
Modeling of Fault-Tolerant Computing Systems 1

Gy. Csert�any, J. G�utho�z, A. Patariczay;z, and R. Thebisz

yTechnical University of Budapest
Department of Measurement and Instrument Engineering

H-1521 Budapest, M}uegyetem rkp. 9, Hungary
csertan pataric@mmt.bme.hu

zUniversity Erlangen-N�urnberg
Department of Computer Science, IMMD III
D-91058 Erlangen, Martensstrasse 3, Germany
jsguetho rhthebis@informatik.uni-erlangen.de

Abstract

Typical after design activities, such as reliability and performability eval-
uation, diagnostic development should be integrated into the design cycle
of fault-tolerant computing systems in order to increase its e�ectiveness. A
novel framework of various evaluation tools is presented in this paper, sharing
a common input model, the high level behavioral description of the system.

The dataow computational paradigm is used for this reason supporting
both uninterpreted and interpreted modeling in a hierarchical way during the
whole design cycle. According to this approach system design is a cyclic pro-
cess, in which the system engineer stepwise re�nes and optimizes the system.

1 Introduction

The e�ective implementation of fault-tolerant digital computing systems largely depends
on the integration of performance, reliability, and maintenability evaluation tools into the
system design environment. However this integration results in modeling and data repre-
sentation problems. The developers of these tools have to o�er a concurrent engineering
approach in order to overcome this problems.

The above mentioned tools should use a common basic model of the system during
the whole system design process in order to avoid unnecessary model transformations.
Since in di�erent design phases the system must be described at di�erent levels of de-
tail, a modeling approach has to be chosen, which is able to handle di�erent levels of
abstraction. Hardware-software co-design, the most promising approach to cope with

1This research is part of the Hungarian-German Joint Scienti�c Research Project #70 with addi-
tional support from: SFB 182(DFG), Konrad Zuse Program (DAAD), OTKA-760, T-3394, and F7414
(Hungarian NSF)

design complexity, uses high level models in the early design phases. The �nal layout
can be automatically synthesized from the �nal, evaluated and validated version of the
design. Behavioral models have the advantage over gate level structural models, that
their evaluation is less computation extensive.

The dataow computational paradigm provides the hierarchical high level behavioral
description of parallel asynchronous systems [Jon89]. In this modeling approach the sys-
tem is decomposed into several processing units passing data between each other. Pro-
cessing units are modeled by dataow nodes and interconnections by channels, where the
nodes are de�ned by their behavior. Since dataow networks support both uninterpreted
and interpreted modeling, they can be used during the whole system design cycle, e.g. in
[BS93] dataow networks are proposed for early validation of control systems.

Our aim is to show that this approach is a suitable background for modeling and
designing fault-tolerant computing systems. For this reason we suggest a framework
consisting of several simulation and analysis tools sharing a common model. Pre-de�ned
(and pre-analyzed) system components are held in libraries and the system is modeled
by simply connecting library components. Using this approach system design becomes
an iterative process. After each step of model re�nement the system engineer is able
to evaluate the impacts of the last design changes on systems reliability, performability,
and diagnosability. Thus �nally an optimal design can be aimed at. Fault simulation
and testability analysis can be done at the highest level of abstraction (uninterpreted
model without timing). Detailed dependability evaluation is done by simulation in VHDL
at lower levels of abstraction (timed uninterpreted and interpreted models) in order to
determine the timing behavior (error latency) and performability of the system. Finally
a reliability analysis can be performed with Petri nets. Since error simulation is an
exhaustive method, only errors with the most serious e�ects or errors of the least reliable
components, identi�ed by reliability analysis, are taken into account.

diagnostic design
fault simulation & performability

analysisevaluation
reliability

DDBS

Tool Integration Interface

Figure 1: Overview of the Evaluation Framework

Figure 1 shows the idea of the framework. The Design Database stores all the design
related information (library elements of components, evaluation results, etc.) The co-
operating tools have parallel access through the Tool Integration Interface to the data
stored in the database.

The paper is divided into 5 parts. In section 2 an example is given, that will be
evaluated in subsequent sections. Section 3 presents testability analysis, in section 4
performability evaluation is dealt with, and �nally section 5 describes reliability analysis.

2 Example Description

In this section we describe an example, which will be used to show evaluation aspects of
testability, performability and reliability.

