live

or broken, it gives 3x24=48 possible states. The routing chips have 20 possible states but the
solver requires equal domain sizes.)

Many sophisticated enhancements assure a maximal efficiency of the CSP solution. Only
those variables/processors are considered that we have information about, so we get results
only from the necessary units. The untested data links of the processors are assumed live until

exact information is received about them. The indistinguishable error classes1 are unified
(only one of them appears in the results). This modifications decrease the number of variables

Figure 3.Example for indistinguishable error classes

processed and the number of value combinations checked and assure that only the valuable
results are supplied.

Moreover, further considerations can be adapted to the CSP solver very easily. For exam-
ple if we consider a limited number of faulty units, the CSP solver can check whether this con-
sideration holds and even automatically increases the error limit. This possibility makes the
system extremely fast with a few errors and still usable and fast with more errors than the
limit.

5.Results of a test run

The CSP-based diagnosis algorithm was tested with a logical fault injector: the host
machine generated a random fault pattern for the Parsytec processors and downloaded it with
the testing initialization messages. The low-level testing mechanism on the Parsytec proces-
sors interpreted the fault pattern and acted according to the fault state: “fault-free” processors
tested their neighbors and sent the results back to the host, “faulty” processors did the testing
but reported a random result and “dead” processors did nothing. This construction was neces-
sary because no physical fault injection was available for the Parsytec machines equipped with
T805 transputers and the fault injector developed for T9000 was unusable due to the hardware
structure difference.

Figure 4. shows the results of a typical test run. In this case the fault pattern contained a
single faulty processor. The upper curves display the number of the solutions found by the
CSP solver and the number of processors that have already sent some test results and the lower
ones display the number of consistency checks made as a measure for the computational effi-
ciency.

1. These error classes are resulted by fault domination; e.g. a CPU data link circuit fault, a mechanical
contact fault in the link wires or a routing chip data port fault gives the same test result.

? ?11 0

0

0

1

1

0

0

0

0 0

1

1

1 1≡

6.Conclusions

The CSP-based syndrome decoding algorithm has proved its proper operation during the
tests and the correctness of the concepts behind it. Additional tests showed that the constraint
solver is up to five times faster than an exhaustive search (the average processing time of a test
result was 88µs vs.448µs in a test series). However, he applied CSP solving algorithm
(graph-based backjumping [7]) has not yet theoretically proved to be optimal for this applica-
tion; further work is needed to find the most efficient strategy for the solver.

References

[1]A. Pataricza, K. Tilly , E. Selényi, M. Dal Cin:A Constraint Based Approach to System
Level Diagnosis

[2]E. Selényi:System Level Fault Diagnosis in Multiprocessor Systems with a General test-
invalidation Model

[3]K. Tilly: Constraint Based Logic Test Generation (Ph.D. Thesis)

[4]U. Montanari:Networks of Constraints: Fundamental Properties and Applications to Pic-
ture Processing, Information Sciences vol. 7, 1974, pp. 95-132.

[5]R. Mohr, T. C. Henderson:Arc and Path Consistency Revisited, Artificial Intelligence, vol.
28 (1986), pp. 225-233.

[6]A. Mackworth, E. C. Freuder:The Complexity of Some Polynomial Network Consistency
Algorithms for Constraint Satisfaction Problems, Artificial Intelligence, vol. 25 (1985),
pp. 65-74.

[7] Peter van Beek: A Binary CSP Solution Library (Available by FTP from ftp.cs.ualberta.ca)

0 10 20 30 40 50
Number of syndromes

0

5

10

15

20 Processors handled
Number of solutions

0 10 20 30 40 50
Number of syndromes

0

100

200

300

400

Number of consistency checks: with max. 1 fault considered
without

considerations

Figure 4.Test results of the CSP diagnosis algorithm

