
UML−Extensions for Quantitative Analysis ♦

1.Introduction and motivation
The Unified Modeling Language (UML) finds more and more applications. It is not
only used for software development but also for modeling systems with dynamic
behavior (e.g. Flexible Manufacturing Systems (FMS), or Business Process
Modeling). While the static diagrams of UML were changed marginal in the latest
versions of UML, the dynamic diagrams need still to be improved. For modeling
truly the dynamic behavior by these diagrams a concept of time is needed. Therefore,
we introduce in this paper an approach to extend UML with time as stochastically
variable. To evaluate the enhanced models and to drive a numerical analysis we use
the Petri−Net analysis tool PANDA1. This tool works also on some stochastic
extensions of the Petri−Nets (GSPN’s), widely used for performance evaluation and
numerical analysis. The evaluation of these models is based on exploring and solving
the underlying Markov−chains.

2.An approach to extend UML with time
In this section we give extended semantics on UML−Statecharts suited to stochastic
modeling (preserving the choice of possible interpretations given in the UML
standard), and present the transformation of the (extended) UML−Statecharts to
Stochastic Reward Nets (SRN’s).

To be able to use the classical analytical methods and tools for the numerical analysis
of UML−Statecharts, we only allow negative exponential distributions for transition
times (or approximations with phase type distributions). Because of the limitations of
the actually applicable solving tools the size of the total state space of the underlying
Markov−chain of the model may not exceed c.a. one million states. Otherwise it is
impossible (at the moment) to compute results.

Because of the compactness of UML the description of a system with some millions
of states results as well in a very large Petri−Net as in a small and clear set of UML−
Statecharts. This compactness leads the modeler to make detailed models with large
state space. However the modeler has to take into account to build models with
amenable state space for today’s solving tools.

♦ This work was partially supported by the "Hungarian−German researchers exchange program"
(DAAD−MÖB) project No. 8. by the "Hungarian Scientific Research Fund" No. OTKA−F030553
and OTKA−T030804 and by the "Hungarian Ministry of Education"project No. FKFP−0193/1999

1 Petri net ANalysis and Design Assistant

Kosmidis Konstantinos
(kk@cs.fau.de)

Institut of Computer Science III
FAU Erlangen−Nürnberg

Germany

Huszerl Gábor
(huszerl@mit.bme.hu)

Dept. of Measurement and Information Systems
Budapest University of Technology and Economics

Hungary

Another problem caused by introducing explicit time in UML−Statecharts is the step
semantic. As long as step semantics (zero−time) in modeling are considered it is
possible to say that a step of a UML−Statechart begins with the event dispatching,
continues with choosing an appropriate set of triggered transitions, executing actions
and state changing, and ends with sending new events. But if all of these "meta−
actions" are considered timeless, except of the state change itself, one step begins
with waiting for state change, and ends with choosing an appropriate set of triggered
transitions. When the stochastically chosen transition times of the fire−able transitions
elapsed, all of the other "meta−actions" happen in zero time. Otherwise these model
elements of the UML−Statechart would affect the results of the analysis considerably.

In stochastic modeling infrequently firing transitions are customarily modeled by
transitions with small transition rates (of negative exponential distribution). Because
of the blocking property of the step semantic of the UML, low firing parameters
cause long blocking (waiting) times, and the frequency of transition firing is not only
determined by its own parameter but also by the parameters of the actually enabled
transitions triggered by the same event. The duration of a step is only determined by
the longest transition time drawn in the given step. A possible exception represent
racing transitions, triggered by the same event, which can be used to model two
possible outcomes of a transition (e.g. a correct one and an erroneous one). In order to
avoid that kind of blocking, and to enrich the modeling power of the extended
statechart semantic, we allow the use of timer events to trigger transitions. These
timers are set (drawn according to the given distribution and parameter) when the
explicit source states of the transitions are entered, and they generate events, which
trigger the transitions with the given timer.

This way infrequently occurring events can be modeled, and the same construction
can be used to model actions with long duration time (for example when modeling
hardware components, mechanical processes can have long duration compared to
actions of the control software). In this case the action is started by a transition
(timeless or with short duration) leading to a state, where another transition with a
timer originates. Firing of the second transition models the end of the action.

Furthermore, it is possible to split every timed transition into two separate timeless
transitions and a timer. This partition can be done either explicit in the statechart
model by additional states representing "waiting for the timer to expire", or during the
analysis of the model (e.g. when transforming the model to another platform, such as
Petri−Nets or Markov−chains). In the second case, the conformity with the step
semantic of the UML (event dispatching and all triggered changes in one single unit)
is contradictory.

3.An example
Our example is a simplified version of the "Trajectory Planner" example of a
spacecraft described in [1]. We modeled only the five main objects: Planner,
Movement Coordinator, Controller, Sensor and Rocket. The statecharts contain only
call− and time−events and no data modeling. A time parameter is associated with
each transition, being the parameter of a negative exponential distribution describing
the stochastic duration of the transition. For the timers in addition to the transition
parameter the timer parameter is given.