A CPU can execute write and read operations to the main memory. The main memory
consists of a shadow RAM (RAM 1,RAM 2) including parity. The write operation sends data
via the BUS to the component FORK. The FORK adds a parity bit to the data and stores
both the data and the parity bit in the shadow RAMs. When executing a read operation
a comparator checks the data parts. If the data is equal, it will be sent via the BUS to
the CPU, if not, an additional unit takes the parity bits to choose the correct data.
The parity fails, if the additional unit yields: both data parts correct or both data
parts incorrect. The comparator and the additional unit together is called COMP+.
The additional parity check is included to grant a non-stop operation in case of a single
bit fault.

BUSCPU RAM_1 RAM_2

FORK

COMP+

Figure 2: Example of System with Shadow RAM

3 Testability Analysis and Error Simulation

In this part of our work we show that the input model of Sheppard's integrated diagnostics
[SS91] and the derived testability measures can be obtained from the dataow model.
"Testability analysis is the process of assessing the inherent ability (called testability) of a
system to detect and diagnose faults using the prescribed test equipment and procedures."
[Ofs91] Thus testability analysis has to be stimulus independent, and its results give an
upper bound on measures gained when testing a system. Some of the most important
measures are: percentage of detectable faults, percentage of uniquely diagnosable faults,
hidden faults, dominant faults.

3.1 The Error Model for Testability Analysis

Faults are mainly hardware related and are usually modeled at a lower level of abstraction.
Therefore at higher levels of abstraction the introduction of an error model is necessary.
In the proposed modeling approach components are described by their error propagation
behavior. Errors of a component are expressed by its state, which according to the black-
box modeling method is identi�ed by the rough classi�cation of the result it delivers:

1. A component, which delivers correct data is said to be ok.
2. A component is said to be incorrect inc, if the data it delivers is incorrect.
3. If there is no response from a component it is said to be dead.

4. Diagnostic uncertainty can be expressed by assigning the state x.

Due to di�erentiating between the erroneous states inc and dead and due to modeling
of uncertainty this error model can describe the system more precisely than traditional
error models with only two states (error free/erroneous).

3.2 Error-Propagation in the Proposed Model

Testing of a system is nothing else than trying to propagate information from the com-
ponent under test to the outputs of the system in order to examine the components state
[ABF90]. Thus error propagation along a selected path of components is the background
for testability analysis. In case of testability analysis, in contrast with test set develop-
ment, the test path is prede�ned ("prescribed test set") and loop free. Our future work
aims at extracting the test set from the dataow model in a very similar way as it is done
by classical (low level) test development algorithms, e.g. PODEM, D-algorithm [ABF90].

In the proposed approach the error propagation properties of the system are described
by the behavior of the nodes of the dataow network. This behavior is characterized by
describing the:

� external errors of a component
� internal errors of a component
� built in error detection capabilities of a component
� fault propagation from the inputs of a component to the outputs

In Figure 3 the error propagation behavior of the dataow nodes is given in a C-like
notation. The di�erent steps of the function dataflow node behavior() are:

compute external effects External errors of a component may occur due to the inter-
action with other components. In this step the e�ects of possible erroneous inputs
are computed. For example an error free component can get erroneous when receiv-
ing an inc message. In case of more than one erroneous inputs the error with the
most severe e�ect is selected and the state of the component is changed accordingly.
Severity of errors can be di�erent for di�erent components.

add internal errors Internal errors are independent of the components environment
(inputs). They occur randomly according to the current state of the component,
and can lead to further changes in the state of the component. In this step e�ects
of possible internal errors are modeled and the state of the component is changed.
Due to an internal error an error free component can get erroneous, despite of the
received ok message.

detect errors Components with built in error detection capabilities are able to deliver
test results. Errors of incoming messages (represent errors of other components)
are signaled according to the components detection capabilities, depending on the
state of the component and the type of errors. For example an error free component
can signal incoming inc messages by inc, or an erroneous component may signal
both ok and inc inputs by an x, modeling diagnostic uncertainty according to the
PMC test invalidation model.

propagate errors Input messages are propagated through the component. The type
(ok, inc, dead, x) of output messages depends on the type of incoming messages
and on the state of the component. An erroneous component for example may
change an ok input message to an inc output message denoting its erroneous state.

dataflow node behavior()

read inputs;

compute external effects;

add internal errors;

detect errors;

propagate errors;

write outputs;

Figure 3: Error Propagation Behavior of a Dataow Node (C-like Notation)

Evaluation of the model can be done by error simulation. In this method faults are
propagated from the selected inputs (control points) of the system through the com-
ponent under study to the primary or special test outputs (observation points) of the
system. Since state of the system is composed from the states of the di�erent compo-
nents the number of possible system states can be very large: 3N , where N is the number
of components and 3 corresponds to the three possible component states. In order to
avoid this complexity explosion the number of considered erroneous components has to
be restricted. One way is turning on error injection (adding of internal errors) only at
components, which are identi�ed to be unreliable or to have serious e�ects on the system.
A second solution is to stop the simulation when a given number of errors is reached -
assuming t-diagnosability of the system.

