
Implementing UML hierarchical state machines using 

the State-oriented programming design pattern 
 

Written by Tamás Rehák (rehak@sch.bme.hu) 2002. 
Consultant: Dr. András Pataricza, Gergely Pintér 

 
 
The task for this semester was to examine the State-oriented programming design pattern, 
the hierarchical state machines, basic code-generation disciplines and write a code-generation 
tool using this design pattern. 
 
There aren’t much real working solutions for transforming hierarchical state machines into 
source code, expect the State design pattern and the above mentioned State-oriented 
programming pattern. 
This pattern was developed by Miro Samek, and the aim of this pattern is to provide a small, 
efficient, framework-based solution for this problem. The pattern was developed to be used 
in embedded, hard real-time environment where both high speed and small memory footage 
were crucial. 
 
In this form of the design pattern, it supports only a subset of UML statechart’s features: 
nested states with proper handling and execution of entry/exit actions upon entering/exiting 
states and the handling of guards and history states can be also implemented. But developing 
the pattern itself, maybe we can include much more from the standard for example 
orthogonal regions. 
 
During the development it was important for me to implements this design pattern in an 
expandable way. First I created all the class hierarchy that is written down in the UML MOF 
standard than specified the two interfaces the incoming and the outgoing. Their 
implementation can be easily expanded or replaced. The program uses the standard XMI 
description of UML statecharts, and generates C or C++ codes. 
The generated C or C++ code can be commented (extracted from the XMI) and easily 
expanded with the “useful” program code. The guard conditions are not evaluated or 
checked as it is not important from our view. 
 
Using code generation for writing programs makes the work of the programmer much 
easier: he or she models the problem in a high-level UML tool, than exports it to the 
standard XMI format and the code can be created with a small, but maybe powerful tool. In 
the future these code-generation tools will be much more integrated with the modelling tools 
and the code synthesis will be easier. 
 
During this semester I got to know the UML statemachine model, its operational semantic, 
the UML metamodel, its data exchange format. Now I have some knowledge about code 
generation, XML-processing, and I learned the C# programming language in it I 
implemented this program. 
 