• Planner: After calculating a new trajectory, the trajectory can be implemented by
the system (moving the spacecraft to the trajectory). When reaching the new
trajectory, the Planner continues planning.

• Movement Coordinator: Getting the new trajectory from the Planner the
Movement Coordinator triggers the other components with actual data. When the
correction of the position of the spacecraft is finished, the Movement Coordinator
triggers the Planner.

• Controller: Started by the Movement Coordinator, the Controller collects actual
data from the Sensor, and triggers the rocket accordingly. It decides, whether
additional corrections are necessary to reach the new trajectory.

Planner@

PLANNER

WORKINGIDLE
DONE(300)/ -

T1(0,001/100)
/ TRAJECTORY

Movement Coordinator@

COORDINATINGIDLE

MOVEMENT COORDINATOR

ABORT(100)/ -

SHUTDOWN(300)/ DONE

TRAJECTORY(500)/ ADJUST

Controller@

CONTROLLER

CONTROLLING

EVALUATING CORRECTION

CALCULATING

PREPARING
SHUTTING DOWN

IDLE

ABORT(100)/ -

DATA(1000)
/ FLAMEON

DATA(1000)
/ SHUTDOWN

ROCKETDONE(50)/ SENSE

BEGIN(100)
/ FLAMEON

STARTUP(100)
/ BEGIN

SHUTDOWN(300)/ -

ADJUST(500)/ -

- / STARTUP

• Sensor: Started by the Movement Coordinator, the Sensor sends the actual
position to the Movement Controller when asked for.

• Rocket: Started by the Movement Coordinator, the rocket (for the sake of
simplicity, a single one with controllable nozzles) corrects the trajectory of the
spacecraft when asked for.

By the transformation described in [2], [3], [4], and [5] the UML−Statecharts are
transformed to a Petri−Net with special consideration of event processing, state−
hierarchy and the step semantic of the UML−Statecharts. Due to the simplicity of the
example a nondeterministic event dispatcher was chosen. The underlying Markov−
chain has 42 tangible states.

Many numerical results of the model can be derived from the the analysis of the
underlying Markov−chain. One possible question of the analysis (among the classical
questions of performance evaluation and numerical analysis generally) of this
example is: "What is the expected possibility that the spacecraft completes the
correction of the trajectory in a given time?".The possibility grows with the time (as
expected), passes 90% after 9.81 time units, passes 95% after 12.69 time units.
(Figure 1)

Sensor@

SENSEWAITING

ACTIVE
PREPARING

INACTIVE

SENSOR

T2(10/300)/ DATA

SHUTDOWN(300)/ -

SENSE(500)/ -

ABORT(100)/ -

BEGIN(100)/ -

STARTUP(100)/ -

Rocket@

FLAMINGIDLE

ACTIVE

INACTIVE

PREPARING

ROCKET

T3(0.5/80)/ ROCKETDONE

FLAMEON(50)/ -

SHUTDOWN(300)/ -

ABORT(100)/ -

STARTUP(100)
/ -

BEGIN(100)/ -

Figure 1: Numerical results of the example

4.Conclusions
In our paper we presented an approach to combine traditional numerical analysis
methods, based on Markov−chains, and the UML. To this end it is necessary to
extend the UML−Statecharts with the concept of time as a stochastic variable and to
transform them to Petri−Nets. We described some possible time semantics and the
effects of them on the step semantics of the UML statecharts. In order to prevent the
problem of the state space explosion, the modeler should take into account to build
models with amenable state space. In case that the state space can’ t be handled by the
actual solving tools a simulation can be performed, or scenarios that represent parts of
the systems behavior can be evaluated.

5.References
1. Bruce Powel Douglas: Doing Hard Time, Addison−Wesley, 1999, pp. 427−434

2. M. Dal Cin, Huszerl G., K. Kosmidis: Transformation of Guarded Statecharts for
Quantitative Evaluation of Dependable Embedded Systems− EWDC−10, Vienna
Austria, 6−7 May 1999, pp. 143−187

3. M. Dal Cin, Huszerl G., K. Kosmidis: Quantitative Evaluation of Dependability
Critical Systems Based on Guarded Statechart Models− In Proc. HASE’99,
Washington DC, USA, November 1999, pp. 37−45

4. Huszerl Gábor: Design Pattern Based Transformation of Dynamic UML Models
for Quantitative Analysis − EWDC−11, Budapest, Hungary, 11−13 May 1999

5. Huszerl G., Majzik I.: Quantitative Analysis of Dependability Critical Systems
Based on UML−Statechart Models− In Proc. HASE ’00, Albuquerque, New
Mexico, USA, 15−17 November 2000

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

P
ro

b
a
b
ili

ty
 o

f
d
o
n
e
 [
%

]

Time [time unit]