3.3 Testability Analysis of the Example

The analysis aims at evaluating the testability properties of the comparator-shadow RAM
unit as part of the example. In order to improve the testability of a system test paths
have to be loop free. For this reason during the test cycles of the network must be cut.
Figure 4 shows the unfolded (loop free) version of the example introduced in Figure 2.

In this experimental setup for error propagation the control point is the BUS, from
which testing starts, while observation points are the COMP+ component and the BUS

respectively. COMP+ itself is able to detect errors, thus it is a test output, while the BUS,
on which further error detection is possible is a primary output. In the following test on
the BUS is referred to TOB. Since the aim of testing is detecting the errors of the RAMs
the external memory test TOB can be done by an independent test component or in our
case by the CPU. For simplicity dead states are not modeled and as result of the reliability
analysis the FORK and COMP+ are supposed to be error free.

BUS

RAM_1

RAM_2

BUSCOMP+FORK

Figure 4: The Unfolded Model of the Comparator-Shadow RAM Part of the Example

The model was evaluated by error simulation. Results of the simulation are given in
Figure 5. In the upper half of the �gure the test results signaled by COMP+ are shown
while in the bottom part errors observable on the BUS are given . In the right column
the state of the system is given and in the left column the corresponding test results are
shown. When interpreting the results it is assumed that error detection done by TOB is
perfect, i.e. all the errors reaching the BUS are signaled by TOB.

DETECTED BY COMP+:
ok (bus.ok)(fork.ok)(mem a.ok)(mem b.ok)(comp+.ok)
inc (bus.ok)(fork.ok)(mem a.ok)(mem b.inc)(comp+.ok)
inc (bus.ok)(fork.ok)(mem a.inc)(mem b.ok)(comp+.ok)
ok (bus.ok)(fork.ok)(mem a.inc)(mem b.inc)(comp+.ok)
ok (bus.inc)(fork.ok)(mem a.ok)(mem b.ok)(comp+.ok)
ok (bus.inc)(fork.ok)(mem a.ok)(mem b.inc)(comp+.ok)
ok (bus.inc)(fork.ok)(mem a.inc)(mem b.ok)(comp+.ok)
ok (bus.inc)(fork.ok)(mem a.inc)(mem b.inc)(comp+.ok)

OBSERVABLE ON THE BUS:
ok (bus.ok)(fork.ok)(mem a.ok)(mem b.ok)(comp+.ok)
x (bus.ok)(fork.ok)(mem a.ok)(mem b.inc)(comp+.ok)
x (bus.ok)(fork.ok)(mem a.inc)(mem b.ok)(comp+.ok)

inc (bus.ok)(fork.ok)(mem a.inc)(mem b.inc)(comp+.ok)
inc (bus.inc)(fork.ok)(mem a.ok)(mem b.ok)(comp+.ok)
inc (bus.inc)(fork.ok)(mem a.ok)(mem b.inc)(comp+.ok)
inc (bus.inc)(fork.ok)(mem a.inc)(mem b.ok)(comp+.ok)
inc (bus.inc)(fork.ok)(mem a.inc)(mem b.inc)(comp+.ok)

Figure 5: Results of Error Simulation

It can be seen that whenever only a single error is present on the inputs of COMP+, it can
be detected. But if errors are present on both inputs, COMP+ fails to signal the errors. The
bottom part of the �gure shows that COMP+ causes uncertainty in error propagation, since
in case of one erroneous input it may deliver either correct or incorrect results (denoted
by x). It can also be seen that examining the errors on BUS TOB can not di�erentiate
between the error of BUS and that of RAM 1 or RAM 2. It results problems when diagnosing
the system.

Inspecting the results we can see that to each system state di�erent from "system is
error free" (identi�ed by error free components) a test outcome di�erent from ok or x

can be assigned. It means that each component error can be detected by some of the
tests, moreover any combination of the errors can also be detected, thus error detection
ratio of the system is 100%. On the other hand we can not combine the test outcomes in
such a way that a given combination corresponds only to one and only one system state
(theoretically in case of two tests two states would be diagnosable). It results that none
of the component errors can be uniquely diagnosed, thus isolation level (ratio of uniquely
diagnosable errors) is 0%. It results that all derived measures, such as ratio of hidden
errors, dominant errors, etc. are also 0. However, if we were satis�ed with localization
of an error within the memory, and we suppose a single error model, then memory error
would be diagnosable. If one evaluates the results of the two tests independently and
compares them, it turns out, that adding an external memory test to the built-in test of

TOB BUSCOMP+

RAM2

RAM1

TOB

Figure 6: Input for Sheppard's Integrated Diagnostics

COMP+ does not improve the testability of the system. We can overcome this problem by
either turning o� COMP+ during the test, or by improving the testability capabilities of
COMP+.

Finally Figure 6 de�nes the input model for Sheppard's integrated diagnostics. It
gives the error-test and test-test dependency relationship, which is presented in form of a
dependency graph. Note that dotted lines denote the cycle during normal operation. In
the �gure circles denote the tests, and boxes the fault isolation conclusions, in our case
they are the errors of components. Arrows denote the dependency relationship between
conclusions and test: for example if RAM1 fails then test COMP+ will fail. When there exists
a path from test A to test B it denotes, that if test A fails then test B will fail. We can
see that an arrow leads from test COMP+ to TOB, which examining the simulation results
in Figure 5 shows that if COMP+ fails then TOB also fails. Extracting of this model from
our dataow notation makes it possible to use the theoretical background of Sheppard,
and to obtain further testability measures of the system [SS92].

4 Performability Evaluation

In this section we will give some insights how we build a model and how we evaluate the
data gathered form the model to do performability evaluation. In general, when modeling
a system for analysis we �rst have to �x what aspects of the system's behavior we are
interested in and what kind of data we want to gather from the model in order to estimate
the desired true characteristics of the SUI (system under investigation). Furthermore,
we must determine what aspects of a complex real-world system actually need to be
incorporated into the model.

The technique we use to evaluate a model numerically is simulation and was inspired
through a previous work of Aylor et al [Sch92]. They used VHDL [IEE87] as basis for
modeling computing systems and introduced the 'building block approach' as a modeling
concept for evaluating the system performance and rudimentary for reliability analysis.
Unfortunately, the o�ered blocks used to model a computing system are tailored for
evaluating system performance, mainly, and are hard to handle when building simulation
models. But, the main idea behind the building block concept and the intention by using
VHDL as the description language for modeling computing systems at di�erent levels
of abstraction are picked up in this work and extended for performing performability
evaluation.

4.1 Analysis De�nition

From our point of view, performability evaluation serves as basis to improve the depend-
ability of computing systems with respect to performance. By dependability we mean the
reliability and availability of a SUI while safety and security attributes are not considered.
When evaluating the performability of a SUI we have to estimate both, the system de-
pendability and the improvement gained through the integration of DIMs (dependability
increasing methods). The questions depicted in Table 1 can be seen as a checklist for
what must be analyzed when evaluating performability. The table is divided into two
parts, the �rst concerns with dependability in general while the second is concerned with
evaluating the improvement.

1. How does the SUI perform its function in the presence of faults?
2. How sensitive is the SUI to speci�c faults?
3. How fast is a speci�c fault propagated through the system?
4. How long does it take before a speci�c fault is becoming active?
5. How high is the dependability pro�t after the integration of DIMs?
6. How strong is the system performance inuenced by DIMs?

Table 1: Questions of Interest

4.2 Simulation Model

The performability of a computing system depends primarily on the quality of its HW
and SW components. But, performability depends also on the type of application pro-
cessed by a computing system because the SW reects how a system will be used and
how the HW resources are brought into action { the SW determines the operational
pro�le of a computing system. For example, an application which works primarily on
processor registers is more dependable than an application which extensively uses exter-
nal memory (MTBF ratio memory:CPU = 1:12500 [Sch94]). Obviously, the application
must be regarded as well as the HW of a computing system when evaluating the system
performability.

DIM ModelMachine Model Workload Model

Simulation Model

Figure 7: Building a Simulation Model for Performability Analysis

In performance evaluation of network systems the SW and HW components are sep-
arated into di�erent models. In [Her92] a separation of the system's model in machine-
model and workload-model was suggested, but this modeling concept isn't su�cient for
performability analysis. Rather, it is reasonable that the simulation model consists of
three parts, machine-model, workload-model, and DIM-model. The machine-model and
the workload-model represent the SUI without any DIMs. This permits the evaluation of
the \naked" computing system and serves as a reference for evaluating performance loss
and dependability pro�t after the integration of DIMs. The DIM-model contains all com-
ponents (HW and SW components) which are necessary for improving the dependability
of a SUI.

4.3 Evaluation Technique

To evaluate the dependability of the SUI fault simulation is done. Faults are provoked
through a fault-injector and the resulting impairments, errors and failures, are observed.
The data gained in the analysis of the naked system are used to determine interesting
scenarios for doing fault simulation. In opposite to other commonly used high level fault
simulation techniques, where time and location for a fault injection is determined by
using a pseudo random number generator, in this approach time and location for a fault
injection are �xed founded on the knowledge of the operational pro�le.

Based on the assumptions listed in Table 2 tracing of information ow within the
simulation model is obvious. Whenever components perform an action that consumes

� Faults are always getting active through interaction.
� Failures are distinguished in timing and value failures (failure domain viewpoint [Lap92]). The

duration of such a failure can be temporary or permanent.
� Only value failures can be propagated through a computing system, while timing failures reside

in the component where the timing failure becomes active. An exception are those timing
failures which cause a value failure.

Table 2: Assumptions about Fault Activation, Fault Propagation, and Failure Modes

time for processing and whenever service requests are deposited or received, a trace
record is written into a trace �le. The current error state of both, interaction entity2 and
component, is stored in speci�c data structures and can be one of ok, faulty known,
faulty unknown, or dead. These states reects the actual state of the SUI and must be
distinguished from SUI's viewpoint about its current state. I.e. assume that an interaction
entity is corrupted due to fault injection but the corruption isn't already detected by the
SUI. The actual state of the SUI is faulty unknown while from SUI's viewpoint the
current state is ok.

After the simulation run ends, the trace �le is investigated by using a visualization tool.
ParaGraph [Hea93], originally a tool for visualizing the performance of parallel programs,
was modi�ed to allow the visualization of error traces. Animation, fault propagation, fault
coverage, fault latency, and various utilization diagrams show the system engineer how
the system behaves in presence of faults. He can immediately observe which components
are directly a�ected and, by stepping through the trace, where the error is propagated and
how fast it is propagated. Furthermore, he can investigate if a speci�c error is detected
by the integrated DIMs, how long this error is kept undetected in the system and how
high the additional workload is due to error detection/correction.

For questions of interest where visualization isn't appropriate (i.e. how many compo-
nents are visited by an interaction entity) the system engineer can run several queries.
SHQL [Mom94] is a program that reads SQL commands interactively and executes those
commands by creating and manipulating Unix �les. In our approach it is used to get
some strategic information from the trace �le { e.g. the result of a query could provide a
listing of the most frequently used components. Unfortunately, this public domain version
doesn't support the whole SQL standard, so supplementary some AWK [AWK88] scripts
are o�ered for queries not supported by SHQL.

4.4 Example

Recall the example in section 3.3. In order to evaluate the performability of the proposed
system timing description must be incorporated into the simulation model. Furthermore,
the kind of information carried by the interaction entities is meaningful because eval-
uating whether two incoming data replica are equal determines essentially the system
behavior. Therefore, an interpreted model is needed. For simplicity it is assumed that
the workload can be modeled through a Markovian process. Remembering the modeling
concept introduced in section 4.2 the structure of the corresponding simulation model is:
A description of the underlying fault model will be presented in section 5.1.

In Figure 8 a snapshot of the visualized trace �le can be seen. Looking at the fault
propagation diagram a system engineer can directly observe the timing behavior of each

2An interaction entity is used to facilitate exchange of information between components. Possible
interaction entities are tokens, messages etc.

Machine model DIM model Workload model

CPU | Markovian process
BUS | |
RAM FORK, RAM, COMP+ |

component (horizontal lines) and time and location of interactions (arrows). Di�erent
line styles are used to determine the current state of interaction entities and components.
I.e. the dotted arrow signals that the interaction entity is in error state, more precisely
faulty unknown. The faulty entity is forwarded to the COMP+ which in this case is able
to tolerate the error. How strongly the system work load is inuenced can be read from
the utilization summary diagram. The light shading of component BUS indicates that
this component has pure transport delay while the other components have pure inertial
delays. Inertial delays are used to model usage time of a facility and transport delays
model time used for transmitting interaction entities.

The evaluation of the simulation model shows that the proposed system is able to
tolerate all memory faults appearing in one RAM where an odd number of bits is corrupted.
In this case a non-stop operation of the Shadow RAM can be guaranteed. Other statistically
relevant types of faults are at least detectable. Faults which arise in other components
can not be tolerated anyway and cause a system failure directly. The performance is
reduced by an average of 9.4 percent due to the integration of FORK and COMP+.

0.0 0.5

Utilization Summary DiagramFault Propagation Diagram

16991326

RAM_1

RAM_2

CPU

BUS
FORK

COMP+

Figure 8: Fault Propagation and Utilization Summary Diagram

5 Reliability Evaluation

Petri Nets (PN) allow the description and analysis of systems with parallel behavior.
We use stochastic PN, which are transformable to a Markov chain, to compute required
reliability measures like MTTF, availability, coverage etc.. There are two solution types
of a Markov chain: the analytical and the simulative. The analytical solution is prefered,
because it is an exact one; a steady state or transient analysis is possible.

The analytical solution of a stochastic PN permits to evaluate systems with quite
di�erent frequencies of events, therefore it is possible to investigate the e�ect of very rarely
events, like faults, to the behavior of a system. Sometimes quite di�erent frequencies
of events cause a sti�ness problem [BDMC+94] for most of the Markov chain solution
methods. In that case we use the new analytical Multi Level (ML) solution method
[HL94], which has no sti�ness problem.

In the following example, memory and bus faults are rare events. The e�ect of di�erent
fault types to a memory unit is considered. The system uses a shadow RAM for fault
detection and parity bits for recovery; the structure is described in section 2. This system
is compared to a system with a single memory (incl. parity). The system is modeled by
the PN{type GSPN [MC84].

5.1 Fault Model

The fault model only considers data faults. The data can be corrupted by bus faults or
in the component RAM. Two data elements (3 Bits plus a parity bit each) are used to
distinguish between the fault types; one bit and multiple bit faults are represented. The
following fault types are integrated into the model:

� A bus error sets the a�ected bits to 1 with probability 0.5 and to 0 with probability
0.5.

� Write operation to the RAM: A interrupted bitline prevents from writing a bit into
a cell (stuck-at); connected cells (coupling faults) get the same bit value; a alpha
particle inverts a cell after a period of time (bitip).

� Read operation to the RAM: The bit in the point of intersection of a interrupted
bit- and wordline will be read, if there is a read access to a cell in this bitline.

No fault models for FORK and COMP+ is chosen, because the faults of FORK and COMP+

errors are describable by the e�ects of the other faults and in addition, the probabilities
of the e�ects of the other faults are much higher, than probability of the failure of FORK
and COMP+ errors.

5.2 Petri Net Model

In the PN (Figure 9) a reference "word" from memory is observed. The content of
the reference variables (original data) is written to the reference word. Data from the
reference word (read operation), which is sent back via the bus to CPU, is compared with
the original data and permits an evaluation of the system.

CPU
Write-
operationTwrite Twrite-

other

RAMa
Twrite-
neighbour

Twrite-
direct

RAMb

Ca

Tflipzeroonea

Tfliponezeroa

Tnochangeb

Toneb

Tzerob

. . .

. . .

. . .

Tread

Tgoon

Tgoondirect

. . .

#Cpb

Cpb
2

Tzeroa

Tnochangepb

Tonepb

Tzeropb

Tnochangea

Tonea

1-#Ca

#Ca
0
1

1

0

RAMpb

1-#Cpb

Neighbour-
operation

23

Bus/direct
operation

6

Read

Tread-
other

Tread-
direct

Evaluation

1 Token in Bus/directoperation: Data is sent via the bus
3 Token in Bus/directoperation: Data bits incl. parity bits are stored in the shadow RAMs
1 Token in Neighbouroperation: The neighbour cells of the reference word are written

Tflipzero-
oneapb

Tfliponezeropb

0
1

1

0

Figure 9: PN model of the Shadow RAM{Parity combination

The CPU executes a write (Twrite) or a read (Tread) operation. There are three
write decisions: An access to the reference word (Twritedirect), to the neighbor cells of
the reference word (Twriteneighbour) or to the rest of the cells (Twriteother) and two
read decisions: An access to the reference word (Treadirect) combined with the evaluation
part of the net or to the rest of the cells (Treadother).

Altogether there are eight data cells Cx. x stands for a,b,c,pa,e,f,g,pb. Ca,Cb,Cc are
the data bits of the reference word in the �rst shadow RAM inclusive parity bit Cpa.
Ce,Cf,Cg have two meanings: First of all Ce,Cf,Cg are the data bits sent via the bus
to the reference word, secondly Ce,Cf,Cg are the data bits of the reference word in the
second shadow RAM inclusive parity bit Cpb.

There are four possible actions to change a data cell Cx: The content of the cell is
unchanged (Tnochangex), bit value one (Tonex) or zero (Tzerox) is written or a cell is
inverted (Tiponezerox, Tipzeroonex). One token in Cx means bit value one, no token
in Cx bit value zero.

The probabilities of the fault types and of the correct behavior are assigned to the
actions, for that purpose the transitions have a condition part to consider the actual
state.

5.3 Simulation, Experiment and Evaluation

The PN model has di�erent parameters to describe an experiment. One can determine
the rate for read and write operations of the CPU, the probabilities and rates of the
fault types of a cell and �nally the size of the RAM (number of addresses). The used
transitions and places for the evaluation permit to compute the following probabilities
for the reference word of the shadow RAM{parity combination:

1. Equalprob, (Unequalprob): The data bits of the both words are identical, (not
identical).

2. Cor1prob, (Cor2prob): The data bits of the both words are not identical and the
parity comparison yields: the data of the �rst (second) shadow RAM is correct and
the data of the second (�rst) is incorrect.

3. Errorprob: The data bits of the both words are not identical. The parity comparison
is not able to determine the correct word; the comparison tells, that both words are
correct or both incorrect.

4. CorData, (IncorData): The word, which is sent via the bus to the CPU (case 1, 2),
is correct (incorrect).

In comparison with the last model a single RAM inclusive parity for fault detection
is investigated. The following probabilities of the reference word are computed:

1. CC: The read data is correct (comparison with the reference variables) and the
parity bit comparison yields: the data is correct.

2. CI: The read data is correct and the parity bit comparison yields: the data is
incorrect (inverted parity bit).

3. IC: The read data is incorrect and the parity bit yields: the data is correct (two bit
fault).

4. II: The read data is incorrect and the parity bit yields correctly: the data is incor-
rect.

The input parameters of both models are based on the following assumptions: The
computer has 20 MIPS with a mean workload of 10 per cent and every twentieth in-
struction a read/write operation to the main memory takes place. With 75 per cent a
read and with 25 percent a write operation is executed. The experiment parameters are:
RAM size (10 words); neighbors of the reference word (4); Writerate (2.5e+4); Readrate
(7.5e+4); Buserrorprob (1.0e-6, Exp. 1); Nowriteprob (1.0e-6, Exp. 2,6); Connectprob
(0.25e-6, Exp. 3,6); Readfaultprop (0.25e+6, Exp. 4,6); Bitiprate (1.17e-3, Exp. 5,6).

The probabilities and rates of the faults are assigned to the single cells. From experiment
one to �ve only one fault type is considered. In experiment six all fault types (without
bus errors) are integrated. In Table 3 we present the computed results of the single RAM
model and the results of the shadow RAM{parity combination:

Single RAM Shadow RAM{parity
Exp.Nr. CC CI IC II Unequalprob Errorprob Cor1(2)prob IncorData

1 9.99e-1 0.00e+0 1.50e-6 0.00e+0 0.00e+0 0.00e+00 0.00e+0 1.50e-06
2 9.99e-1 5.00e-7 1.50e-12 1.50e-6 3.00e-6 6.00e-12 1.50e-6 7.61e-13
3 9.99e-1 " 3.38e-12 1.50e-6 3.00e-6 1.25e-11 1.50e-6 1.69e-12
4 9.99e-1 " 2.63e-12 1.50e-6 3.00e-6 1.05e-11 1.50e-6 1.32e-12
5 9.99e-1 " 3.05e-12 1.50e-6 3.01e-6 1.22e-11 1.51e-6 1.53e-12
6 9.99e-1 1.00e-6 7.57e-12 3.00e-6 9.02e-6 7.41e-11 4.51e-6 9.27e-12

Table 3: Results of the single RAM and the shadow RAM{parity combination

The evaluation of the results show:
The use of the shadow RAM{parity combination leads very late to a fail stop of the

system, in contrast to a single RAM. For example experiment six shows a fail stop state
after the mean time of 4.4 seconds for the single RAM, and after 50 days for shadow
RAM{parity combination.

The probability to send incorrect data bits back to the CPU is in�nitely small (Incor-
Data 9.27e-12) for the shadow RAM{parity combination. The probability to send back
an incorrect word can be neglected, because it is more probable (factor 8) to reach a fail
stop state, instead of sending an incorrect word. The single RAM detects only an odd
number of faults, the probability of a two bit fault is very small, therefore the probability
to send incorrect data bits back to the CPU is in�nitely small (IC 7.75e-12).

There are di�erences in the cases IC of the single RAM (experiment 2 to 5). The ratio
of a coupling fault to a stuck-at is 2.25:1, a readfault to a stuck-at 1.75:1 and a bitip to
a stuck-at 2:1.

Bus errors are not detected in both models.

6 Conclusion

In this work we investigated the problem of modeling fault-tolerant computing systems.
Typical questions of interest for such systems are concerned with testability, depend-
ability, and reliability and are usually treated completly independent. In our approach
results of di�erent evaluation cycles are assessed globally which allows a trade-o� between
testability, dependability, and reliability. Futhermore, the evaluation time is signi�cantly
reduced since results gained in one evaluation cycle are re-used in another.

References

[ABF90] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing
and Testable Design. Computer Science Press, New York, 1990.

[AWK88] V. Aho, P.J. Weinberger, and B.W. Kernighan. The AWK Programming

Language. Addison-Wesley, 1988.

[BDMC+94] Buchholz, Dunkel, Mueller-Clostermann, Sczittnick, and Zaeske. Quantita-
tive Systemanalyse mit Markovschen Ketten. Teubner, Stuttgart - Leipzig,
1994.

[BS93] A. Bondavalli and L. Simoncini. Functional Paradigm for Designing Depend-
able Large-Scale Parallel Computing Systems. In Proceedings of the Interna-
tional Symposium on Autonomous Decentralized Systems, ISADS '93, pages
108{114, Kawasaki, Japan, 1993.

[Hea93] M.T. Heath. Paragraph: A tool for visualizing performance of parallel pro-
grams. Technical report, Oak Ridge National Laboratory, University of
Illinois, 1993.

[Her92] U. Herzog. Network Planning and Performance Engineering. Technical
report, University of Erlangen-N�urnberg, Department of Computer Science
(IMMD VII), 1992.

[HL94] G. Horton and S. Leutenegger. A multilevel solution algorithm for steady-
state markov chains. In Proceedings of SIGMETRICS 94, 1994.

[IEE87] IEEE Standard VHDL Language Reference Manual, IEEE Standard 1076{
1987, 1987.

[Jon89] B. Jonsson. A Fully Abstract Trace Model for Dataow Networks. In Pro-

ceedings of the 16th ACM symposium on POPL, pages 155{165, Austin,
Texas, 1989.

[Lap92] J. C. Laprie. Dependability: basic concepts and terminology. Springer-
Verlag, 1992.

[MC84] M. A. Marsan and G. Conte. A class of generalized stochastic petri nets for
the performance evaluation of multiprocessor systems. ACM Transactions

on Computer Systems, 1984.

[Mom94] B. Momjian. Shql. ftp root@candle.uucp, 02 1994.

[Ofs91] S. Ofsthun. An approach to intelligent integrated diagnostic design tools.
In Proceedings of the IEEE Systems Readiness Technology Conference, Ana-
heim, California, 1991.

[Sch92] J. M. Schoen, editor. Performance and Fault Modeling with VHDL. Prentice
Hall, Englewood Cli�s, New Jersey, 1992.

[Sch94] W. Schlenz. MTBF-Zeiten f�ur typische Systemkomponenten im gehobeneren

PC-Leistungsbereich. 1994.

[SS91] W. R. Simpson and J. W. Sheppard. System Complexity and Integrated
Diagnostics. IEEE Design & Test of Computers, 8(3):16{30, September
1991.

[SS92] W. R. Simpson and J. W. Sheppard. System Testability Assessment for
Integrated Diagnostics. IEEE Design & Test of Computers, 9(1):40{54,
March 1992.

